
Universit

�

a degli Studi dell'Aquila

Faolt

�

a di Sienze Matematihe Fisihe e Naturali

Tesi di Laurea in Informatia

Co.M.E.T.A.

Mobility support in the Siena publish/subsribe middleware

Candidato Relatori

Mauro Caporusio Prof. Paola Inverardi

Prof. Alexander L. Wolf

Anno Aademio 2000-2001

\Da qui messere si domina la valle. . .

Ci�o he si vede, �e."

B.M.S.

Aknowledgement

I would like to thank my advisors, Prof. Paola Inverardi and Prof. Alexander

L. Wolf, for making this experiene possible and for their help and guidane

through the entire ourse of this thesis.

I would like to thank Antonio Carzaniga for his patiene orreting my \bad

English", for his friendly teahing and beause this work ould not have been

done without many disussions with him.

I would also like to thank the USENIX Assoiation for supporting my work

through the Researh Exhange (ReX) grant.

I dediate this work to my wonderful family: to my mom, my dad and my

honey sister, for their love, help, support, on�dene and guidane through-

out my life. . . Thanks a lot. . . I love you so, so muh!!

A speial thanks to Maria Benigni for loving me and for her enouragement

during all my study.

I would like to remember all my good friends: Mihele \Fale" Meruri and

Franeso \Bugia" Troiani with whom I shared all the good and bad things

of my (and their) life; Antonio \Lupo" Di Berardino, Romolo \Re" Salvi and

Lorenzo \Rampyn" Felli for being my roommates for many years; \Il soio"

Alfredo \Freski" Navarra, Vinenzo \Biiu" Cesarini, Niola \Alanghiro"

Pione, Emanuele \Osar" and Alessandro \Soft" Asi, Simone \Srigno"

Sriboni, and Fabio \Xenon" Maninelli, with whom I spent many beautiful

days, for all smiles they gave to me; Armando \Bardone" Bottiella for his

marvelous diet; Maro \Egomet" Castaldi and Nathan \Peller Dude" D.

Ryan, with whom I shared all Ameria's \bullshit" (do you know what I

mean?) and fun, for their friendship and help throughout my experiene in

Boulder (USA); and all the others, who do not appear in this list, eah one

important for a speial thing. . . Thanks to all you guys! I'll arry you in my

heart forever!!

Finally, but not less importantly, I would like to thank myself \Meskall" for

my instability, my perseverane and my \hard head" in everything I did.

Boulder - Marh 21, 2002 Mauro Caporusio

Contents

1 Introdution 1

1.1 Contribution of This Thesis 2

1.2 Struture of This Thesis . 4

2 Bakground 5

2.1 Mobility . 5

2.1.1 Host Mobility . 6

2.1.2 Code Mobility . 7

2.2 The Siena Middleware . 8

2.2.1 A Brief Overview on Siena API and Semantis 10

2.2.2 Arhiteture of Siena 13

2.2.3 Proessing Strategies 15

3 Evaluating Siena in a Wireless Network 18

3.1 Java 2 Platform, Miro Edition 20

3.1.1 Con�gurations . 21

3.1.2 Virtual Mahines . 22

3.1.3 Pro�les . 23

3.2 Servie Disovery . 25

3.2.1 A Request-O�er Combination 26

3.2.2 Observations . 29

3.3 Aution System . 30

3.3.1 Aution harateristis 31

3.3.2 Quality of Servie . 33

3.3.3 Implementation . 33

i

Contents

3.4 General Paket Radio Servie 36

3.4.1 Network Features of GPRS 37

3.4.2 GPRS System Arhiteture 40

3.4.3 GPRS Protool Stak 43

3.4.4 Signalling Plane . 46

3.4.5 Survey of GPRS Tools 46

3.5 Experimentation . 49

3.6 Sample Results . 53

4 Mobility Support in Siena 55

4.1 Mobile Dispather . 58

4.2 Noti�ation Persistene Servie 58

4.2.1 Implementation . 59

4.3 Event Re-routing . 60

4.4 Event Downloading . 61

4.4.1 Implementation . 62

4.4.2 Observations . 63

4.5 Event Downloading With Path Test 64

4.5.1 Implementation . 66

4.6 Mobile Server Disovery . 67

4.7 Implementation . 68

4.8 Observations . 70

5 Conlusions 71

A Aution Class Diagrams 75

A.1 Seller Class Diagram . 75

A.2 Buyer Class Diagram . 76

B Seawind v3.0 77

B.1 Components of Seawind . 77

B.1.1 Graphial User Interfae (GUI) 78

B.1.2 Seawindd (SWD) . 78

B.1.3 Workload Generator (WLG) 78

ii

Contents

B.1.4 Network Protool Adapter (NPA) 78

B.1.5 Simulation Proess (SP) 78

B.1.6 Baground load (BGL) 79

B.2 Parameters of Seawind . 79

C MobileDispather.java 80

C.1 Class MobileSubsriber . 81

C.2 Class MobileDispather . 86

iii

List of Figures

2.1 Host Mobility : hosts move in the real world. 6

2.2 Code Mobility : ode moves through hosts. 7

2.3 Siena: Distributed Event Noti�ation Servie. 9

2.4 A Siena Filter and a Siena Noti�ation 10

2.5 Hierarhial lient/server arhiteture. 14

2.6 Ayli peer-to-peer server arhiteture. 14

2.7 General peer-to-peer server arhiteture. 15

3.1 GPRS network makes a \bridge" between Client and Server. . 19

3.2 High-level view of J2ME. 20

3.3 J2ME arhiteture. 23

3.4 Alie subsribes before Bob advises for a tiket. 25

3.5 Bob advises for a tiket availability before Alie subsribes . . 26

3.6 Both users send a pair <request, o�er>. 26

3.7 The lient-pair is sent before the provider-pair. 27

3.8 The lient-pair is sent after the provider-pair. 28

3.9 The lient-pair and provider-pair are sent at the same time. . 28

3.10 Client/server ommuniation between lient and provider. . . 29

3.11 Publish/Subsribe is unreliable arhiteture. 29

3.12 The pair formatted as <noti�ation, subsription> does not

work. 30

3.13 The Aution System's arhiteture 31

3.14 The Connet GUI. 34

3.15 The Sell GUI. 35

3.16 The Buy GUI. 35

iv

List of Figures

3.17 GPRS system arhiteture . 40

3.18 GPRS protool stak . 44

3.19 A Siena mapping onto Seawind 50

4.1 A ode fragment moves from host to host and hanges its

server master after the motion. 55

4.2 Code moves together with its host and hanges its server after

the motion. 56

4.3 Aess-points swithing ations. 57

4.4 HierarhialDispather and MobileDispather work together. . 58

4.5 Noti�ation persistene servie. 59

4.6 T Downloads the events stored in H 62

4.7 Download events stored on the old server with synhronization. 64

4.8 Events downloading: time-steps synhronization 66

4.9 How Disover another MobileDispather 68

4.10 How Disover another MobileDispather 69

5.1 Dynami reon�guration using Mobile Support 73

5.2 Dynami reon�guration using Mobile Support 74

A.1 Seller lasses interation. 75

A.2 Buyer lasses interation. 76

B.1 Seawind Arhiteture. 77

v

List of Tables

2.1 Interfae of Siena . 11

3.1 CLDC vs. CDC . 22

3.2 Channel oding shemes parameters. 38

3.3 GPRS CS-1 simulation parameters 52

3.4 GPRS error simulation parameters 52

3.5 Siena behavior in the wireless GPRS network. 53

3.6 Siena behavior in a loal-area, wired network. 54

4.1 Interfae Siena Mobility Support 70

vi

Chapter 1

Introdution

This thesis is onerned with mobile appliations that use a publish/subsribe

infrastruture. In partiular, this work onsists of (1) a ase study on the

deployment of a publish/subsribe middleware on top of a wireless ommu-

niation servie, where mobility is supported at the network level, and (2)

a design and initial implementation of a mobility support servie realized

within the publish/subsribe middleware.

The inreasing size and performane of omputer networks is generating

a new phenomenon: networks are being pervasive and ubiquitous. While per-

vasive means that network onnetivity is going to be a basi feature of any

omputing faility, ubiquitous refers to the ability of utilizing network on-

netivity independently of the physial loation of the user. In this ontext

(usually referred to as a wide-area network), appliations are haraterized

by the fat that they are loosely oupled, asynhronous, and heterogeneous.

This promotes a lass of software system based on the abstrat design alled

event interation whih in turn is supported by an emerging infrastruture

alled Event noti�ation servie [6℄.

Development in wireless tehnology are freeing appliation hosts from a

onstrained, �xed physial loation in the network and enables the pratial

realization of the idea of mobile omputing. In fat, portable omputers (suh

as laptops and PDAs) are growing in popularity while they are shrinking in

size. This proess of miniaturization, ombined with the emergene of high-

1

Contribution of This Thesis Introdution

speed wireless ommuniations, allows users to use portable devie with on-

demand onnetions. In this senario, mobile users an move together with

their hosts aross di�erent physial loations, while remaining onneted to

the network through wireless links.

In addition to the mobility of hosts, new tehniques based on ode mi-

gration [10℄ have been developed to allow appliations to move from host to

host. These mobile appliations, often referred to as \mobile agents", aim to

optimize information retrieval and other similar tasks by moving lose to the

data stores of interest, where they an exeute their queries with low lateny

and network usage.

With the work desribed in CoMETA (Component M obility using the

Event noT i�ation Arhiteture), we intend to ombine the bene�ts of mo-

bile appliations (moving along with their host, or migrating from host

to host) with the ommuniation servies o�ered by an advaned pub-

lish/subsribe servie.

1.1 Contribution of This Thesis

In integrating publish/subsribe tehnology with mobile appliations, we

have two general hoies of arhiteture: In one ase we ould simply attah

the publish/subsribe system on top of a network that o�ers native support

for mobility. In the opposite ase, we ould have the publish/subsribe sys-

tem handle mobility without any diret support from the underlying network

layers. In this latter ase, the publish/subsribe servie would implement an

additional set of servies designed to support mobile appliations. These two

alternative methods, detailed below, haraterize the ontribution of this

thesis.

Siena over a wireless network We studied the integration of an event-

based middleware on top of a wireless network, in a situation in whih the

mobility of lients is transparently managed at the network level. In partiu-

lar, we foused on the Siena distributed event-noti�ation system [5℄, hosted

over a General Paket Radio Servie (GPRS) network.

2

Contribution of This Thesis Introdution

In order to evaluate the behavior of Siena and its demands over the om-

muniation resoures of the wireless network, we developed a test appliation

(a distributed aution system) that we used in several simulated senarios.

Developing suh an appliation required us to port the Siena lient-side

library to the Java

TM

2 Miro Edition, a platform spei�ally targeted at

mobile devies suh as ell phones and PDAs. The resulting appliation and

library allowed us to run experiments on a simulated PDA, in ombination

with a highly on�gurable GPRS network emulator.

The primary goal of our experiments was to evaluate the impat of deploy-

ing Siena onto the wireless GPRS network. We did this from two di�erent

perspetives. The �rst was to gather data haraterizing the performane of

the three di�erent low-level transport mehanisms (UDP, TCP, and \keep-

alive" TCP that attempts to reuse TCP onnetion) on the wireless network.

The seond was to ompare these results with baseline data olleted on a

loal-area, wired network. The results of the experiments gave us an initial

indiation of whether a seamless integration of wired and wireless ommuni-

ation is feasible for a publish/subsribe ommuniation servie.

Mobility support in Siena We studied how to support mobile appli-

ations that use the Siena publish/subsribe system implemented over a

wired-line network. We onsider mobile appliations that either move along

with their host (e.g., beause they exeute on a laptop or a PDA) or move

from host to host using mobile ode tehnology. Regardless of the tehnology

supporting mobility, we assume that appliation an detah from one Siena

aess point, travel to another network loation, and reonnet to another

Siena aess point.

To support suh appliations, we designed and implemented a mobility

servie within the Siena publish/subsribe system. This servie allows ap-

pliations to reeive noti�ations published while they are traveling to a new

destination, and to restore the ow of noti�ations and their subsriptions

when and where they reonnet to the Siena network at their destination.

As a basis for the mobility servie, we implemented a persistent storage of

noti�ations. We then implemented two additional funtions, alled move-

3

Struture of This Thesis Introdution

OutMaster and moveInMaster, that allow lients to swith from their

urrent aess point over to a new one, re-establishing their subsriptions as

well as their ow of noti�ations. We implemented the moveInMaster fail-

ity in suh a way that it an provide di�erent levels of onsisteny for the

swith-over funtion.

1.2 Struture of This Thesis

Setion 2 introdues our starting-points and bakground. It presents in de-

tails the onepts of mobility and explains what Siena is and how it works.

Chapter 3 desribes how we put Siena middleware on top of the GPRS

Network and how we ombined the onept of Host Mobility with the event-

based arhiteture. It also explains the experimentation we made, in order

to understand Siena performanes in a mobile environment, and presents

our results.

Setion 4 talks about our researh in Client Mobility exploring the prob-

lems that it implies and desribes how we allowed Siena to support the

mobility of its lients. This setion also presents the algorithms we have

been designing to solve the problems explained.

Finally in Setion 5 we draw some onlusions summarizing our experi-

ene and disussing future developments.

4

Chapter 2

Bakground

In this hapter we would make an overview about our starting points: we

briey introdue the theory about mobility, illustrating di�erent approahes

and possible senarios, and we give an high level presentation of the Siena

middleware and its prinipal harateristis. These onepts should be useful

to understand the work explained through the next Setions in whih we will

examine how we put in touh the onepts of mobility and Siena.

2.1 Mobility

Mobility breaks all bindings between hosts and software; the network stru-

ture may be mutable, nodes may ome and go, proesses may move between

nodes, and programs may evolve and hange struture. As some authors

desribe it, mobility is a \total meltdown" of the stability assumed by dis-

tributed systems [31℄. From the software engineering perspetive, mobility

is de�ned as the study of systems in whih omputational omponents may

hange loation, in a voluntary or involuntary manner, and move aross a

spae that may be de�ned to be either logial or physial. This distintion is

neessary to distinguish the di�erent level in whih mobility is handled.

5

Mobility Bakground

2.1.1 Host Mobility

Host mobility (some authors refer to it as either physial mobility [31℄ or mo-

bile omputing [2℄) entails the movement of mobile hosts (of all sorts and size)

in the real world. It is assumed to be the next evolutionary step in the devel-

opment of the worldwide ommuniation infrastruture and the extension of

wire-line networks. In fat, one an imagine a traditional stati network, in

whih �xed hosts with stati addresses exhange messages via the standard

Internet infrastruture, with at the end-points some wireless-networks, made

by an aggregation of base stations, that ontrol message traÆ from and to

mobile devies (as showed in Figure 2.1). Mobile devies, even if physially

detahed from the �xed infrastruture, may interat with eah other and

with the �xed hosts, throughout wireless link. Sending data to and from

Fixed Network

Mobile Networks

code

Code

Figure 2.1: Host Mobility : hosts move in the real world.

a mobile unit requires the ability to �nd the urrent loation of the devie

and to maintain the data ow as the unit moves from one plae to another.

This kind of mobility is managed at the network-layer and, therefore, the

movement of the host is ompletely transparent at the appliation-layer. For

example ellular phone system aomplish this through a ombination of

broadast signals and hand-o� protools.

6

Mobility Bakground

2.1.2 Code Mobility

Code mobility (or either logial mobility [31℄ or mobile omputation [2℄) in-

stead, involves the movement of ode (in all its forms) among hosts. At a

level above the physial, there is a logial layer, alled Code Mobility, that

removes stati bindings between the software omponents and the network

hosts where they are exeuting. This allows omponents to be reloated to

ahieve exibility and inrease reon�guration apability. In this senario,

Code
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Figure 2.2: Code Mobility : ode moves through hosts.

omponents are logial units that may move, together with their ode frag-

ments, from host to host aross both wire-line and wireless network (see

Figure 2.2). A system may be omposed of several units some of whih may

be mobile. The overall arhiteture of the system an be onsidered to be

independent of the loation of eah individual omponent.

Code mobility an be distinguished in two main ategories depending on

how the state of the exeution of a mobile omponent is a�eted by the

migration of that omponent from one host to the other. In partiular, two

types of mobility have been identi�ed in the literature [4℄:

weak mobility Weak mobility refers to the ases in whih the ode fragment

is reloated by reating a fresh opy at the destination point or prior

to start of its exeution.

strong mobility By ontrast, strong mobility refers to the movement of

ode that maintains the state of exeution. The exeution state is

reloated along with the ode thus allowing it to ontinue running even

after the move.

7

The Siena Middleware Bakground

Code mobility is viewed as o�ering designers a new set of oneptual and

programming tools that seek to exploit the opportunities made available by

the distributed omputing infrastruture. An example of suh tehnologies

is a new family of programming languages, usually referred to as mobile

ode languages (MCL) [9℄, suh as Java

TM

by Sun Mirosystem [35℄ and

Telesript

TM

by General Magi [18℄, that support mobility at various degree

of sophistiation.

An important aspet of mobility that is ommon to both host mobility and

ode mobility is the relation between a mobile omponent and other mobile

or �xed omponents. These relations, that may obviously hange during the

lifetime of the omponent, are aptured by the notion of ontext. Depend-

ing on the nature of the mobile system and on the nature of the mobility

support, some ontext relations may be maintained through the migration,

other may have to be temporary suspended and others may be disarded

or hanged after a migration. The �rst option is most ommon in settings

involving physial mobility while the third is implemented when logial mo-

bility takes plae aross onneted sites, as in the ase of Internet. This brief

introdution to the mobility will result useful to understand problems, and

proposed solutions, disussed in Setions 3 and 4.

2.2 The Siena Middleware

A ommon approah to ahieving loose oupling is a event-based design style.

In a event-based system, omponent interation are modeled as asynhronous

ourrenes of, and responses to, events. To inform other omponents about

the ourrenes of internal events, omponents emit noti�ations ontaining

information about the events (i.e. to ommuniate a state hanges). Upon re-

eiving noti�ations, other omponents an reat by performing ation that,

in turn, may result in the ourrene of other events and the generation of ad-

ditional noti�ations. In general, the asynhrony, heterogeneity, and inherent

high degree of loose oupling that haraterize appliations for wide-area net-

works suggest event interation as a natural design abstration for a growing

8

The Siena Middleware Bakground

event service

access pointservers

subscribe

notify

advertise

publish ���
���
���

���
���
���

��
��
��
��

��
��
��
��

publisher subscriber

Figure 2.3: Siena: Distributed Event Noti�ation Servie.

lass of distributed systems.

Siena (Salable Internet Event N oti�ationArhiteture) is an Internet-

sale event noti�ation servie that is representative of apabilities for sal-

able event noti�ation middleware. Siena is implemented as distributed

network of servers (as show in Figure 2.3) that provide lients with aess

points o�ering an extended publish/subsribe interfae. The lients are of

two kinds: Objet of interest, whih are the generators of noti�ations, and

interested parties, whih are the onsumers of noti�ations; of ourse, a lient

an at as both of them. Clients use the aess point of their loal servers to

advertise the information about noti�ations that they generate and publish

the advertised noti�ations. Clients also use the aess points to subsribe

for individual noti�ations of interest. Siena is responsible for seleting the

noti�ations that are of interest to lients and then delivering those noti�a-

tions to the lients via the aess points.

Siena is a best e�ort servie in that it does not attempt to prevent rae

onditions inluded by network lateny. This is a pragmati onession to the

realities of Internet-sale servies, but it means that lients of Siena must

be resilient to suh rae onditions. For instane, lients must allow for the

possibility of reeiving a noti�ation for a anelled subsription.

9

The Siena Middleware Bakground

2.2.1 A Brief Overview on Siena API and Semantis

At a minimum, an event noti�ation servie has to export two funtions that

together de�ne what is usually referred to as the publish/subsribe protool.

Interested parties speify the events in whih they are interested by means of

the funtion subsribe. Objets of interest publish noti�ations via the fun-

tion publish. Figure 2.4 shows a �lter on the top and a noti�ation mathing

the �lter on the bottom. Siena extends the publish/subsribe protool with

string dest=MXP

int prie< 500

string arrier =UA

string dest=MXP

int prie= 400

bool upgradeable= true

Figure 2.4: A Siena Filter and a Siena Noti�ation

an additional interfae funtion alled advertise, whih an objet of interest

uses to advertise the noti�ations it publishes. Siena also adds the funtions

unsubsribe and unadvertise. Subsription an mathed repeatedly until they

are anelled by a all to unsubsribe. Advertisement remain in e�et until

they are anelled by a all to unadvertise.

Table 2.2.1 shows the interfae funtion of Siena. The expression given to

subsribe and unsubsribe is a pattern, while the expression given to advertise

and unadvertise is a �lter. The parameter identity spei�es the identity of

the objet of interest or interested party. The only requirement that Siena

imposes on identi�ers is that they be unique.

Noti�ation

An event noti�ation is a set of typed attributes. Eah individual attribute

has a type, aname, and a value, but the noti�ation as a whole is purely

a strutural value derived from its attributes. Attribute names are simply

harater strings. The attribute types belong to a prede�ned set of primi-

10

The Siena Middleware Bakground

publish(noti�ation n)

subsribe(string identity, pattern expression)

unsubsribe(string identity, pattern expression)

advertise(string identity, �lter expression)

unadvertise(string identity, �lter expression)

Table 2.1: Interfae of Siena

tive types ommonly found in programming languages and database query

languages, and for whih a �xed set of operators is de�ned.

Filters

An event �lter (or simply a �lter) selets event noti�ation by speifying

a set of attributes and onstraints on the values of those attributes. Eah

attribute onstraint is a tuple speifying a type, a name, a binary prediate

operator (i.e. =, 6=, <, >, et) and a value for an attribute.

When a �lter is used in a subsription, multiple onstraints for the same

attribute are interpreted as a onjuntion (all suh onstraint must be math-

ing): a noti�ation n mathes a �lter f or equivalently that f overs n. Notie

that the noti�ation may ontain other attributes that have no orrespon-

dents in the �lter.

Patterns

While a �lter is mathed against a single noti�ation based on the noti�a-

tion's attribute value, a pattern is mathed against one or more noti�ations

based on both their attribute values and on the ombination they form. At

its most generi, a pattern might orrelate events aording to any relation.

Siena does not provide a omplete pattern language, but a pattern is

de�ned as a sequene of �lters:

f

1

� f

2

� � � f

n

11

The Siena Middleware Bakground

This is mathed by a temporally ordered sequene of noti�ations, eah one

mathing the orresponding �lter.

Advertisements

The motivation for advertisements is to inform the event noti�ation servie

about whih kind of noti�ations will be generated by whih objet of inter-

ests, so that it an best diret the propagation of subsriptions. The idea

is, that while a subsription de�nes the set of interesting noti�ations for an

interested party, an advertisement de�nes the set of noti�ations potentially

generated by an objet of interest. Therefore, the advertisement is relevant

to the subsription only if these two set of noti�ations have a nonempty

intersetion.

Unsubsriptions and Unadvertisements

Unsubsriptions and unadvertisements serve to anel previous subsriptions

and advertisements, respetively. Given a simple unsubsription unsub-

sribe(X, f), where X is the identity of an interested party and f is a

�lter, the event noti�ation servie anels all simple subsriptions sub-

sribe(X, g) submitted by the same interested party X with a subsription

�lter g overed by f. In analogous way, unadvertisements anel previous

advertisements. Note that an unsubsription (unadvertisement) either an-

els previous subsriptions (advertisements) or else has no e�et. It annot

impose further onstraints onto existing subsriptions. For example, sub-

sribing with a �lter [prie>100℄ and than unsubsribing with [prie>200℄

does not result in reation of a redued subsription [prie>100, prie�200℄.

Rather, the unsubsription simply has no e�et, sine it does not over the

subsription. Note also that all subsription overed by an unsubsription

are anelled by that unsubsription.

Timing issues

The semantis of Siena depends on the order in whih Siena reeives

and proess requests (subsriptions, noti�ation, et.). For instane, in the

12

The Siena Middleware Bakground

subsription-based semantis, a subsription s is e�etive after it is proessed

and until an unsubsription u that anels s is proessed.

In the most general ase, a servie request R, say a subsription, is gen-

erated at time R

g

, reeived at time R

r

, and ompletely proessed at time

R

p

(with R

g

� R

r

� R

p

). Siena guarantees the orret interpretation of R

immediately after R

p

. Notie that the external delay R

r

�R

g

is aused by ex-

ternal ommuniation mehanisms and is by no means ontrollable by Siena.

The proessing delay R

p

�R

r

is instead diretly aused by omputations and

possibly by other ommuniation delay internal to Siena.

2.2.2 Arhiteture of Siena

As show in Figure 2.3, the implementation of Siena omprises a number of

interonneted servers, eah serving some subset of the lients of the servie.

In e�et Siena is a wide-area network of pattern mathes and routers over-

laid atop some other wide-area ommuniation faility, suh as the Internet.

One reasonable alloation of suh servers might be to plae a server at eah

administrative domain within the low-level, wide-area ommuniation net-

work. A pair or interonneted servers use a server/server ommuniation

protool that determines what kinds of information they an exhange, and

in whih diretion. An interonnetion topology and a protool together de-

�ne what we refer to as an arhiteture for Siena. There are three basi

arhitetures for Siena: Hierarhial lient/server, ayli peer-to-peer, and

general peer-to-peer.

Hierarhial lient/server

In the hierarhial lient/server arhiteture (see Figure 2.5), the servers form

a hierarhial topology, with eah server (exept the root server) behaving

like a Siena lient of the server one level up the hierarhy. The main problems

exhibited by this arhiteture are the potential overloading of servers high in

the hierarhy and the fat that eah server is a single point of failure.

13

The Siena Middleware Bakground

H

Clients

Servers

H

H

H

H

client/server

Protocol

Figure 2.5: Hierarhial lient/server arhiteture.

Ayli peer-to-peer

In this arhiteture, servers ommuniate with eah other symmetrially as

peers in an ayli undireted graph (as showed in Figure 2.6), adopting a

protool that allow a bi-diretional ow of subsriptions and noti�ations.

The on�guration of the topology forms an ayli undireted graph.

client/server

Protocol

server/server

Protocol

A

A

A

A

A

Figure 2.6: Ayli peer-to-peer server arhiteture.

General peer-to-peer

Removing the onstraint of ayliity from the ayli peer-to-peer arhite-

ture, Siena network may be on�gured as a general peer-to-peer arhite-

ture. As depited in Figure 2.7, a general peer-to-peer arhiteture an have

14

The Siena Middleware Bakground

multiple paths of bi-diretional ommuniation between servers. Allowing

redundant onnetions makes it more robust respet to failures of a single

servers. These three basi arhitetures an be ombined to form hybrid ar-

client/server

Protocol

server/server

Protocol

A

A

A

A

A

Figure 2.7: General peer-to-peer server arhiteture.

hitetures, suh as an ayli peer-to-peer topology of subnets, eah subnet

being hierarhy. One topology of servers is de�ned, they must establish ap-

propriate routing paths to ensure that noti�ations published by an objet

of interest are orretly delivered to all the interested parties that subsribed

for them. In general, noti�ations must \meet" subsriptions somewhere in

the network so that the noti�ations an be seleted aording to the sub-

sriptions and then dispathed to the subsribers.

2.2.3 Proessing Strategies

One a topology of servers is de�ned, the servers must establish appropriate

routing paths to ensure that noti�ations published by an objet of interest

are orretly delivered to all the interested parties that subsribed for them.

In general, noti�ations must \meet" subsriptions somewhere in the network

so that the noti�ations an be seleted aording to the subsriptions and

then dispathed to the subsribers.

15

The Siena Middleware Bakground

Routing strategies in Siena hierarhial arhiteture

The main idea behind the routing strategy of Siena is to send a noti�ation

only toward event servers that have lients that are interested in that noti-

�ation, possibly using the shortest path. There are two simple priniples

that beome requirements for the Siena routing algorithms:

downstream repliation: A noti�ation should be routed in one opy as

far as possible and should be repliated only downstream, that is, as lose as

possible to the parties that are interested in it.

upstream repliation: Filters are applied, and patterns are assembled

upstream, that is, as lose as possible to the soures of (patterns of) noti�-

ations.

These priniples are implemented by two lasses of routing algorithms,

the �rst of whih involves broadasting subsriptions and the seond of whih

involves broadasting advertisements:

subsription forwarding: In an implementation that does not use adver-

tisements, the routing paths for noti�ations are set by subsriptions, whih

are propagated throughout the network so as to form a tree that onnets

the subsribers to all the servers in the network. When an objet publishes a

noti�ation that mathes that subsription, the noti�ation is routed toward

the subsriber following the reverse path put in plae by the subsription.

advertisement forwarding: In an implementation that uses advertise-

ments, it is safe to send a subsription only toward those objet of interest

that intend to generate noti�ations that are relevant to that subsription.

Thus, advertisements set the paths for subsription, whih in turn set the

paths for noti�ations. Every advertisement is propagated throughout the

network, thereby forming a tree that reahes every server. When a server re-

eives a subsription, it propagates the subsription in reverse, along the path

to all advertisers that submitted relevant advertisements, thereby ativating

16

The Siena Middleware Bakground

those paths. Noti�ation are then forwarded only through the ativated

paths.

Subsription-forwarding algorithms realize a subsription-based seman-

tis, while advertisement-forwarding algorithms realize an advertisement-

based semantis.

17

Chapter 3

Evaluating Siena in a Wireless

Network

As we explained in the previous setions, our interest is to study the integra-

tion of the bene�ts of mobile appliations (moving along with their host or

migrating from host to host) with the ommuniation servie o�ered by an

advaned publish/subsribe middleware.

We de�ned the host mobility as the ability of devies (together with their

appliation) to move around the real world. These physial omponents are

generally referred to as mobile hosts and they ome in di�erent sizes from a

laptop to a ellular phone or other wearable devies. It is reasonable to imag-

ine some software-omponents running on them with the neessity to send

(reeive) messages to (from) other remote hosts, mobile or �xed. Of ourse,

in order to allow the information exhange between omponents, the mobile

hosts in whih they are running need some form of wireless ommuniation

link.

In this hapter we will fous on the integration of host mobility with

Siena. We assume that a omponent is running on a mobile devie (suh

as a PDA) and it uses a Siena lient in order to exhange messages with

the external world. As we desribed in Setion 2.2, a Siena lient that

publishes or reeives events must be onneted to a Siena server (aess

point). In partiular we adopt a server running on a �xed Internet host.

18

Evaluating Siena in a Wireless Network

This means that the wireless link ats as a \bridge" between the mobile

INTERNET

GPRS

GPRS

���
���
���

���
���
���

���
���
���

���
���
���Client

Siena

Client
Siena

Client
Siena

Client
Siena

Siena Server

Figure 3.1: GPRS network makes a \bridge" between Client and Server.

lient and the �xed server, handling mobility of the lient in a way that is

ompletely transparent to the server and the whole Siena middleware.

In this senario (depited in Figure 3.1), we want to study Siena's perfor-

mane in ombination with to di�erent network protools (TCP and UDP).

In order to evaluate the behavior of Siena and its demands over the ommu-

niation resoures of the wireless network, we developed a distributed test

appliation alled aution system (see Setion 3.3) that we used in several

simulated senarios. Developing suh an appliation required us to port the

Siena lient-side library to the Java

TM

2 Miro Edition (disussed in Se-

tion 3.1), a platform spei�ally targeted at mobile devies suh as ell phones

and PDAs. We have also studied how to set up the graphi user interfae,

using the J2ME

TM

Wireless Toolkit [37℄, in order to make the appliation

user-friendly. We then used the resulting appliation to run experiments on

a simulated PDA.

In the situation desribed above, a lient may hange its status quikly

and often. Thus, it ould onnet (or disonnet) to the network in every

moment. This may be a problem when using a publish/subsribe middle-

ware like Siena. In fat, sine Siena does not provide a mehanism for

19

Java 2 Platform, Miro Edition Evaluating Siena in a Wireless Network

messages persistene, a mobile lient ould lose some noti�ations while it

is disonneting. We studied a simple solution (desribed in Setion 3.2) for

this problem, and we used it in the development of the aution System.

Finally, to establish wireless links, we hoose a GPRS network (refer to

Setion 3.4) beause it allows us to use IP-based protools and beause it

represents the last step in path to UMTS Network.

In the following Setions we will introdue the tools we used for our ex-

periments, we will disuss the experiment set up and the results we obtained.

3.1 Java 2 Platform, Miro Edition

J2ME [19, 36℄, a version of the Java

TM

2 Standard Edition (J2SE

TM

) [38℄,

is aimed at the onsumer and embedded devies market. It spei�ally ad-

dresses the rapidly growing onsumer spae that overs ommodities suh as

ellular telephones, pagers, palm organizers, set-top boxes, and others. J2ME

provides a omplete set of solutions for reating state-of-the-art networked

appliations for onsumer and embedded devies. It enables devie manu-

faturers, servie providers, and appliation developers to deploy ompelling

appliations and servies to their ustomers. J2ME de�nes the following set

Host Operating System

Java Virtual Machines

Configurations

Profiles

Figure 3.2: High-level view of J2ME.

of tools that an be used with onsumer devies:

� A Java virtual mahine

20

Java 2 Platform, Miro Edition Evaluating Siena in a Wireless Network

� Libraries and APIs that are suitable for onsumer devies (on�gura-

tions and pro�les)

� Tools for deployment and devie on�guration

The �rst two omponents make up the J2ME runtime environment. Fig-

ure 3.2 shows how the di�erent high-level layers of J2ME �t together.

3.1.1 Con�gurations

Cellular telephones, pagers, organizers, and so on, are diverse in form, fun-

tionality, and feature. For these reasons, J2ME supports minimal on�gu-

rations of the JVM and APIs that apture the essential apabilities of eah

kind of devie. At the implementation level, a J2ME on�guration de�nes a

set of horizontal APIs for a family of produts that have similar requirements

on memory budget and proessing power. A on�guration spei�es:

� Java programming language features supported

� JVM features supported

� Java libraries and APIs supported

Currently there are two standard on�gurations: The Conneted Limited De-

vie Con�guration (CLDC), and the Conneted Devie Con�guration (CDC).

CLDC

The Conneted Limited Devie Con�guration (CLDC) is intended for ellular

phones, two-way pagers, and organizers. It targets devies with between 160

and 512 KB of memory. A referene implementation of the CLDC is available.

A on�guration, suh as the CLDC or CDC, is more useful when used along

with a pro�le.

CDC

The Conneted Devie Con�guration (CDC) is intended for set-top boxes,

Internet TVs, and in-ar entertainment systems. The CDC targets devies

21

Java 2 Platform, Miro Edition Evaluating Siena in a Wireless Network

CLDC CDC

Implements a subset of Java

features and APIs

A full Java implementation

The Java virtual mahine is

KVM

The Java virtual mahine is

CVM

For limited devies For more powerful devies

Proessor: 16 or 32-bit Proessor: 32-bit

Targets devies with 160 - 512

KB of memory

Targets devies with at least 2

MB of memory

Table 3.1: CLDC vs. CDC

that have at least 2 MB of memory, and an support a omplete imple-

mentation of the standard JVM, and Java programming language. A brief

omparison of CLDC and CDC is shown in Table 3.1.1.

3.1.2 Virtual Mahines

The CLDC and CDC on�gurations eah de�ne the set of Java and virtual

mahine features supported. Therefore, eah on�guration will have its own

JVM. Clearly, the CLDC virtual mahine will be smaller than the virtual

mahine required by the CDC sine it supports less features. The virtual

mahine for the CLDC is the Kilo Virtual Mahine (KVM), and the one for

the CDC is the CVM.

KVM

The Kilo Virtual Mahine (KVM) is a omplete Java runtime environment

for small devies. It is a true Java virtual mahine as de�ned by the JVM

Spei�ation exept for some spei� deviations that are neessary for proper

funtioning on small devies. It is spei�ally designed from the ground up

for small, resoure-onstrained devies with a few hundred kilobytes of total

memory.

The KVM is derived from a researh projet alled Spotless at Sun Mi-

rosystems Laboratories. The aim of the projet was to implement a Java

system for the Palm Conneted Organizer.

22

Java 2 Platform, Miro Edition Evaluating Siena in a Wireless Network

CVM

Initially, the CVM used to stand for "Compat Virtual Mahine". Sun En-

gineers however, realized that it might be onfused with the KVM. So the C

does not stand for anything now. It is just the C Virtual Mahine or CVM. It

is designed for onsumer and embedded devies, and it supports all Java

TM

2

Platform, version 1.3, VM features and libraries for seurity, weak referenes,

JNI, RMI, and JVMDI.

3.1.3 Pro�les

J2ME makes it possible to de�ne Java platforms for vertial markets by intro-

duing pro�les. At the implementation level, a pro�le is a set of vertial APIs

that reside on top of a on�guration to provide domain-spei� apabilities,

suh as user interfaes.

Host Operating System

CLDC CDC

PDA

PersonalRMI

MIDP Foundation Profile

CVMKVM

Figure 3.3: J2ME arhiteture.

Currently, referene implementations exist for two pro�les: The Mobile

Information Devie Pro�le (MIDP), and the Foundation Pro�le (FP). MIDP

is to be used with the CLDC and FP is to be used with the CDC. Other

pro�les in the works inlude: The PDA pro�le, RMI pro�le, and Personal

Pro�le. The struture of the various J2ME on�gurations and pro�les is

depited in Figure 3.3.

23

Java 2 Platform, Miro Edition Evaluating Siena in a Wireless Network

The MID Pro�le (MIDP)

The Mobile Information Devie Pro�le (MIDP) extends the CLDC to provide

domain spei� APIs for user interfaes, networking, databases, and timers.

MIDP is meant to target wireless phones and two-way pagers. A referene

implementation is available, and an easy-to-use development environment

(Wireless Toolkit [37℄) is also available.

The PDA Pro�le

The Personal Digital Assistant (PDA) pro�le is based on the CLDC and will

provide user interfae APIs (whih are expeted to be a subset of the AWT)

and data storage APIs for handheld devies. The PDA pro�le is still in the

works and no referene implementation is available yet.

The Foundation Pro�le (FP)

The Foundation Pro�le extends the APIs provided by the CDC, but it does

not provide any user interfae APIs. As the name "foundation" implies, the

Foundation Pro�le is meant to serve as a foundation for other pro�les, suh

as the Personal Pro�le and the RMI pro�le.

The Personal Pro�le (PP)

The Personal pro�le extends the Foundation pro�le to provide GUIs apable

of running Java Web applets. Sine PersonalJava

TM

is being rede�ned as

the Personal pro�le, it will be bakward-ompatible with PersonalJava 1.1.

and 1.2 appliations. No referene implementation for the Personal Pro�le

is available yet.

The RMI Pro�le

The RMI pro�le extends the Foundation pro�le to provide Remote Method

Invoation (RMI) for devies. It is meant to be used with the CDC/Founda-

tion and not the CLDC/MIDP.

24

Servie Disovery Evaluating Siena in a Wireless Network

The RMI pro�le will be ompatible with J2SE RMI API 1.2.x or higher.

However, no referene implementation is available yet.

3.2 Servie Disovery

In traditional lient/server omputing, a lient that needs a partiular ser-

vie must known the address of the Servie Provider. For example, a lient

that intend to use a Time-Synhronization servie must know the address of

a time server. Servie Disovery is the proess by a lient �nds out about

one or more servie providers for a spei� servie. The publish/subsribe

subscribe

publish

Alice Bob

notification will be catched and
system will send it to the client

Figure 3.4: Alie subsribes before Bob advises for a tiket.

arhiteture seem to o�er a natural solution to the problem of servie dis-

overy. In fat, in this approah a user (the Servie Client) subsribes for a

servie and, when it is available, he will reeive a noti�ation (see Figure 3.4).

This simple protool introdues new problems that we will desribe in the

following setions.

In the senario depited in Figure 3.4, Alie athes the noti�ation pub-

lished by Bob, whih allows Alie to ontat Bob. Unfortunately, the same

protool would fail in ase Bob announed the availability of his servie before

Alie submitted her subsription, as show in Figure 3.5.

There are two possible solutions for this problem. One is to insert an

additional omponent, a Repeater, to provide ahing funtions, in the system

arhiteture. The other one is using a pair <request, o�er>. We will desribe

the seond one in the following. This solution is appliation-level in the

25

Servie Disovery Evaluating Siena in a Wireless Network

subscribe

publish

Alice Bob

Figure 3.5: Bob advises for a tiket availability before Alie subsribes

sense that it does not hange the publish/subsribe arhiteture, but instead

ombines its own features to put lient and server in touh.

3.2.1 A Request-O�er Combination

The basi idea is to use a ombination of a subsription and a noti�ation. As

explained before, the main problem is when a lient subsribes for a servie

after the provider published an announement for that servie. The following

client provider
offer−sub

request−pub
request−sub

offer−pub

Figure 3.6: Both users send a pair <request, o�er>.

ations explain how a pair <request, o�er> works (see also Figure 3.6):

� provider-pair:

step p1: subsribe for \I need servie S" Request Subsription

step p2: publish \Servie S" O�er Publiation

26

Servie Disovery Evaluating Siena in a Wireless Network

� lient-pair:

step 1: subsribe for \Servie S" O�er Subsription

step 2: publish \I need servie S" Request Publiation

In the rest of setion we will refer to the pair made by the servie provider as

provider-pair and we will refer to the pair made by the lient as lient-pair.

Note that these are not atomi ations but there is a little time between

the subsriptions and the noti�ations. Moreover, we assume that the pub-

lish/subsribe servie is unreliable and messages ould be delayed through

the network. So, di�erent ases are possible and we will desribe these in the

following subsetions. We will show how the ouple <provider-pair, lient-

pair> works in every one of these.

providerclient

c1

c2

p1

p2

Figure 3.7: The lient-pair is sent before the provider-pair.

ase 1 We suppose that lient subsribed for servie before the provider

publish its announement. As depited in Figure 3.7, the Alie's noti�ation

will be lost, but her o�er-subsription will ath the Bob's o�er-publiation.

ase 2 This ase, in whih we suppose that Alie (the lient) subsribes for

servie after Bob (the provider) sends his noti�ation (see Figure 3.5), repre-

sents the main problem. Sine now we are using the pair <request, o�er> (as

depited in Figure 3.8), Bob has been subsribing for interested party (ation

p1). This request-subsription will ath Alie's request-publiation (ation

2) and now Bob knows that a user needs his servie. Therefore Bob an

27

Servie Disovery Evaluating Siena in a Wireless Network

publish again his noti�ation. This allows Bob to ontat Alie and o�ers

her the servie.

providerclient

c1

c2

p1

p2

publish

Figure 3.8: The lient-pair is sent after the provider-pair.

ase 3 Sine the Publish/Subsribe arhiteture is unreliable, messages

ould be delayed through the network. Therefore we ould have another

possible senario (suh as depited in Figure 3.9). In this ase publiations

will interset and both users, provider and lient, will reeive eah other's

publiation. We suppose that the provider always publishes another noti�-

ation. This will ause that the lient will reeive the same noti�ation for

two times. Anyway, we are sure that they will be able to establish a session

and we an onlude the pair <request, o�er> also works in this ase.

providerclient

c1

c2

p1

p2

publish

Figure 3.9: The lient-pair and provider-pair are sent at the same time.

28

Servie Disovery Evaluating Siena in a Wireless Network

3.2.2 Observations

It is important to note that the �nal ommuniation, between provider and

lient, should be established and onduted aording to the spei� servie

protool (as depited in Figure 3.10). For example, if the o�ered servie is a

printing servie, the ommuniation must be established using the appropri-

ate printing protool (e.g. using IPP [20℄).

client provider

user user

user

Figure 3.10: Client/server ommuniation between lient and provider.

We desribed how the pair <request, o�er> works in di�erent ases but,

it is also important to note that this solution may not works if messages are

lost through the network. In fat, if a noti�ation does not reah the node

(see Figure 3.11) where subsriber is onneted, the lient an not reeive

the message assoiated to the event.

and system can not send it
to the service client

client

notification will be lost

subscribe

publish

provider

Figure 3.11: Publish/Subsribe is unreliable arhiteture.

Finally, it is important to note that pair must be issued in the ex-

at sequene, that is with the notify message following the subsribe mes-

29

Aution System Evaluating Siena in a Wireless Network

sage. In fat there are ases in whih the pairs formatted as <noti�ation,

subsription> does not work. As depited in Figure 3.12 the pair sent by

the lient ould not interset the provider ones and none of them will know

client provider

request−pub offer−pub

offer−sub request−sub

Figure 3.12: The pair formatted as <noti�ation, subsription> does not

work.

about the other.

As we explained above, this solution is appliation-level and it does not

hange the down-level arhiteture. This means that some problems suh as

the unreliability of the protool annot be �xed using the ouple <lient-pair,

provider-pair>. Moreover if a number of lients and providers are using the

pair <request, o�er>, it ould ause a traÆ overload through the network

and thus a denial of servie ould be happen.

3.3 Aution System

We deide to develop an aution system beause it is a simple system but

with high number of message exhange and real-time onstraints. Thus, it

allows us to study the Siena performanes in the presene of low bandwidth

and high error probability network suh as a wireless network.

What we want is to develop a peer-to-peer appliation that allows lients

to sell and buy items. Buyers and sellers, ould be viewed as independent

omponents of the system that use the event-based middleware to ommu-

niate with eah other. The high level arhiteture of the system is showed

in Figure 3.13. In partiular, if a lient is interested in buying a tiket

30

Aution System Evaluating Siena in a Wireless Network

(buyer), he will subsribe for events that advertise the availability of tikets.

Conversely, a lient that wants to sell a tiket (seller) emits an event to om-

muniate the availability of tikets. When the buyer reeive this noti�ation,

he an publish a bid for the tiket.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
��� ���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

Event Service

Siena Servers

Auction actors

Figure 3.13: The Aution System's arhiteture

3.3.1 Aution harateristis

In this setion, we de�ne the rules that determine the behavior of the aution

system and the properties of the system.

Type of available autions

We want to develop a system that allows users to hoies di�erent kinds of

autions. These an be:

lose: A user an send the amount of his bid, but he an not hek the

Aution status.

open: A user an send the amount of his bid and he will be informed whether

he is not urrently the higher bidder. In this latter ase, he an raise

his bit.

31

Aution System Evaluating Siena in a Wireless Network

Selling

Before advertising an item for sale, a seller must set up the following infor-

mation:

kind of aution: An Open or Closed aution.

title/item Name: Brief desription of the item he is selling.

ategory: Category in whih the items will be listed.

desription: A omplete desription of his item.

duration: The period of time during whih the item an be autioned.

starting prie: If seller wants the bidding to start at a ertain prie, he

needs to put it in there. This will set the starting bid at the prie he

speify.

reserve prie: Setting a prie, gives seller the option of not selling the item

if the bids do not reah his reserve prie.

bid inrement: The amount seller wants the aution to inrease after eah

bid is plaed.

payment method: One or multiple methods of payment.

shipping: Seller must hoose whether he will ship nationally only or inter-

nationally. He must also selet who pays for shipping:

� seller

� buyer

� �fty-�fty

Buying

When user has found an item he would like to bid on, he an send the amount

of his bid applying the bid inrement established by the seller. After reeiving

a bid from a buyer, the system may notify the buyer of following events:

32

Aution System Evaluating Siena in a Wireless Network

out-bidding: While bidder is waiting for the open aution �nish, he will

reeive a noti�ation informing him whether he has been out-bid by

another bidder. Only in this ase, the bidder an raise his bid. Instead,

During a losed aution, the bidder will not reeive any noti�ation and

therefor will not be able to raise his bid.

winning: If a user is the highest bidder when the open/losed aution ends,

he will reeive a noti�ation, ontaining the personal information of

the seller, that he an use in order to ontat the seller. In the losed

aution, a noti�ation will also be sent to all users, that bid for that

item, to inform them that the aution has been losed and to tell them

who the winner is.

3.3.2 Quality of Servie

The following quality of servie apply to the aution system:

real-time delivery: It is important that every message is delivered in real

time. In fat, high network lateny may ause undesired e�ets suh

as bids swithing and advertisement losing.

guaranteed delivery: Delivery of every message should be guaranteed.

message on�dentiality: Only the interested parties may read the mes-

sages.

message integrity: Nobody an modify the messages.

3.3.3 Implementation

As explained above, we have developed this system using Java

TM

2 Platform,

Miro Edition and we designed it to run on limited resoure devies. The

appliation is omposed of two distinguished sub-omponents: Sell and Buy.

Eah one of these, has one spei� GUI as well as a shared GUI alled

Connet.

33

Aution System Evaluating Siena in a Wireless Network

normal size zoom

Figure 3.14: The Connet GUI.

Connet The Connet form implements is the �rst step to take part in

the aution. It allows users to onnet to a spei�ed Siena server loated on

a internet host. The user has to �ll in the form (as show in Figure 3.14) in

whih he must write his personal data and the Internet address of the server.

This information is used allow the buyer to get in touh with the seller.

This proedure simply stores user information in a data struture. The

proedure also uses the ThinClient(String uri) lass of the Siena API to

establish the onnetion with the Siena master referred by uri (uri must

have the <shema>://hostname:port number format).

Sell This allows a seller to advertise an artile available for sell, and starts

a new aution for it. The proedure Sell is omposed of two sub-proedures:

Edit Aution and Inoming Bids.The �rst one allows the user to publish

information about the autioned item. The proedure gets the information

from the GUI (see Figure 3.15.a) and reates a noti�ation with them. This

information are also used to reate a unique identi�er for this artile. After

the publiation of this event, a subsription will be made, using the item

identi�er as �lter. The purpose of this subsription is to ath the inoming

bids related to this item. The Inoming Bids GUI (Figure 3.15.b), displays

the reeived bid about the running Aution.

Internally (see Appendix A.1) a Siena ThinClient, previously reated by

Connet, is used to send advertisements for new items, and to reeive bids.

34

Aution System Evaluating Siena in a Wireless Network

a) b)

Figure 3.15: The Sell GUI.

When the objet Bid Update reeives an event representing a bid, it will

update the appropriate data struture and the new bid will be displayed on

the Inoming Bids form.

Buy After a onnetion has been established, in order to take part in an

aution, the Buyer needs to know the identi�er of a partiular item. The

Item Searh form (see Figure 3.16.a) works like a searh engine and enables

the user to set �lter onstraints, and to reates the subsription orresponding

to the given searh riteria. When somebody publishes an event mathed

by the Buyer �lter, this will be aught and stored in the appropriate data

struture.

a) b))

Figure 3.16: The Buy GUI.

35

General Paket Radio Servie Evaluating Siena in a Wireless Network

After an advertisement is stored, the buyer may use the Searh Results

form (Figure 3.16.b) to navigate through the data struture and hoose the

item he is interested. When an item has been seleted, GUI Outgoing bids

form will appear (refer to Figure 3.16.) allowing the buyer to submit his bid

for this artile.

If during the Aution the user has been out-bid by another bidder, he

will reeive a noti�ation and an Alert pop-up will appear. After reeiving

an out-bid alert, the buyer may open the Outgoing bids form and raise his

bid.

Internally (refer to Appendix A.2) a siena.ThinClient() is used to submit

bids and reate searh �lters. Searh results will be aught by the objet

Searh Update and stored in Searh Results objet.

Observations

Sine an advertise ould be generated before the buyer has set up his �lters

or a bid ould be submitted while the seller is momentary disonneted,

advertisements, bids and searhes are onstruted with the pair <request,

o�er> paradigm explained in Setion 3.2. As we showed in Setion 3.2,

the pair <request, o�er> gives us an additional level of reliability using the

funtionalities of Siena.

3.4 General Paket Radio Servie

The General Paket Radio Servie (GPRS) is a new standard for wireless

data that will be implemented in GSM and other mobile ommuniation

systems. The new tehnology provides e�etive utilization of the sare radio

resoures and is therefore ideally suited for bursty paket transmissions. It

enables instant and onstant wireless aess to IP based networks suh as

the publi Internet and Loal Area N etworks (LAN).

GPRS failitates new appliations in wireless ommuniation that have

not been available previously, due to the limitations in GSM Ciruit Swithed

Data (CSD) [28℄. Through its paket swithed (PS) nature, GPRS opens up

36

General Paket Radio Servie Evaluating Siena in a Wireless Network

for diret onnetivity to the Internet with all its inherent user value. Exam-

ples of possible appliations are Internet servies suh as Wireless Appliation

Protool (WAP), e-mail, web-browsing.

Inreased apaity for data transmissions ompared to GSM CSD is the

obvious advantage that applies to the GPRS-system. Even so, muh of the

user-value lies in the possibility of obtaining immediate and onstant onne-

tivity to external networks suh as Internet and Intranet, without repeatedly

having to arry out a time-onsuming setup proedure. Furthermore, the

GPRS-system will inorporate new billing onepts, whih inludes paying for

the volume of transmitted data, rather than the time of the data-onnetion

as it is done today. This means that the user an stay onneted and online

to the networks even when nothing is transmitted, without paying exessive

amounts for the duration of the data-onnetion.

3.4.1 Network Features of GPRS

GPRS as an overlay to the existing GSM-network may pose several paradigm-

shifts to the and-users. In order to understand the inherent apaity issues

of GPRS, some network features must be examined.

Paket swithing

Most wireless data onnetions require the mobile user to go through a um-

bersome setup proedure, resulting in a onstant alloation of one timeslot

during the entire length of the session. GPRS introdues fast aess to net-

works through paked data tehnology. Rather than sending and reeiving

in a ontinuous stream as in the iruit swithed (CS) world, data travels

through routers for fast paket data transmission to and from the mobile

subsribers. Paket swithing means that GPRS radio resoures are used

only when are atually sending or reeiving data [1℄. Rather than dediating

a radio hannel (timeslot) to a mobile data user for a �xed period time, the

bursty nature of paket swithed data allows the available radio hannels for

GPRS to be onurrently shared between several onnetion.

37

General Paket Radio Servie Evaluating Siena in a Wireless Network

Coding

Sheme

Data bits in

radio blok

Data rate per

time slot kb/s

on radio layer

Max data rate

per8 timeslots

kb/s

CS-1 181 9.05 72.4

CS-2 268 13.4 107.2

CS-3 312 15.6 128.8

CS-4 428 21.4 171.2

Table 3.2: Channel oding shemes parameters.

Channel oding shemes

Four di�erent hannel oding shemes are de�ned in the GPRS spei�a-

tions [13℄. Eah oding sheme inorporates a di�erent level of data in-

tegrity heks (error orretion overhead) to data transmitted over the radio-

interfae. They are ommonly labelled CS-1 to CS-4. Given �xed-hannel

apaity onstraints, there is an inverse relation between the amount of atual

data that an be transmitted and the amount of data integrity assurane.

Basially, the hannel an either be used to transfer data itself or error heks

on the respetive data. The di�erent error oding proedure form varying

size of the radio bloks, whih produes four progressive data rates as listed

in Table 3.2. It must be lear that these data rates are only valid for the

radio-layer, and the data rates on the appliation layer will be somewhat less

due to paket-overhead.

The higher the data rates, the higher the required signal to noise ratio

(SNR). In good hannel onditions with high SNR, any of the four shemes

ould be used. In this ase the hannel oding shemes with the least hannel

protetion (CS-4) will yield the highest throughput. When interferene is

high on the other hand, the oding sheme with the highest amount of hannel

protetion will ahieve the highest throughput (CS-1), due to its extensive

error oding whih auses fewer retransmissions.

Tehnial limitation to the theoretial apaity

Although the system is awaited with high expetations from manufaturers

and operators, the atual take-up of GPRS usage among subsribers is still

38

General Paket Radio Servie Evaluating Siena in a Wireless Network

an open issue. As explained in the previous setion, the maximum theoretial

data rate of 171.2kbps require an optimal oding sheme (CS-4). As suh,

the maximum speeds must be heked against the atual onstraints in the

network and terminals. The reality is that mobile networks are always likely

to have lower transmissions speeds than �xed networks.

The inreased data rates of GPRS are as result of two major aspets

of the GPRS-system: improved oding shemes and the support of multiple

timeslots. However, three main aspets prevent a user from ever ahieving the

maximum theoretial speed, namely the alloation of timeslots, restritions

in the terminals, as well as the atual availability of oding shemes.

Alloation of timeslots Beause GPRS and GSM use the same radio

resoures, it is unlikely that a network operator would ever assign all eight

timeslots to GPRS-traÆ, sine voie still will be a dominant servie. In

fat, how to alloate the timeslots to GPRS and GSM is supposedly an

open issue among the operators. It seems lear, however, that GSM-traÆ

will have preedene over GPRS-traÆ. Sine GSM-traÆ has preedene,

GPRS-traÆ will be o�ered a varying amount of apaity. The available

timeslots will in turn be divided between all GPRS-users an the arrier at

the given time. It should also be noted that among the arriers of one base

station there will always be at least one signalling hannel (mapped to the

same amount of timeslots). The number of signalling hannels depend on

the number of arriers as well as the partiular network environment.

Restritions in terminals To take advantage of higher data transmission

speed the GPRS-terminals will have to support several multiple timeslots

simultaneously. In fat, in able to send and reeive the theoretial maxi-

mum of 171.2 kbps the terminal must inorporate transmission and reeption

of timeslots (in both the downlink and uplink). This requires onsiderable

amounts of proessing and transeiver power in the terminal, adding great

omplexity to suh a small devie.

In reality, terminal manufatures are indiating that they will support

a limited number of multislot lasses, at least in the �rst stage of GPRS-

39

General Paket Radio Servie Evaluating Siena in a Wireless Network

terminal evolution. Aording to the representatives from the manufaturers,

the terminals will initially support 1 timeslot uplink and 3 timeslots down-

links. Whether the evolution ontinues to improve further is not lear, but

it is supposedly diÆult to produe terminals that inorporate more than 4

timeslots in either diretion.

3.4.2 GPRS System Arhiteture

As mentioned previously, the GPRS-system is built upon the existing GSM-

infrastruture. So to enable GPRS, mobile network operators merely need to

upgrade their GSM-infrastruture by introduing three new GPRS-elements,

as well as updating a few of the existing GSM-nodes. Most importantly, this

upgrade inludes the GPRS Servie Nodes (GSN), spei�ally the Serving

GSN (SGSN) and the Gateway GSN (GGSN), but the upgrade also inludes

a new Border Gateway (BG) that provides aess to other GPRS networks

through a �rewall. All new elements in GPRS system-arhiteture are illus-

trated in Figure 3.17.

GGSN

GGSN

SGSN

SGSNSGSN

SGSN

SGSN

SGSN

GGSN

(Internet)
network

packet−data
external

IP backbone

IP backbone IP backbone

BSS

BSS

BSS BSS BSS

BSS

BSS

BSS BSS

service area
network

service area
network

service area
network

service area
network

Figure 3.17: GPRS system arhiteture

40

General Paket Radio Servie Evaluating Siena in a Wireless Network

Mobile Station (MS)

The Mobile Station (MS) is a ombination of the Mobile Terminal (MT) and

the Terminal Equipment (TE). It is important to be aware of that the MT

and TE ould be in the same devie (suh as a smartphone) or in separate

devies like a regular GPRS-phone onneted to a handheld omputer or a

laptop.

� The Terminal Equipment is the omputer terminal that sends and re-

eives end-user paket data.

� TheMobile Terminal ommuniates with the TE through able or wire-

less tehnologies suh as IrDA or Bluetooth. Over the air-link the MT

ommuniates with the BTS. In order to be GPRS-apable, the MT

must be equipped with spei� software and hardware for the GPRS-

system.

Mobile Stations developed for the GPRS-system will be di�erentiated in

terms of their spei� MS- and Multislot-lass. The purpose of this de�nition

is to enable the di�erent needs of the various markets to be satis�ed by a

number of di�erent MS types with distint apabilities.

GPRS MS Class A Supports simultaneous attah, simultaneous ati-

vation, simultaneous monitoring, simultaneous invoation and simultaneous

traÆ. This means that the mobile user an simultaneously reeive and

transmit alls on the GPRS PS system and the GSM CS system. In order

for GPRS and GSM to take advantage of the transeiver apaity at the

same time, a minimum of one timeslot must be available to both servies

when required.

GPRS MS Class B Supports both GPRS and GSM onnetivity, but

the lass B mobile annot transmit and reeive in GSM and GPRS mode

simultaneously. However, signalling suh \attah" and \ativation" an be

simultaneous. This means that a GPRS onnetion shall not be leared

down (deativated), due to invoation of GSM traÆ. The seletion of the

41

General Paket Radio Servie Evaluating Siena in a Wireless Network

appropriate servie is performed automatially (i.e. an ative GPRS virtual

onnetion is put on hold, if the user aepts an inoming CS all or estab-

lishes an outgoing CS all.It is worth notiing that preaution is needed when

interrupting appliations running over the GPRS-network. For instane, if

the user establishes a CS session during an ongoing and time-onsuming �le

transfer, the GPRS onnetion may abort due to a timeout.

GPRS MS Class C Supports both GPRS and GSM onnetivity, but an

only transmit and reeive in one servie at time. Furthermore, no simulta-

neous \attah" and \ativation" is possible. The status of non-ative servie

is always \detahed" and the desired type of servie is seleted manually by

the user.

Base Station Subsystem (BSS)

The Base Station Subsystem (BSS) onsist of Base Station Controller (BSC)

and Base Transeiver Station (BTS). All radio signals are transmitted and

reeived by BSS, making it a shared resoure between the CS GSM system

and GPRS system. Spei�ally, a BSS upgraded for GPRS systems is pro-

vided with funtionality adapted to a paket data. This inludes paket data

handling, GPRS information broadast, resoure administration, as well as

new interfaing to the SSGN node.

Base Transeiver Station It is basially the reeiving and transmitting

failities, inluding antennas and all the signalling related to the radio in-

terfae. When radio signals are reeived, the BTS separates GSM iruit

swithed data/voie from GPRS paket data and forwards both ategories

to the Base Station Controller (BSC) using standard GSM protools for om-

patibility.

Base Station Controller Generially, the BSC has funtionality to set

up, supervise and disonnet CS and PS onnetions. These onnetions go

to and from the BTSs on the radio side, as well as to and from one SGSN on

the ore network side. To manage this the BSC onsists of a high apaity

42

General Paket Radio Servie Evaluating Siena in a Wireless Network

swith that provides funtions suh as hand-over ell on�guration data and

hannel assignment.

Serving GPRS Support Nodes (SGSN)

The SGSN forwards inoming and outgoing IP pakets addressed to and for a

mobile station. It serves all GPRS-subsribers that are loated and attahed

within the geographial SGSN servie area. A subsriber may be served by

any SGSN in the GPRS-network depending on loation. The traÆ is routed

from the SGSN to BSC, via the BTS to the mobile station.

Gateway GPRS Support Nodes (SGSN)

Most importantly, the GGSN provides the interfae towards the external IP

paket networks. Atually, from the external IP network's point of view, the

GGSN ats as a router for the IP-addresses of all subsribers served by the

GPRS-network. To make this possible the GGSN exhanges routing infor-

mation with the external networks and sets up onnetion towards external

networks. Similar to the SGSN, the GGSN deals with session management,

spei�ally the onnetion towards the external networks. Also, as many

SGSN an onnet to one GGSN, it has assoiate subsribers to the right

SGSN.

3.4.3 GPRS Protool Stak

The GPRS data ommuniation arhiteture is based on the physial-layer

of GSM [13℄. It will ontinue to support the well-known priniple of protool

layering aording to the Open System Interonnetion (OSI) ommunia-

tion arhiteture. The GPRS-system distinguishes between two protools

planes [1℄:

� The transmission plane overs the protools for the transmission of user

information and the assoiated ontrol proedures like ow ontrol and

error handling.

43

General Paket Radio Servie Evaluating Siena in a Wireless Network

� The signalling plane onsist of protools that ontrol and support the

user transmission. GPRS-relevant funtions in the signalling plane are

onnetion ontrol, routing and mobility management.

Transmission plane

The Transmission Plane, as show in Figure 3.18, illustrates the protool layers

of GPRS as well as the Internet data network.

UDP
TCP

UDP
TCP

GTP

LLC

BSSGP

Frame relay

SNDCP

L2 L2

MAC

RLC

SNDCP

LLC

GTP

MAC

RLC BSSGP

Mobile
Station Support Node

Serving GPRS Gateway GPRS

Support Node Network

External

Subsystem

Base Station

L1 L1 L1 L1 L1L1PHY

IP IP

L2 L2

LLC relay

GPRS

Internet

Others

PHY

Frame relay

Application

IP IP IPIP

Application

Figure 3.18: GPRS protool stak

Appliation Layer The appliation layer is very broad in the sense that

it inorporates several sublayers of funtionality. It ontains the logi needed

to support various user appliations. For eah type of appliation, di�erent

protools are needed that spei�ally manage the appliation sessions as well

as the presentation of user data. These protools are spei� to the software

and have no onnetion to the GPRS-arhiteture.

TCP/UDP The transport layer inludes mehanisms for the exhange of

user data on the end-to-end onnetion, whih are essentially independent to

the nature of the appliation. There exist two vastly di�erent transport pro-

tools, namely Transmission Control Protool (TCP) and User Data Protool

(UDP) [8℄:

� TCP providing a reliable data ow between two hosts.

44

General Paket Radio Servie Evaluating Siena in a Wireless Network

� UDP instead provides a simple servie to the appliation layer without

reliability.

IP/X.25 The transport-layer may be arried on the network level by two

types of Paket Data Protools (PDPs), the Internet Protool (IP) or the

X.25-protool.

IP user-addresses are loated by (or via) the GGSN, but the pool of ad-

dresses are not neessary loated there. It ould be an external network

suh as an Internet Servie Provider (ISP) or a orporate Loal Area Net-

work (LAN) that atually hand out the IP-addresses. Eah external network

has its own, unique, aess point in the GGSN, ontaining funtionality for

handling network aess and IP-address assignment.

SNDCP The Subnetwork Dependent Convergene Protool (SNDCP)

maps network-level harateristis onto the underlying radio-layers. This

enables both IP and X.25 to be arried on top of the SNDCP-layer.

LLC The Logial Link Control (LLC) layer provides a highly reliable logial

link. LLC shall be independent of the underlying radio interfae protools

in order to allow introdution of alternative radio solution with minimum

hanges to the GPRS internal network.

RLC and MAC The Radio Link Control (RLC) and the Medium Aess

Control (MAC) are onsidered to be part of same layer. The RLC deals with

segmentation of LLC data-pakets into RLC data bloks. This RLC data

blok is given a MAC header and a Blok Chek Sequene (BCS) to form a

radio blok.

The Physial Radio-Interfae The physial radio interfae inludes pro-

edures for GPRS when it omes to hannel oding, ell re-seletion proe-

dures and power regulation [13℄. This layer also deals with frequeny hopping

and signal-modulation, improving the signal to noise ratio (SNR) through in-

terfae and frequeny diversity.

45

General Paket Radio Servie Evaluating Siena in a Wireless Network

BSSGP and Frame Relay On the reliable interfae between the BSC

and SGSN, the Base Station Subsystem GPRS Protool (BSSGP) transmits

pakets and routing-information. To make the interfae open it is stan-

dardized through Frame Relay (FR) [14℄. The frame relay ommuniations

standard enables high data rate.

GSN interonnetion Between the GSNs, the GPRS Tunnel Protool

(GTP) tunnels the PDUs through the GPRS bakbone network by adding

routing information [15℄. Below the GTP, the usual TCP/UDP and IP/X.25

are used as transport and network layer protools. The latter ombination of

protools will be most ommon on reliable and over-dimensioned onnetion

of the GPRS-bakbone network. Ethernet, Integrated Servie Digital Net-

work (ISDN) and Asynhronous Transfer Mode (ATM) base protools may

be used below IP depending on the operators network arhiteture [1℄.

3.4.4 Signalling Plane

The signalling plane of the GPRS-system onsists of protools for ontrol

and support of the transmission plane funtions [12℄. This inludes:

� ontrolling the GPRS network aess onnetions, suh as attahing to

add detahing from GPRS network;

� ontrolling the attributes of an established network aess onnetion,

suh as ativation of a Paket Data Protool (PDP) address;

� ontrolling the routing path of a network onnetion, in order to sup-

port user mobility

� ontrolling the assignment of network resoures.

3.4.5 Survey of GPRS Tools

In this setion we briey survey several GPRS tools. The tools range from

those for doing network planning to those for doing performane evaluations.

46

General Paket Radio Servie Evaluating Siena in a Wireless Network

They also range from those developed by ommerial vendors of GPRS teh-

nology to those developed by researh institutions. While this survey is

almost ertainly not omplete, the tools are all those for whih we were able

to obtain some amount of doumentation.

Nokia NetAt

TM

Planner

Nokia's NetAt Planner [30℄ is an integrated set of tools for planning radio-

based voie and data networks, inluding those based on GPRS tehnology.

The tools allow one to \plan" in the sense of designing how the network will

be deployed to satisfy usage and physial onstraints. For example, there is

a tool alled the Rollout Planner that supports the proess of site aquisi-

tion and projet traking. Another tool is the Transmission Planner, whih

supports the planning of the transmission and dataom network, inluding

dimensioning and network arhiteture omparisons. A third tool supports

an analysis of the plaement and strength of mirowave links.

Motorola GPRS Emulator

Motorola's GPRS emulator [27℄ is designed to help developers understand

how their appliations an be expeted to behave over a typial GPRS on-

netion. The emulator runs on a standalone Linux omputer, with applia-

tion lients and servers onneted to that omputer over a normal IP link.

In essene, the standalone omputer ats as a monolithi GPRS network.

The emulator provides ommuniation e�ets that reet the performane

of lient/server interation over the GPRS network under a variety of on-

ditions, inluding normal loads, heavy (\busy hour") loads, and both short

and long interruptions in signals.

Erisson GATE II

Erisson's GATE II [11℄ is another Linux-based emulator of a GPRS net-

work. It emulates typial properties of a GPRS network, inluding varying

bandwidths, loads, latenies, and radio onditions. The emulator is made

47

General Paket Radio Servie Evaluating Siena in a Wireless Network

available in a rather unusual way: Rather than being available for instal-

lation and use in the evaluator's environment, it is provided as a servie

to whih one brings an appliation for evaluation. The evaluation itself is

arried out by trained personnel at designated servie enters.

University of Helsinki Seawind

In ooperation with Nokia Mobile Phone and Sonera Corporation, the Uni-

versity of Helsinki has developed Seawind [24℄, a Linux-based emulator of

wireless networks. The emulator an be used to study network ow and on-

gestion ontrol, as well as other properties of an appliation ommuniating

over a GPRS network. Like the Motorola GPRS emulator, it based on the

use of a normal wireline loal-area network. Link harateristis are emu-

lated by delaying, dropping, and modifying the ow of pakets aording to

a set of simulation parameters.

Network Simulator

NS-2 (Network Simulator) [16℄ is a general-purpose disrete event simulator

for networks. The arhiteture of the simulator is designed to allow the

spei�s of a given network to be provided as a pluggable module. Reently,

a module for simulating a GPRS network has beome available [23℄, but we

have not yet had an opportunity to fully study its apabilities. What we do

understand at this point is that it is more suited to studying the internal

behavior of the GPRS network than it is to studying the interation of an

appliation with the network.

Seleting a tool

In order to arry out our evaluation, we needed to selet from among the

available GPRS tools. In a sense, our hoie was easy. The Nokia NetAt

Planner is targeted at network planning, not performane evaluation. The

Motorola emulator, while it appears extremely well suited for our evaluation,

is simply not yet available. The Erisson GATE II emulator might also be

48

Experimentation Evaluating Siena in a Wireless Network

suitable, but the fat that it is available only as a seond-hand servie makes

it very inonvenient to iteratively develop experiments.

We seleted Seawind beause of its ombination of reasonable funtional-

ity and immediate availability. Nevertheless, as we detail in the next setion,

Seawind is limiting in the kind of information that we an gather, spei�ally

in regard to the e�et of deploying and operating Siena servers in the GPRS

network. NS-2 might well be an alternative worth exploring in the future,

but it too has its limitations. In fat, Seawind and NS-2 appear to be om-

plementary, sine Seawind onentrates on the interation of an appliation

with the (monolithi) network, while NS-2 ombined with the GPRS module

onentrates on the performane of the network itself.

3.5 Experimentation

In this setion, we will explain our experimentation and the results we ob-

tained. We imagined a senario in whih users engage an aution using

wireless devies (as explained in previous setions). This means that buy-

ers and sellers are using an Aution System appliation installed on mobile

devies and a GPRS Network as wireless link to onnet their lients to an

Internet host.

Sine the impossibility to use a real GPRS network, and thus real mobile

devies, we simulated this senario using the Wireless Network Emulator

Seawind [24℄ and a J2ME Wireless Toolkit [37℄.

Seawind emulates a point-to-point ommuniation hannel extending over

a GPRS network. One end of the hannel represents the mobile station,

while the other endpoint represents the remote host. The mobile station

and the remote host at as workload generators for the GPRS network. A

network protool adapter binds a workload generator at eah endpoint of the

emulated hannel. The traÆ produed by one workload generator is fed into

the Seawind emulation proess through one adapter. It is then proessed by

Seawind and passed on to the workload generator at the other end through

the orresponding adapter. In proessing through-traÆ, Seawind emulates

the behavior of a GPRS network aording to its on�guration parameters,

49

Experimentation Evaluating Siena in a Wireless Network

thereby introduing harateristi delays, errors, and paket loss.

The urrent version of Seawind omes with a protool adapter for the

point-to-point protool [32℄ that an be used to rediret IP traÆ though

Seawind. In pratie, running Seawind amounts to running the main Seawind

emulation proess onneted with two PPP adapters (running as separate

proesses). Eah adapter reates a PPP interfae on�gured with a given IP

address, and with a \peer" address orresponding to the IP address of the

other adapter. A workload generator is implemented by an ordinary network

appliation, appropriately on�gured to diret some of its traÆ to the IP

address of one of the PPP adapters bound to Seawind. Seawind produes a

traÆ trae in tpdump format [22℄ that an be analyzed by a variety tools [7℄.

I_p = ThinClient(senp://10.0.0.81:12345);
siena.StartServer −port 12345

pub = ThinClient(senp://leone:12345);

sub.setReceiver(tcpr)

Seawind
10.0.0.80 10.0.0.81

Server

Mobile Side Remote Side

serl

leonecanto

sub

tcpr = TCPPacketReceiver(10.0.0.80, 5555);

pub

Figure 3.19: A Siena mapping onto Seawind

Seawind has two signi�ant limitations for the studies that we would like

to perform. First, it models the GPRS network as a simple tunnel, apable

only of moving data between a mobile station and the external paket-data

network. In partiular, Seawind does not model workload generators de-

ployed within the GPRS network, whih for us means that it annot be used

to study the performane of multiple, distributed Siena routers. Seond,

Seawind fouses on a single pair of workload generators, not taking into

50

Experimentation Evaluating Siena in a Wireless Network

aount the interations among multiple mobile stations sharing the same

pool of radio links and base-station resoures. While Seawind does in fat

model the e�et of other appliations in the same ell, it does so by simu-

lating generi, stati \bakground" traÆ. Suh an approah aptures some

onits in resoure alloation, but it does not reveal potential destrutive

dynamis resulting from the ombination of interrelated appliations.

Despite these two shortomings, we an still extrat some useful data

using Seawind. For our experiments, we used a Siena subsriber and a

Siena server as workload generators. The experiment setup is depited in

Figure 3.19. The subsriber plays the role of the mobile station. The server

plays the role of the remote host. Noti�ations are produed by a publisher

onneted to the server diretly on the remote host. Eah experiment is

de�ned by the sequene of subsriptions and noti�ations exhanged between

subsriber and server, by the on�guration of the onnetions between the

subsriber and the server, and by the on�guration of the GPRS network.

The workload that we used in our experiments onsists of one subsription

posted by the subsriber, followed by a number of mathing noti�ations sent

from the server to the subsriber.

Siena uses a generi message-based ommuniation mehanism that is

realized in the urrent implementation by three speialized onnetors. The

on�guration of the server-subsriber onnetion is obtained by seleting a

spei� onnetor. In partiular, the hoies inlude a UDP onnetor, a ba-

si TCP onnetor, and what we refer to as a \keep-alive" TCP onnetor. A

UDP onnetor sends messages through UDP pakets, a basi TCP onne-

tor uses one TCP onnetion per message, and a keep-alive TCP onnetor

attempts to use the same TCP onnetion for multiple messages.

For the on�guration of the GPRS network, we experimented with a

subset of the rih set of parameters o�ered by Seawind. In partiular, in

aordane with the GPRS CS-1 spei�ation, we emulated a mobile station

apable of using one uplink hannel and up to three downlink hannels. This

setting is shown in the parameters of Table 3.3.

The ms max rate parameter de�nes the apabilities of the mobile station.

A value of 3 selets the most advaned lass of mobile stations, apable of

51

Experimentation Evaluating Siena in a Wireless Network

Parameter Uplink Downlink

ms max rate 3 3

available rate 0-1 0-3

rate base 9050 bps 9050 bps

Table 3.3: GPRS CS-1 simulation parameters

handling data ommuniations (GPRS) and normal alls (GSM) at the same

time. The rate base is the bandwidth of an individual hannel. available rate

determines the range of hannels available to the mobile station. The atual

number of hannels allotted to the mobile station at any time depends on

the presene of other GPRS or GSM users in the same ell.

In addition to the parameters of Table 3.3, whih serve to haraterize

the onnetivity of the mobile station to its base station, we must set other

parameters that determine the quality of the ommuniation hannel. These

parameters are listed in Table 3.4.

Parameter Value

error rate type BIT

error probability

stati 10

�3

stati 10

�4

error handling

DELAY ITERATE

FORWARD

DROP

error delay funtion uniform distribution 40{50ms

delay drop threshold stati 10s

Table 3.4: GPRS error simulation parameters

The e�et of noise is to introdue transmission errors or delays. Errors o-

ur with a probability determined by the error rate type and error probability

parameters. In our experiments, errors are set to our at the level of indi-

vidual bits with a probability of 10

�3

and 10

�4

.

The error handling parameter determines how the GPRS network han-

dles transmission errors. With \DELAY ITERATE" the network provides

a reliable delivery servie by simply foring retransmission, whih in turn

52

Sample Results Evaluating Siena in a Wireless Network

introdues a delay for end-to-end ommuniations. Alternative modes are

\FORWARD", in whih errors are simply ignored and passed on to higher

levels in the ommuniation stak, and \DROP", whih auses the network

to drop pakets that ontain errors. In the ase of \DELAY ITERATE",

error delay funtion determines the interval before retransmission and de-

lay drop thresholds de�nes an upper bound for the total retransmission delay,

after whih a paket is simply dropped.

3.6 Sample Results

This setion presents some sample results that we were able to obtain using

Seawind to evaluate the on�guration desribed in the previous setion. The

primary goal of these experiments was to evaluate the impat of deploying

Siena onto the wireless GPRS network. We did this from two di�erent

perspetives. The �rst was to gather data haraterizing the performane of

the three di�erent low-level onnetors (UDP, TCP, and keep-alive TCP) on

the wireless network. The seond was to ompare these results with baseline

data olleted on a loal-area, wired network. By doing this we should get

an initial indiation of whether a seamless integration of wired and wireless

ommuniation is feasible for a publish/subsribe ommuniation servie.

error probability = 10

�3

DELAY ITERATE FORWARD DROP

notif. IP pakets notif. IP pakets notif. IP pakets

Keep Alive 79 875 17 350 8 285

TCP 100 1173 64 1205 62 1571

UDP 79 82 73 78 66 97

error probability = 10

�4

DELAY ITERATE FORWARD DROP

notif. IP pakets notif. IP pakets notif. IP pakets

Keep Alive 82 855 72 458 70 443

TCP 100 1153 100 1156 99 1152

UDP 100 106 84 95 76 91

Table 3.5: Siena behavior in the wireless GPRS network.

53

Sample Results Evaluating Siena in a Wireless Network

Table 3.5 shows the network usage orresponding to the three low-level

onnetors under two di�erent error probabilities. In essene, this table ap-

tures data on the ross produt of the parameter values of Table 3.4. We

olleted ounts of appliation-level noti�ations reeived by the subsriber

and the resulting ounts of IP pakets. The ounts shown in eah ell are

the average taken from �ve runs of the simulation. In all ases, there were

100 noti�ations published. The data give an indiation of the irumstanes

that lead to di�erent noti�ation loss rates. For example, as we would ex-

pet, the highest loss rate ours at an error probability of 10

�3

under the

DROP error-handling mode. We an also see that the keep-alive onne-

tor is the most sensitive to inreasing error rates and dereasing quality of

error-handling servie.

notif. IP pakets

Keep Alive 100 437

TCP 100 828

UDP 100 102

Table 3.6: Siena behavior in a loal-area, wired network.

Table 3.6 shows the baseline behavior obtained by running the appliation

on a loal-area, wired network. The data haraterize the relative overhead

of eah of the low-level onnetor protools. For instane, UDP enounters

no overhead (The two extra pakets are used to arry the subsription and

unsubsription messages). On the other hand, approximately eight pakets,

on average, are required by TCP to deliver a single noti�ation. We an

ompare the baseline overhead to that experiened in the wireless network.

The overhead of TCP in the wireless ase is approximately twelve pakets

per noti�ation, onsiderably higher than in the loal-area, wired ase.

54

Chapter 4

Mobility Support in Siena

As we explained in Setion 2.1 while host mobility is onerned with the

physial movement of hosts, Code Mobility is the ability to transfer data

and/or ode from one host to another by using a network. Data mobility is a

very ommon mehanism and is often used to exhange or spread information

among di�erent hosts distributed on a network. At a level above this, ode

mobility allows the migration of exeutable ode. Data mobility an be

Event ServiceSiena Servers

Code
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

Local Host Remote Host

Figure 4.1: A ode fragment moves from host to host and hanges its server

master after the motion.

ahieved with simple transport protools, or with higher-lever protools suh

as RPC by passing parameters to a remote proedure. A simple example of

55

Mobility Support in Siena

ode mobility onsist in a WEB browsers loading an applet from a remote

site. For instane, data e ode mobility in Java are supported through objet

serialization and lass loading. The status of objets an be serialized and

transfered from one host to another while the lass loading strategies an vary,

depending on the appliation. The lass of the moved objet an migrate onto

the new host or it an be fethed from a remote server.

Two more sophistiated mobile ode paradigms are lassi�ed as remote

evaluation and mobile agents [17℄. Remote evaluation allows the proative

shipping of ode to a remote host to be exeuted [33℄. Mobile agents [39℄ are

autonomous objets arrying their state and ode that atively move aross

the network. Agent mobility requires the migration of both ode and state

of the agent at the same time and they an move atively performing tasks

on be half of users. In this senario, it is reasonable to think about mobile

agents that use a publish/subsribe system to ommuniate with eah other

and with other non-mobile omponents.

Event ServiceSiena Servers

Code Code

Figure 4.2: Code moves together with its host and hanges its server after

the motion.

This introdues some problems that must be solved. In fat, in a pub-

lish/subsribe system suh as Siena the state of a mobile agent is non om-

pletely stored within the agent, but it is partially maintained by the event-

servie. Spei�ally subsriptions are maintained by Siena-servers, and pos-

56

Mobility Support in Siena

sibly spread aross the network (refer to Setion 2.2.3). Therefore, an agent

that moves to a new loation must inform Siena about its movement, to

allows an appropriate re-routing of noti�ations of interest. In this hapter

we will desribe the solutions we propose to manage the problem arising with

the mobility of lients in Siena.

We suppose to have senarios (depited in Figures 4.1, and 4.2) in whih

a lient wants to swith, after its migration, from a loal master server to

a remote master server. Notie that from the point of view of Siena, the

way in whih a lient performs the movement is ompletely transparent. In

fat, whether the lient moves together with its host or it migrates using

some mobile ode tehnology, the problems related to its disonnetion, and

reonnetion remain the same.

Sine in a publish/subsribe arhiteture part of the lient's status is

stored in its aess-point (suh as its subsriptions or its loation) we need

some new operations to manage the swithing. In fat, during the swithing,

a lient ould lose some events or get dupliates.

To avoid these problems we propose two solutions that di�er from eah

other in the quality of servie they o�er. The �rst solution favors speed over

quality of servie, while the seond one o�ers better servie guarantees at

the ost of a slower, and more omplex proess. In next Setions we will

H T

Figure 4.3: Aess-points swithing ations.

desribe whih solutions we developed, and how they work. As �rst instane

we examine the simple ase in whih a �xed lient wants to swith from a

57

Mobile Dispather Mobility Support in Siena

loal master server to a remote master server (see Figure 4.3). Then we will

extend this partiular ase in order to manage the more general ase in whih

a lient hanges its master server at the end of the motion.

4.1 Mobile Dispather

client/server

Protocol

Clients

MobileDispatcher
HierarchicalDispatcher

MD

HD

MD HD

HD

Figure 4.4: HierarhialDispather and MobileDispather work together.

We reated a new kind of dispather, alled Mobile Dispather with the

ability to manage lient mobility. This dispather is based on the Hierar-

hialDispather lass provided by Siena, and adds new features oriented to

mobility management. It is possible to use MobileDispather in ombination

with old dispathers in order to reate hybrid networks. Of ourse we may

have networks made by only MobileDispathers in whih �xed lients still

an use the old servies. In this ase every server is able to ahieve lients

mobility.

4.2 Noti�ation Persistene Servie

The �rst feature we added in MobileDispather is the persistene of noti�a-

tions. This enables a lient to be disonneted for a while, and to reeive all

events it is interested in when it will reonnet (see Figure 4.5). In order to

do this, we developed two new ations. The �rst one, alledmoveOutMas-

ter(), puts the lient in a suspended mode, and asks the master server to store

58

Noti�ation Persistene Servie Mobility Support in Siena

���
���
���
���

���
���
���
������
���
���

���
���
���
���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

event

C

C.moveOutMaster() C.moveInMaster()

C

b)a) c)

C

event

M M M

Figure 4.5: Noti�ation persistene servie.

all events that math its �lters. After the disonneted period, the lient will

use the dual operation of moveOutMaster() (alled moveInMaster()) to

reonnet. This operation allows the server to put the lient bak in ative

mode, and to dispath all stored events to it. This feature results useful if

lient leaves, and returns to the same master server. Of ourse, the lient

ould hange its position during the movement, but its master server will

remain the same. To ommuniate this hange of position to the server, the

lient an use the setReeiver(new oord) method provided by Siena. We

extend this ation, by reating a new one alledmoveInMaster(new oord)

that sets up new position, and then ats as moveInMaster().

4.2.1 Implementation

The implementation of moveOutMaster() is really simple: when a remote

lient invokes the moveOutMaster(), a SENP.MVL massage, formatted in

aording to Siena protool

1

[3℄, will be sent to the master server to inform

it about the Client request. Then, the server will searh the lient's id into

its \ontats" swithing it to a movingON mode (see Figure 4.5.a). Sine

this moment, every noti�ation addressed to this lient, will be stored in a

private queue (see Figure 4.5.b).

1

A Siena server uses a number of odes to identify requests from lients or other

servers. Those requests are de�ned by the Siena Event Noti�ation Protool (SENP). For

example a publiation is de�ned by the SENP.PUB ode.

59

Event Re-routing Mobility Support in Siena

To return ative, the lient has to all the funtion moveInMaster().

This will send a SENP.MVI message to the master server that puts the

lient in movingOFF mode, and delivers every stored message to it (see

Figure 4.5.). If lient position is hanged during the disonnetion periods

(lient ould be moved to another host), but it would still use the same

server, lient may invoke moveInMaster(new oord) where new oord is

a PaketReeiver lass (for more information refer to the Siena API [3℄).

moveInMaster(new oord) will set up the new position in the server, by

sending a SENP.MAP request, and the it will at as the moveInMaster().

For more implementation details refer to Appendix C.1, and C.2.

4.3 Event Re-routing

It is reasonable to assume that a mobile lient wants to move from an atual

master server to another one. In fat, during the motion, it may deide to

swith to a new aess-point onsidered better than the old. In this senario,

the noti�ation persistene servie represent only the �rst step of a new set

of possible solutions. As we explained above, sine part of the lient state

is stored inside the event servie, if a lient moved from a master server

to another, it must inform the event servie in order to modify its state,

and on�guration. These inlude events routing path, lient's position, and

subsriptions. In fat, if a lient hanged a server without inform the event

servie, the latter will still send the noti�ation at the old address.

In the urrent implementation of Siena [3℄ there is an available ation,

alled setMaster(new master), that allows a lient to hange its master

server. The single operations whih it performs are:

1. Unsubsribe all �lters from old master

2. Disonnet from old master

3. Connet to new master

4. Subsribe all �lters

60

Event Downloading Mobility Support in Siena

But, sine setMaster(new master) is not an atomi ation, some problems

may our. In fat, some events of interest for the lient may be generated

while the lient is still disonneted, or before it re-subsribes its �lters. This

means that the lient will lose some noti�ations.

In order to solve these problems, our idea is to store the lient's noti�a-

tions, and subsriptions on the old master server throughout the swithing

proedure. During this time the status of the lient should be suspended,

so that the noti�ation persistene servie is ative, on both old and new

master server. This prevents lost events, but may reate redundany. In fat

the same events ould be stored in both master servers. Moreover, after the

motion the lient should also be able to reeive all noti�ations stored on the

old master server. In the following Setion we detail our solution.

4.4 Event Downloading

One obvious solution is to download the events stored on the old master

server (alled H) from the new one (alled T), and then send them to the

lient (alled C). To do this, we add a new ation, alled moveInMas-

ter(dest), whih onnets the lient to the new server, subsribes all lient's

�lter, downloads stored events from the old master server, and �nally it dis-

onnets the lient from the server H (refer to Figure 4.6). Of ourse, this

proedure requires some synhronization between master servers to avoid

losing or repliating events.

In order to solve these problems, we implemented themoveInMaster(T)

proedure with the following sequene of operations. Notie that the pro-

edure requires that the lient alls the moveOutMaster() method before

leaving the old server H:

1. Connet(T);

2. Store(T);

3. Subsribe(�lters, id);

61

Event Downloading Mobility Support in Siena

4. Download(H, T);

MergeEvents();

5. Disonnet(H);

where �lters are �lters subsribed by the lient, and id is the identity of

the lient. After downloading the events (4), T has two queues of stored

1

TH

3

5

6

2 − 4
6: Disconnect(H);

5: Download(H,T);

1: Store(H);
2: Connect(T);
3: Store(T);
4: Subscribe(filters, id);

 MergeEvents();

Figure 4.6: T Downloads the events stored in H

events, many of whih ould be repliations of the same noti�ation. In order

to remove dupliated events, T will merge the two queues, and sends the

resulting queue to the lient. The merge operation uses a simple omparison

funtion based on the exat math of all attributes and values.

4.4.1 Implementation

We assume the lient has invoked the moveOutMaster() method before

it starts to move. When the lient deides to return to an ative status,

thereby hanges its master server, the lient may all the moveInMas-

ter(uri) (where uri is the address of the new server). This funtion will

perform the following ations:

1. The lient C sends a onnetion request (SENP.WHO) to the new

master server T referred to by the uri parameter. T reeives the request

and reates a new MobileSubsriber in its ontats.

62

Event Downloading Mobility Support in Siena

2. C sends a MoveOutMaster request (SENP.MVL) to the new master T .

T reeives it and puts C in movingON mode.

3. C re-subsribes all its �lters to the new master server T .

4. C sends an Event-download request (SENP.DWL) to T . T reeives

it and sends an upload request (SENP.UPL) to H. H reeives it and

sends all events it has stored (using SENP.PRV messages) to the new

master server T . When the download is ompleted, the server T sends

a disonnet request (SENP.BYE using the C's id) to H in order to

anel all of C subsriptions from the ontats of H. Thus, the new

master server T merges the downloaded events with the loally stored

events and sends the result to the lient C. Finally, T put the C in the

movingOFF mode.

If also the position of the lient C is hanged during the disonnetion

period (it ould be moved to another host), C may invoke moveInMas-

ter(new oord, uri) where new oord is a PaketReeiver objet (see the

Siena API [3℄). This operation will set up the new position of C in the

master T sending a SENP.MAP request, and then it will at as themoveIn-

Master(uri). For more implementation details refer to Appendix C.2.

4.4.2 Observations

This solution seems solve every problem, but sine Siena delivers all �l-

ters subsribed by C throughout the master server's hierarhy (refer to Se-

tion 2.2.3), there is a time gap between the �lters subsription and the �lters

ativation. This time gap may be long and, if during this time T downloads

the lient's events stored in H (and thus disonnets C from H), there is a

high probability to lose events. In fat some noti�ations ould be generated

before the �lters ativate but after the events download. During this interval,

the noti�ations annot reah T . Furthermore, in H the events persistene

servie is no longer ative and this implies that these noti�ations will be lost.

The duration of the ativation time may depend on a number of fators, suh

as network ongestion, Siena workload, and others out of our ontrol.

63

Event Downloading With Path Test Mobility Support in Siena

4.5 Event Downloading With Path Test

In order to solve problems explained in the previous setion, we need to

synhronize the event downloading (and then the lient's disonnetion from

the old master server) with the �lters ativation.

The main idea is to send a ping message (from the new master server T

to the old server H) throughout the Siena network and wait for a ping ak

reply. When T athes the ping ak message, T an download the events and

disonnet the lient C fromH (the ations sequene is showed in Figure 4.7).

The only way to send a message through the Siena master server's hier-

arhy is to build the ping message as a noti�ation. Of ourse H must be

subsribed for the ping and T must subsribe a �lter for the ping ak.

1 − 2

TH

3

4 − 5 − 6

7

9

8 7: Publish(ping(id));

10

4: Store(T);

1: Store(H);
2: Subscribe(ping(id), H);
3: Connect(T);

5: Subscribe(filters, id);
6: Subscribe(pong(id), T);

9: Download(H,T);
MergeEvents();

10: Disconnect(H);

8: Publish(ping_ack(id));

Figure 4.7: Download events stored on the old server with synhronization.

We implemented a new version of themoveInMaster(T) proedure with

the following sequene of operations:

1. Connet(T);

2. Store(T);

3. Subsribe(�lters, id);

64

Event Downloading With Path Test Mobility Support in Siena

4. Subsribe(ping ak(id), T);

5. Publish(ping(id));

6. Download(H, T);

MergeEvents();

7. Disonnet(H);

Also in this ase the proedure requires that the lient C alls the move-

OutMaster() method before leaving the old master server H. Notie that

in this ase, the moveOutMaster() method must be modi�ed in order to

enable H to ath the ping message and reply to it with:

1. Store(H);

2. Subsribe(ping(id), H);

3. Wait(ping(id));

4. Publish(ping ak(id));

This solution, based on \ping-pong" synhronization, seems to seure us

from losing pakets. Of ourse, sine we are talking about a salable network

(suh as the Internet), we have to use the expression \highly probable" in-

stead of \seure". In fat, Siena is not reliable, and thus some pakets ould

be lost along the path between two onseutive Siena master servers.

The main idea behind this implementation of the event downloading is

the following: In order to reeive the ping-aknowledgement, T must be sub-

sribed for the ping ak event and the related �lter must be ative through

the Siena network. The idea is that T subsribes the �lter for the ping ak,

then C re-subsribed all its �lters. When T reeives the ping ak message,

the others �lters are also probably ative. If this is true, T is able to ath

all events in whih C is interested and store them in the appropriate queue.

Thus, T an download the events stored in H and an merge them with the

events loally stored. Only at this point T an disonnet the lient C from

the old master server H and make C ative. The synhronization time-steps

performed by the download proedure are shown in Figure 4.8.

65

Event Downloading With Path Test Mobility Support in Siena

(old position)
Client (new position)

Client

pong(id)

MoveOutMaster()

deliver(events)

Connect(new_master)

disconnect(id)

download_req()

download()

subscribe(filters)

ping(id)

store()

old_master new_master

Figure 4.8: Events downloading: time-steps synhronization

4.5.1 Implementation

We assume the lient has invoked the moveOutMaster(true) before it

starts to move. The new parameter true fores the master server T to use

the Hierarhial-path test before it downloads the events. When the lient

alls the moveOutMaster(true) funtion, the server H reates a listener

that waits for a ping message.

When the lient C deides to return to an ative status, it may all the

moveOutMaster(uri, true) (where uri is the address of the new master

server and true means that the C wants to use the Hierarhial-path test).

ThemoveOutMaster(uri, true) funtion will perform the following ation:

1. Client C sends a onnetion request (SENP.WHO) to the new master

server T referred to by the uri parameter. T reeives it and reates a

new MobileSubsriber in its ontats.

2. C sends a MoveOutMaster request (SENP.MVL) to T . The master

server T reeives it and puts C in movingON mode.

3. C re-subsribes all its �lters to the new master server.

66

Mobile Server Disovery Mobility Support in Siena

4. C sends an Event-download request (SENP.DWH) to the new mas-

ter server T . T reeives it, subsribes for the ping ak, sends a ping

message through the Siena dispather hierarhy, and waits for a reply.

When the server H athes the ping, H will reply with the ping ak

message. After T athes the ping ak it will send an upload request

(SENP.UPL) to the master server H. H reeives it and will send

all events it has stored (using SENP.PRV messages) to the master

server T . When the download is �nished, T sends a disonnet re-

quest (SENP.BYE using the C's id) to H in order to anel all of the

C's subsriptions from the ontats of H. Thus, T merges the down-

loaded events with the loally stored events and sends the result to the

lient C. Finally, the master server T puts C in the movingOFF mode.

In order to manage both a hange of loation and master server swithing,

we also added the funtion moveInMaster(new oord, uri, true) where

new oord is a PaketReeiver lass (refer to the Siena API [3℄). This oper-

ation will set up the new position in the master server, sending a SENP.MAP

request, and then it will at as the moveInMaster(uri, true). For more

implementation details refer to Appendix C.2.

4.6 Mobile Server Disovery

A usual problem to be solved in mobility management is how disover servie

servers during the motion. For instane, in wireless networks eah server has a

physial dediated hannel (typially a radio frequeny) used for ontinually

sending the server identi�er and loation. When a Mobile Station (MS)

enters the zone served by a spei� server, the MS athes this signal and

MS an perform the server swithing using information it has read. In the

Internet environment, this solution is not appliable (see Figure 4.9) beause

a disonneted Mobile Agent does not have the possibility to reeive any kind

of message.

A simple solution we deployed is to o�er a server disovery servie to

the lient. The idea is that, before its disonnetion, the lient an ask

67

Implementation Mobility Support in Siena

Hierarchical Dispatcher

Event Service

Mobile Dispatcher

T

H

?

Figure 4.9: How Disover another MobileDispather

the Siena network for a list of available hosts whih are able to manage

the lient's mobility. This new funtionality, invoked by addMobileDis-

patherFinder(Noti�able n), sends a publi message from the atual lient's

server through the network, and every MobileDispather will reply to it with

their own loation and information. Every reply paket, aught by the soure

master server, will be delivered to the interested lient (refer to Figure 4.10).

Of ourse, the server disovery servie may be stopped at any moment

by the lient by invoking the removeMobileDispatherFinder(Noti�able

n). After this operation, the mobile lient has a list of available MobileDis-

pathers and it an hoose one of them to reonnet itself after the motion.

4.7 Implementation

This servie is implemented using the standard features o�ered by Siena.

In fat, when a Siena mobile server is started, it simply reates a Noti�able

objet subsribed for the �lter

f

s

: servie = Mobile Server Request

68

Implementation Mobility Support in Siena

C.addMobileDispatcherFinder(n);

"M3"

"M2"

"M4"

"M1"

M1

M3H

H

H

H

H

H

M2

M4

C

"M1","M2","M3","M4"

M1

M3H

H

H

H

H

H

M2

M4

C

Figure 4.10: How Disover another MobileDispather

. This �lter remains ative during the life yle of this master server.

When a lient wants to know where the servers that o�er the mobil-

ity servie are loated, it may invoke addMobileDispatherFinder(re),

where re is the the objet that will reeive the noti�ations. This funtion

subsribes re for

f

r

: servie = Mobile Server Reply

and publishes the

e

s

: servie = Mobile Server Request

event. the event e

s

will math with f

s

and, at this point, the master servers

that aught this event will reply to it by generating the event

e

r

: servie = Mobile Server Reply; uri = loaluri; info = loalinfo

where loaluri is the address of the replyer's master server, and loalinfo

ould represent some useful information about this server. This information

may be spei�ed when the server is starting up by setting the \-info string"

option in the siena.StartMobile ommand. For more information refer to the

69

Observations Mobility Support in Siena

moveOutMaster()

moveOutMaster(boolean QoS)

moveInMaster()

moveInMaster(PaketReeiver pr)

moveInMaster(string uri)

moveInMaster(string uri, boolean QoS)

moveInMaster(PaketReeiver pr, string uri)

moveInMaster(PaketReeiver pr, string uri, boolean QoS)

addMobileDispatherFinder(Noti�able re)

removeMobileDispatherFinder(Noti�able re)

Table 4.1: Interfae Siena Mobility Support

Siena implementation [3℄.

After that, a lient may stop the searh by alling the removeMo-

bileDispatherFinder(re) method. This method will simply unsubsribe

the re objet for the �lter f

r

.

4.8 Observations

In Table 4.8 there are listed the APIs we added to Siena in order to support

the lient's mobility. Note that the parameter QoS represent the Quality

of Servie guaranteed by the referred funtions. The default value of QoS

is false. This means that the default kind of download does not test the

hierarhial-path. If a lient wants to use this spei� downloading mode, it

must invoke the relevant funtion with \QoS=true". Obviously, the lient

has to hoose the same QoS for themoveOutMaster andmoveInMaster.

For example, if it alled moveOutMaster(false) at the old site, it must

invoke moveInMaster(pr, uri, false) from the new loation.

70

Chapter 5

Conlusions

In Setion 3.6 we have desribed our attempt at performane evaluations of a

distributed appliation deployed over a wireless network. The appliation is

haraterized by the interation of multiple lients residing at the periphery

of the network, as well as by the need to deploy elements of the appliation

deep into the network.

We evaluated the impat of deploying Siena onto the wireless GPRS

network from two di�erent perspetives. The �rst was to gather data har-

aterizing the performane of the three di�erent low-level onnetors (UDP,

TCP, and keep-alive TCP) on the wireless network. The seond was to om-

pare these results with baseline data olleted on a loal-area, wired network.

The data shown in Table 3.5 gives an indiation of the irumstanes that

lead to di�erent noti�ation loss rates. For example, as we would expet, the

highest loss rate ours at an error probability of 10

�3

under the DROP error-

handling mode. We an also see that the keep-alive onnetor is the most

sensitive to inreasing error rates and dereasing quality of error-handling

servie. By omparing these results with the baseline overhead (showed in

Table 3.6) one simple thing we an note is the high overhead of TCP. In

fat in the wireless ase it is approximately twelve pakets per noti�ation,

onsiderably higher than in the loal-area, wired ase.

To our disappointment, we were not able to �nd tools apable of sup-

porting a full evaluation of this appliation. We were limited to the narrow

71

Conlusions

evaluation of a single lient interating aross the network with a single server.

Nevertheless, our experiene should not be taken as a ritiism of Seawind,

the tool that we deided to use for our evaluation. In fat, we found Seawind

to be a reasonable and useful tool for its purpose.

Clearly, a need exists for a di�erent kind of tool for wireless-network per-

formane evaluation. Before embarking on the development of suh a tool

ourselves, we �rst plan to study the apabilities of NS-2 and its GPRS mod-

ule, whih hold some promise for modeling and evaluating servies deployed

deeply into a wireless network. We might in fat be able to extend them to

also allow modeling and evaluation of lient interation over the network.

As we explained in Setion 4, our intent was to deploy a mobility support

in the Siena publish/subsribe middleware. This introdued some problems,

suh as messages persistene during the lient motion, noti�ation re-routing

after the movement, events downloading from the new lient's destination,

that we have studied and solved. We extended the set of available operations

in Siena adding new ations spei�ally oriented to manage the mobility of

the lients. These allow the lient to reloate from host to host updating

its information maintained by the event-servie. The basi operations we

developed are moveOutMaster and moveInMaster. moveOutMaster

allows a lient to delare its intention to move and auses the event-servie

to suspend the delivery of noti�ations to that lient. Of ourse, all events

addressed to this lient will be stored by the event-servie. When the lient

reahes its new loation, it an use the moveInMaster operation to reon-

net to the event-servie and retrieve all noti�ation stored while the lient

was disonneted (see Setion 4.8). Finally, we also added some operations

that allow the lient to disover other mobility-servie-enabled servers avail-

able throughout the network.

The API extension we presented in Setion 4.8 provide spei� servies

for mobile lients. However we do not onsider them as a de�nitive solution,

but rather as a basis for future works. In fat they allow us to perform

additional ase studies. One important aspet that we would like to study

is the level of reliability provided by the new servies. In partiular, we

72

Conlusions

would like to quantify the probability of losing or dupliated messages, or of

hanging the their ordering [26℄. As another further development, we would

like to perform additional tests whih we believe are very important due the

probabilisti nature of the errors a�eting the system.

Protected LAN

Trusted Link

H

C

C.moveInMaster(T);

T

Event download

Firewall

��������������������������

Figure 5.1: Dynami reon�guration using Mobile Support

It is also important to note that this solution ould not work in the pres-

ene of network seurity onstraint. In fat, the downloading proess ould

be restrited in ase in whih one of two masters involved in the downloading

proess is loated behind a network �rewall (as in the senario of Figure 5.1).

We would have to study alternative solutions for ases suh as this.

Sine a omponent is unreahable during its disonnetion, it annot re-

eive events and thus it annot perform any kind of operation in replying to

it. This may be an undesired behavior in presene of real-time onstraints in

the system.

Finally, sine in Siena lients and masters are built using the same lass

and arhiteture, a lient an also at as server. This allows us to hange

master for dynamially reon�guring the Siena network (see Figure 5.2).

In fat, even if a master is usually �xed in the network, we may use the

mobile apabilities (suh as moveOutMaster() and moveInMaster(uri))

to momentary disonnet the master, reon�gure the Siena network topology

and reonnet it to another master avoiding lost pakets.

Next milestones in these diretions should be to �nish the testing phase

73

Conlusions

T

H

C.moveInMaster(T)

C

H

T

Figure 5.2: Dynami reon�guration using Mobile Support

and evaluate the results. Furthermore, we should understand if reliability

is indeed a ritial non-funtional requirement in the ontext of mobility.

After that, we would also like to experiment with mobile agents using the

Sienamobility support in order to study the impat of the publish/subsribe

arhiteture in this ontext. Finally we would like to ombine the mobility

support we deployed in Siena with the host mobility for example using an ad-

ho network [21℄. In fat, sine this is ompletely omposed by mobile hosts,

its topology (and then the relations between the masters whih omposed it)

hanges quikly over the time. In a situation like this, we imagine a Siena

MobileDispather running in every mobile hosts and using the mobile features

to manage its relation to the other omponents (this is usually referred by the

term Context Management [29℄). It would be useful to validate our solution

in this senario and possibly study alternative solutions.

74

Appendix A

Aution Class Diagrams

A.1 Seller Class Diagram

starSell

public void main()
void showOutput()
void readInput()

MIDP

selling

void connect()
void disconnect()
void publish_Item()

Item_Info

int ItemID
String Auction
String Category
String Title
String Description
String Payment
String Shipping
double Reserve
double Startbid
double Increment
double mybid

User_Info

String FName
String LName
String Address
String URL
int port

Bid_Update

void notify(Notification n)

Date

int dd
int mm
int yy

Time

int hh
int mm

Rec_Bids

void addBid(Notification n)
Bid_Info getBid(int Index)

Bid_Info

int ItemID
double bid
String UFname
String ULname

String toString()

ThinClient

void publish(Notification n)
void subscribe(filter f, Notifiable n)

0..*

Figure A.1: Seller lasses interation.

75

Buyer Class Diagram Aution Class Diagrams

A.2 Buyer Class Diagram

buying

void connect()
void disconnect()
viod searc()
void publish_bid()

StartBuy

public void main()
void showOutput()
void readInput()

MIDP

<<>>

Search_Results

Vector ItemList

void addItem(Notification n)
public Item_Res getItem(int i)

Searc_Update

void notify(Notification n)

Item_Res

String FName
String LName
int ItemID
String Auction
String Category
String Title
String Description
String day
String month
String year
String hour
String minute
String Payment
String Shipping
double Reserve
double Startbid
double Increment
double mybid

0..*

ThinClient

void publish(Notification n)
void subscribe(filter f, Notifiable n)

User_Info

String FName
String LName
String Address
String URL
int port

Figure A.2: Buyer lasses interation.

76

Appendix B

Seawind v3.0

Seawind enables researhers to emulate the behavior of wireless network using

a ommon wireline loal area network. The emulator allows examination

of data transfer of wireless network like GSM and GPRS. The ability to

emulate a wireless data network gives the possibility to �nd enhanements

in transport protool and network parameters.

B.1 Components of Seawind

The emulator ats like a blak box that takes information in, handles it, and

sends it out. Seawind produes output whih an be investigated graphially.

Figure B.1 present the logial arhiteture of the system. This on�guration

SWD SWD

WLG WLGNPASP

Mobile WLG

GUI

SPNPA

SWD

Emulator Remote WLG

BLG BLG

Figure B.1: Seawind Arhiteture.

77

Components of Seawind Seawind v3.0

sets up two Simulation Psroess (SP) and they are loated in the same net-

work node.

B.1.1 Graphial User Interfae (GUI)

The GUI interfae interats diretly with the user and onsist of a few win-

dows in whih the user an ontrol the system.

B.1.2 Seawindd (SWD)

The seawindd is the Seawind daemon and runs in every mahine where Sea-

wind omponents work. It starts other omponents after getting oherent

messages from the GUI.

B.1.3 Workload Generator (WLG)

The WLG generates the workload used in tests run. Seawind provides for

two types of WLGs: unidiretional and bidiretional ttp [34℄. Other external

WLGs an be used but those need to be ontrolled outside Seawind.

B.1.4 Network Protool Adapter (NPA)

If Seawind own WLG is used, the NPA is used to enapsulate the data and

forward it to the SP. Vie versa on the other end the NPA gets data from the

SP and deapsulates the data before forwarding it to the reeiving WLG. In

this version of Seawind there is only one type of NPA de�ned:the type PPP

(Point-to-Point protool) [32℄.

B.1.5 Simulation Proess (SP)

The simulation Proess is the heart of Seawind. It a�ets the ommuniation

between workload generators by delaying and dropping pakets aording to

given parameters. In addition, the SP produe output information whih

desribes the urrent ommuniation ow.

78

Parameters of Seawind Seawind v3.0

Befor a test an be run the user needs to de�ne the parameters and

thus behavior for all the mentioned omponents. The SP parameters, like

spped and error distributions, an be de�ned independently for the Uplink

1

and downlink

2

. After the test, the user an utilize third party tools (like

tpdump [22℄ and ethereal [7℄) for analyzing the transfer.

B.1.6 Baground load (BGL)

The bakground load simulates the real ommuniationsystem's problem that

also other users utilize network resoures and a�et data transmitting of

primary users.

B.2 Parameters of Seawind

Setting up a test with Seawind requires a number of parameters to be set

in the graphial user interfae (GUI). The numerous parameters of Seawind

are distributed among the di�erent emulator system omponents. Every

omponent has its own parameters.

The user starts the setting up by hoosing di�erent repliation sets. A

repliation set de�nes the workload to be used, the network setup, and the

number of repliations. A test run an inlude several repliation sets, whih

are run one after the other. The results of all repliation sets are written in

log �les.

The network setup de�nes the loation of di�erent Seawind omponents

and the network subsystem parameters for both diretions of the transfer.

The onnetion between the WLGs and the emulator kernel an either be a

TCP onnetion or a serial link through the omputers ommuniation ports.

PPP an be used to arry the workload from ttp sender through Seawind to

the ttp reeiver. Also bakground load parameters are part of SP parameters

set. For more information, refer to the Seawind User Manual [25℄.

1

Uplink is the diretion from the mobile station to the network server.

2

Downlink is the diretion from the network server to the mobile station.

79

Appendix C

MobileDispather.java

//

// This file is part of Siena, a wide-area event

// notifiation system.

// See http://www.s.olorado.edu/serl/siena/

//

// Author: Mauro Caporusio <aporus�s.olorado.edu>

//

// Copyright (C) 1998-2002 University of Colorado

//

// This program is free software; you an redistribute

// it and/or modify it under the terms of the GNU

// General Publi Liense

// as published by the Free Software Foundation;

// either version 2 of the Liense, or (at your option)

// any later version.

// This program is distributed in the hope that it will

// be useful, but WITHOUT ANY WARRANTY; without even the

// implied warranty of MERCHANTABILITY or FITNESS FOR A

// PARTICULAR PURPOSE. See the GNU General Publi Liense

// for more details.

//

// $Id: MobileDispather.java,v 1.00 2002/03/05 18:51:31

// based on HierarhialDispather.java, v 1.50

//

pakage siena;

import siena.omm.*;

import java.util.Colletion;

80

Class MobileSubsriber MobileDispather.java

import java.util.Set;

import java.util.HashSet;

import java.util.Map;

import java.util.Map.Entry;

import java.util.HashMap;

import java.util.List;

import java.util.LinkedList;

import java.util.Iterator;

import java.util.ListIterator;

import java.util.Vetor;

import java.io.IOExeption;

import java.io.*;

import java.net.InetAddress;

import java.net.ServerSoket;

import java.net.Soket;

C.1 Class MobileSubsriber

//

// this is the abstration of the subsriber used by the

// MobileDispather. It represents remote as well as loal

// notifiable objets. In addition to that, this o

// bjet keeps trak of failed attempts to ontat the notifiable

// objet so that MobileDispather an periodially lean up

// its subsriber tables.

//

lass MobileSubsriber implements PaketNotifiable {

publi short failed_attempts = 0;

publi long latest_good = 0;

private boolean suspended = false;

private Notifiable loalobj = null;

private PaketSender remoteobj = null;

int refount = 0;

private SENPPaket spkt = new SENPPaket();

private boolean moving = false;

private Vetor storedEvents = null;

private Vetor dwlEvents = null;

81

Class MobileSubsriber MobileDispather.java

private int aspetedSize = -1;

publi final byte[℄ identity;

publi Filter pfilter = null;

publi ping_pong pingpong;

publi boolean pingak;

synhronized publi Vetor getStoredEvents(){

return storedEvents;

}

synhronized publi void movingON(){

moving = true;

}

synhronized publi void movingOFF(){

if (isLoal())

while(!storedEvents.isEmpty())

{

try {

loalobj.notify((Notifiation)

storedEvents.remove(0));

}

ath (Exeption ex) {

handleNotifyError(ex);

return;

}

}

else

while(!storedEvents.isEmpty())

{

try {

SENPPaket pkt = (SENPPaket)

storedEvents.remove(0);

remoteobj.send(pkt.buf, pkt.enode());

}

ath (Exeption ex) {

handleNotifyError(ex);

return;

}

}

moving = false;

}

82

Class MobileSubsriber MobileDispather.java

synhronized publi void movingOFF(Vetor stored){

if (isLoal())

{

while(!stored.isEmpty())

{

try {

loalobj.notify((Notifiation)

stored.remove(0));

}

ath (Exeption ex) {

handleNotifyError(ex);

return;

}

}

}

else

{

while(!stored.isEmpty())

{

try {

SENPPaket pkt = (SENPPaket)

storedEvents.remove(0);

remoteobj.send(pkt.buf, pkt.enode());

}

ath (Exeption ex) {

handleNotifyError(ex);

return;

}

}

}

moving = false;

}

synhronized publi boolean dwlEvent(SENPPaket pkt){

int pos = pkt.ttl - 10;

if (pkt.event == null)

aspetedSize = pos;

else

{

if (dwlEvents == null) dwlEvents = new Vetor();

pkt.method = SENP.PUB;

dwlEvents.add(pkt);

83

Class MobileSubsriber MobileDispather.java

}

int atualsize = dwlEvents.size();

if (atualsize == aspetedSize)

{

mergeEvents();

return true;

}

else return false;

}

synhronized publi void mergeEvents(){

moving = false;

if ((dwlEvents == null) && (storedEvents.size() == 0))

return;

if (dwlEvents == null)

{

movingOFF();

return;

}

if (storedEvents.size() == 0)

{

movingOFF(dwlEvents);

return;

}

for(int i = 0; i < dwlEvents.size(); i++)

{

SENPPaket objd = (SENPPaket) dwlEvents.get(i);

for(int j = 0; j < storedEvents.size(); j++)

{

SENPPaket objs = (SENPPaket)

storedEvents.get(j);

String str1 = objd.event.toString();

String str2 = objs.event.toString();

if (str1.ompareTo(str2) == 0)

storedEvents.remove(j);

}

}

dwlEvents.addAll(storedEvents);

movingOFF(dwlEvents);

}

synhronized publi boolean notify(SENPPaket pkt) {

84

Class MobileSubsriber MobileDispather.java

if (suspended) return true;

try {

if (loalobj != null) {

if (moving) storedEvents.add(new

Notifiation(pkt.event));

else loalobj.notify(pkt.event);

} else {

if (moving) storedEvents.add(pkt);

else remoteobj.send(pkt.buf, pkt.enode());

}

failed_attempts = 0;

return true;

} ath (Exeption ex) {

handleNotifyError(ex);

return false;

}

}

synhronized publi void notify(Notifiation n,

byte[℄ our_id) {

if (suspended) return;

try {

if (loalobj != null) {

if (moving) storedEvents.add(n);

else loalobj.notify(n);

} else {

spkt.init();

spkt.id = our_id;

spkt.method = SENP.PUB;

spkt.event = n;

spkt.to = identity;

if (moving) storedEvents.add(spkt);

else remoteobj.send(spkt.buf, spkt.enode());

}

} ath (Exeption ex) {

handleNotifyError(ex);

}

}

synhronized publi void notify(Notifiation [℄ s,

byte[℄ our_id) {

if (suspended) return;

85

Class MobileDispather MobileDispather.java

try {

if (loalobj != null) {

//

// here I purposely do not dupliate the

// sequene for effiieny reasons.

// Clients should never modify

// objets passed through notify().

//

if (moving)

{

for(int i=0; i < s.length; ++i)

storedEvents.add(s[i℄);

}

else loalobj.notify(s);

} else {

spkt.init();

spkt.id = our_id;

spkt.method = SENP.PUB;

spkt.events = s;

spkt.to = identity;

if (moving) storedEvents.add(spkt);

else remoteobj.send(spkt.buf, spkt.enode());

}

} ath (Exeption ex) {

handleNotifyError(ex);

}

}

}

C.2 Class MobileDispather

publi lass MobileDispather implements Siena, Runnable {

private MPoset subsriptions = new MPoset();

private Map ontats = new HashMap();

private MSenderManager pqueue = null;

private byte[℄ master_id = null;

private byte[℄ master_handler = null;

private PaketSender master = null;

private PaketReeiver listener = null;

private byte[℄ my_identity = null;

86

Class MobileDispather MobileDispather.java

private List mathers = new LinkedList();

private SENPPaket spkt = new SENPPaket();

private byte [℄ sndbuf = new byte[SENP.MaxPaketLen℄;

private PaketSenderFatory sender_fatory;

stati private PaketSenderFatory default_sender_fatory

= new GeneriSenderFatory();

private void proessRequest(SENPPaket req) {

Logging.prlnlog("proessRequest: " + req);

if (req == null) {

Logging.prlnerr("proessRequest: null request");

return;

}

if (req.ttl <= 0) return;

req.ttl--;

try {

swith(req.method) {

ase SENP.NOP: break;

ase SENP.PUB: publish(req); break;

ase SENP.SUB: subsribe(req); break;

ase SENP.BYE: req.pattern = null;

req.filter = null;

ase SENP.UNS: unsubsribe(req); break;

ase SENP.WHO: reply_who(req); break;

ase SENP.INF: get_info(req); break;

ase SENP.SUS: suspend(req); break;

ase SENP.RES: resume(req); break;

ase SENP.MAP: map(req); break;

ase SENP.CNF: onfigure(req); break;

ase SENP.OFF: shutdown();

//

// BEGIN_UNOFFICIAL_PATCH

try { Thread.sleep(500); }

ath (Exeption ex) {};

System.exit(0);

// END_UNOFFICIAL_PATCH

//

break;

//BEGIN_MOBILITY_PATCH

87

Class MobileDispather MobileDispather.java

ase SENP.MVL: moveoutLOW(req); break;

ase SENP.MVH: moveoutHIGH(req); break;

ase SENP.MVI: movein(req); break;

ase SENP.DWL: downloadNotifiationLOW(req);

break;

ase SENP.DWH: downloadNotifiationHIGH(req);

break;

ase SENP.UPL: uploadNotifiation(req); break;

ase SENP.PRV: req.ttl++; privateEvent(req);

break;

//END_MOBILITY_PATCH

default:

Logging.prlnerr("proessRequest:

unknown method: " + req);

//

// an't handle this request (yet)

// ...work in progress...

//

}

} ath (Exeption ex) {

Logging.exerr(ex);

//

// log something here ...work in progress...

//

}

}

//==

// MOBILITY SUPPORT PATCH

//==

//--

//Loal Requests

//--

/** suspends the delivery of notifiation to the

* given subsriber n and allows the master to store

* all notifiation addressed to this dispather .

*

* This auses the master server to stop sending

* notifiation to this subsriber and to store

* them in a queue.

* The master orretly maintains all the existing

88

Class MobileDispather MobileDispather.java

* subsriptions so that the flow of notifiation an be

* later resumed

* (see moveIn(Notifiable n)).

* This operation an be used when this

* dispather, that is this virtual mahine, is going to be

* temporarily disonneted from the network or somehow

* unreahable from its master server.

*

**/

synhronized publi void moveOut(Notifiable n)

throws SienaExeption {

if (n == null) return;

MobileSubsriber s;

s = (MobileSubsriber)ontats.get(n);

if (s != null) s.movingON();

}

/** resumes the delivery of notifiation to the given

*subsriber n.

*

* This auses the master server to resume sending

* stored and new notifiations to this subsriber.

*

*

* �see #moveOut(Notifiable n)

* �see #suspend(Notifiable n)

* �see #resume(Notifiable n)

**/

synhronized publi void moveIn(Notifiable n)

throws SienaExeption {

if (n == null) return;

MobileSubsriber s;

s = (MobileSubsriber)ontats.get(n);

if (s != null) s.movingOFF();

}

//--

//Remote Requests

//--

synhronized private void disonnetMaster(

byte[℄ omaster_handler, PaketSender omaster, String id) {

if (omaster != null) {

try {

spkt.init();

89

Class MobileDispather MobileDispather.java

spkt.method = SENP.BYE;

spkt.id = id.getBytes();

spkt.to = omaster_handler;

omaster.send(spkt.buf, spkt.enode());

} ath (PaketSenderExeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString() + ": " + ex.toString());

//

// well, what would you do in this ase?

// ...work in progress...

//

}

//master = null;

//master_handler = null;

}

}

synhronized private void moveoutLOW(SENPPaket req) {

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

MobileSubsriber s = (MobileSubsriber)

ontats.get(id);

if (s != null) s.movingON();

}

synhronized private void moveoutHIGH(SENPPaket req) {

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

//System.out.println(id);

MobileSubsriber s = (MobileSubsriber)

ontats.get(id);

if (s != null)

{

s.movingON();

try{

s.pingpong = new ping_pong(this, s);

s.pfilter = new Filter();

s.pfilter.addConstraint("id__",id);

s.pfilter.addConstraint("type__",

"SYNC_PING");

this.subsribe(s.pfilter, s.pingpong);

}

ath (SienaExeption ex)

90

Class MobileDispather MobileDispather.java

{

Logging.prlnerr("error subsribing ");

Logging.exerr(ex);

}

}

}

synhronized private void movein(SENPPaket req) {

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

//System.out.println(id);

MobileSubsriber s = (MobileSubsriber)

ontats.get(id);

if (s != null) s.movingOFF();

}

synhronized private void downloadNotifiationLOW(

SENPPaket req){

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

MobileSubsriber s = (MobileSubsriber)

ontats.get(id);

if (s != null)

{

//ServerSoket server;

PaketSender oldmaster;

try {

//send the server address to the OLD master

oldmaster =

sender_fatory.reatePaketSender(

new String(req.to));

spkt.init();

spkt.method = SENP.UPL;

spkt.id = req.id;

spkt.to = oldmaster.toString().getBytes();

spkt.handler = listener.uri();

oldmaster.send(spkt.buf, spkt.enode())

}

ath (Exeption ex) {

Logging.prlnerr("error

sending paket to " + master.toString());

Logging.exerr(ex);

91

Class MobileDispather MobileDispather.java

}

}

}

synhronized private void downloadNotifiationHIGH(

SENPPaket req){

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

MobileSubsriber s = (MobileSubsriber)ontats.get(id);

if (s != null)

{

try{

s.pingak = false;

s.pingpong = new ping_pong(this, s);

s.pfilter = new Filter();

s.pfilter.addConstraint("id__", id);

s.pfilter.addConstraint("type__", "SYNC_PONG");

this.subsribe(s.pfilter, s.pingpong);

Notifiation n = new Notifiation();

n.putAttribute("id__",id);

n.putAttribute("type__","SYNC_PING");

this.publish(n);

int tent = 0;

while ((!s.pingak) && (tent < 60)){

try{

Thread.sleep(1000);

tent++;

}

ath (java.lang.InterruptedExeption ex) {

System.out.println("interrupted");

}

}

if (tent == 60)

{

Logging.prlnerr("error dowloading");

return;

}

92

Class MobileDispather MobileDispather.java

this.unsubsribe(s.pfilter, s.pingpong);

}

ath (SienaExeption ex)

{

Logging.prlnerr("error subsribing ");

Logging.exerr(ex);

}

//ServerSoket server;

PaketSender oldmaster;

try {

//send the server address to the OLD master

oldmaster =

sender_fatory.reatePaketSender(

new String(req.to));

spkt.init();

spkt.method = SENP.UPL;

spkt.id = req.id;

spkt.to = oldmaster.toString().getBytes();

spkt.handler = listener.uri();

oldmaster.send(spkt.buf, spkt.enode());

}

ath (Exeption ex) {

Logging.prlnerr("error sending paket to " +

master.toString());

Logging.exerr(ex);

}

}

}

synhronized private void uploadNotifiation(SENPPaket req){

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

MobileSubsriber s = (MobileSubsriber)ontats.get(id);

if (s != null)

{

PaketSender so;

try {

//Connetion

so = sender_fatory.reatePaketSender(

93

Class MobileDispather MobileDispather.java

new String(req.handler));

//Downloading stored Events

Vetor storedEvents = s.getStoredEvents();

byte pknum = 9;

while(!storedEvents.isEmpty())

{

pknum ++;

SENPPaket prv = (SENPPaket)

storedEvents.remove(0);

prv.method = SENP.PRV;

prv.ttl = pknum;

prv.id = my_identity;

prv.to = id.getBytes();

prv.handler = listener.uri();

so.send(prv.buf, prv.enode());

}

//Download is finished

pknum++;

spkt.method = SENP.PRV;

spkt.ttl = pknum;

spkt.id = my_identity;

spkt.to = id.getBytes();

spkt.handler = listener.uri();

spkt.event = null;

so.send(spkt.buf, spkt.enode());

}

ath (Exeption ex) {

Logging.prlnerr("error sending pakets to "

+ new String(req.handler));

Logging.exerr(ex);

}

}

}

synhronized private void privateEvent(SENPPaket req){

if (req.id == null) return;

94

Class MobileDispather MobileDispather.java

String id = new String(req.to);

MobileSubsriber s = (MobileSubsriber)ontats.get(id);

if (s != null)

if (s.dwlEvent(req))

{

try {

PaketSender old_master =

sender_fatory.reatePaketSender(

new String(req.handler));

disonnetMaster(req.handler,

old_master, id);

}

ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ new String(req.handler));

Logging.exerr(ex);

}

}

}

//--

//Publi Methods

/** suspends the onnetion with the master server of

* this dispather and allows the master to store all

* notifiation addressed to this dispather.

*

* This auses the master server to stop sending

* notifiation to this dispather and to store them

* in a queue.

* The master orretly maintains all the

* existing subsriptions so that the flow

* of notifiation an be later resumed

* (see moveInMaster()).

* This operation an be used when this

* dispather, that is this virtual mahine, is going to be

* temporarily disonneted from the network or somehow

* unreahable from its master server.

*

* �param QoS is the Quality of Servie

* if true high reliability

* if false low reliability

95

Class MobileDispather MobileDispather.java

*

* �see #suspendMaster()

* �see #resumeMaster()

* �see #moveInMaster()

**/

synhronized publi void moveOutMaster(boolean QoS) {

if (QoS)

try {

spkt.init();

spkt.method = SENP.MVH;

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.enode());

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

//

// of ourse I should do something here...

// ...work in progress...

//

}

else

try {

spkt.method = SENP.MVL;

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.enode());

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

//

// of ourse I should do something here...

// ...work in progress...

//

}

}

/** suspends the onnetion with the master server of

96

Class MobileDispather MobileDispather.java

* this dispather and allows the master to store all

* notifiation addressed to this dispather.

*

* see moveInMaster(boolean QoS).

*

* �see #suspendMaster()

* �see #resumeMaster()

* �see #moveInMaster()

**/

synhronized publi void moveOutMaster() {

moveOutMaster(false);

}

/** resumes the onnetion with the master server.

*

* This auses the master server to resume sending

* stored and new notifiations to this dispather.

*

* �see #moveOutMaster()

**/

synhronized publi void moveInMaster() {

try {

spkt.init();

spkt.method = SENP.MVI;

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.enode());

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

//

// of ourse I should do something here...

// ...work in progress...

//

}

}

/** resumes the onnetion with the master server.

*

* This auses the master server to resume sending

97

Class MobileDispather MobileDispather.java

* stored and new notifiations to this dispather.

*

* This also sets the new paket reeiver for this server.

*

* This method simply alls setReeiver(PaketReeiver, int)

*

* �param pr is the reeiver

*

* �see #moveOutMaster()

* �see #setReeiver(PaketReeiver)

**/

synhronized publi void moveInMaster(PaketReeiver pr) {

try {

setReeiver(pr);

spkt.init();

spkt.method = SENP.MVI;

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.enode());

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

//

// of ourse I should do something here...

// ...work in progress...

//

}

}

/** resumes the onnetion with the master server.

*

* This auses the master server to resume sending

* stored and new notifiations to this dispather.

*

* This also sets the new server for this dispather.

*

* �param uri is the external identifier

* of the master dispather

* (e.g., * senp://host.domain.edu:8765")

*

98

Class MobileDispather MobileDispather.java

* �param QoS is the Quality of Servie

* if true High reliability

* if false low reliability

*

* �see #moveOutMaster()

* �see #setReeiver(PaketReeiver)

*

**/

synhronized publi void moveInMaster(String uri, boolean QoS)

throws InvalidSenderExeption, java.io.IOExeption {

byte[℄ old_master_handler = null;

PaketSender old_master = null;

//Bakup old Master

old_master_handler = master_handler;

old_master = master;

//Create a new Master

PaketSender new_master =

sender_fatory.reatePaketSender(uri);

boolean new_listener = false;

if (listener == null) {

setReeiver(new TCPPaketReeiver(0));

new_listener = true;

}

master_handler = uri.getBytes();

master = new_master;

//

// sends a WHO paket to figure out the identity of

// the master server.

// This dispather uses the "to" field of the SENP

// paket to tell the master server the handler used

// by this server to reah the master server.

// (see reply_who())

//

try{

spkt.init();

spkt.method = SENP.WHO;

spkt.ttl = 2; // round-trip

99

Class MobileDispather MobileDispather.java

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.enode());

//

// perhaps I should sit here waiting for the

// INF response

// of the server

//

// ...to be ontinued...

//

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

master = null;

master_handler = null;

if (new_listener) {

try {

listener.shutdown();

} ath (PaketReeiverExeption pex) {

Logging.exerr(pex);

}

}

//

// of ourse I should do something here...

// ...work in progress...

//

}

//Store the notifiation at the NEW Master

moveOutMaster();

//

// sends all the top-level subsriptions to the new master

//

for(Iterator i = subsriptions.rootsIterator();

i.hasNext();) {

MSubsription s = (MSubsription)i.next();

try {

spkt.init();

spkt.method = SENP.SUB;

spkt.ttl = SENP.DefaultTtl;

100

Class MobileDispather MobileDispather.java

spkt.id = my_identity;

spkt.handler = listener.uri();

spkt.filter = s.filter;

master.send(spkt.buf, spkt.enode());

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

//

// of ourse I should do something here...

// ...work in progress...

//

}

}

//Download the events stored at the OLD Master

if (QoS)

try {

spkt.init();

spkt.method = SENP.DWH;

spkt.ttl = 2; // round-trip

spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

old_master.send(spkt.buf, spkt.enode());

}

ath (Exeption ex)

{

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

}

else

try {

spkt.init();

spkt.method = SENP.DWL;

spkt.ttl = 2; // round-trip

spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

old_master.send(spkt.buf, spkt.enode());

}

ath (Exeption ex)

101

Class MobileDispather MobileDispather.java

{

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

}

}

/** resumes the onnetion with the master server.

*

* This auses the master server to resume sending

* stored and new notifiations to this dispather.

*

* This also sets the new server for this dispather.

*

* �param uri is the external identifier

* of the master dispather

* (e.g., * senp://host.domain.edu:8765")

*

* �see #moveOutMaster()

* �see #setReeiver(PaketReeiver)

*

**/

synhronized publi void moveInMaster(String uri)

throws InvalidSenderExeption, java.io.IOExeption {

moveInMaster(uri, false);

}

/** resumes the onnetion with the master server.

*

* This auses the master server to resume sending

* stored and new notifiations to this dispather.

*

* This also sets the new server and the new

* paket reeiver for this dispather.

*

* This method simply alls setMaster(String)

* and setReeiver(PaketReeiver, int)

*

* �param pr is the reeiver

*

* �param uri is the external identifier

102

Class MobileDispather MobileDispather.java

of the master dispather

* (e.g., * senp://host.domain.edu:8765")

*

* �param QoS is the Quality of Servie

* if true High reliability

* if false low reliability

*

* �see #moveOutMaster()

* �see #setReeiver(PaketReeiver)

*

**/

synhronized publi void moveInMaster(PaketReeiver pr,

String uri, boolean QoS)

throws InvalidSenderExeption,

java.io.IOExeption {

// Change Client Loation

try {

setReeiver(pr);

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

}

byte[℄ old_master_handler = null;

PaketSender old_master = null;

//Bakup old Master

old_master_handler = master_handler;

old_master = master;

//Create a new Master

PaketSender new_master =

sender_fatory.reatePaketSender(uri);

boolean new_listener = false;

if (listener == null) {

setReeiver(new TCPPaketReeiver(0));

new_listener = true;

}

103

Class MobileDispather MobileDispather.java

master_handler = uri.getBytes();

master = new_master;

//

// sends a WHO paket to figure out the identity of the

//master server.

// This dispather uses the "to" field of the SENP

// paket to tell the master server the handler used

// by this server to reah the master server.

// (see reply_who())

//

try {

spkt.init();

spkt.method = SENP.WHO;

spkt.ttl = 2; // round-trip

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.enode());

//

// perhaps I should sit here waiting for the

// INF response

// of the server

//

// ...to be ontinued...

//

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

master = null;

master_handler = null;

if (new_listener) {

try {

listener.shutdown();

} ath (PaketReeiverExeption pex) {

Logging.exerr(pex);

}

}

//

// of ourse I should do something here...

// ...work in progress...

//

104

Class MobileDispather MobileDispather.java

}

//Store the notifiation at the NEW Master

moveOutMaster();

//

// sends all the top-level subsriptions to the new master

//

for(Iterator i = subsriptions.rootsIterator();

i.hasNext();) {

MSubsription s = (MSubsription)i.next();

try {

spkt.init();

spkt.method = SENP.SUB;

spkt.ttl = SENP.DefaultTtl;

spkt.id = my_identity;

spkt.handler = listener.uri();

spkt.filter = s.filter;

master.send(spkt.buf, spkt.enode());

} ath (Exeption ex) {

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

//

// of ourse I should do something here...

// ...work in progress...

//

}

}

//Download the events stored at the OLD Master

if (QoS)

try {

spkt.init();

spkt.method = SENP.DWH;

spkt.ttl = 2; // round-trip

spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

old_master.send(spkt.buf, spkt.enode());

}

ath (Exeption ex)

105

Class MobileDispather MobileDispather.java

{

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

}

else

try {

spkt.init();

spkt.method = SENP.DWL;

spkt.ttl = 2; // round-trip

spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

old_master.send(spkt.buf, spkt.enode());

}

ath (Exeption ex)

{

Logging.prlnerr("error sending paket to "

+ master.toString());

Logging.exerr(ex);

}

}

/** resumes the onnetion with the master server.

*

* This auses the master server to resume sending

* stored and new notifiations to this dispather.

*

* This also sets the new server and the new

* paket reeiver for this dispather.

*

* This method simply alls setMaster(String)

* and setReeiver(PaketReeiver, int)

*

* �param pr is the reeiver

*

* �param uri is the external identifier

* of the master dispather

* (e.g., * senp://host.domain.edu:8765")

*

* �see #moveOutMaster()

* �see #setReeiver(PaketReeiver)

*

106

Class MobileDispather MobileDispather.java

**/

synhronized publi void moveInMaster(PaketReeiver pr,

String uri)

throws InvalidSenderExeption,

java.io.IOExeption {

moveInMaster(pr, uri, false);

}

/** starts the Mobility server searh.

*

* This method simply subsribes the ``Notifiable n''

* for a speial filter.

*

* �param n is the objet will reeive the searh results

*

**/

synhronized publi void addMobileDispatherFinder(

Notifiable n) throws SienaExeption {

Filter f = new Filter();

f.addConstraint("servive__","Mobile_Server_replay__");

subsribe(f,n);

Notifiation e = new Notifiation();

e.putAttribute("servive__","Mobile_Server_request__");

publish(e);

}

/** stop the Mobility server searh.

*

* This method simply unsubsribes the ``Notifiable n''

* for a speial filter.

*

* �param n is the objet reeiving the searh results

*

**/

synhronized publi void removeMobileDispatherFinder(

Notifiable n) throws SienaExeption {

107

Class MobileDispather MobileDispather.java

Filter f = new Filter();

f.addConstraint("servive__","Mobile_Server_replay__");

unsubsribe(f,n);

}

/** start info sending about this dispather.

*

* This method simply subsribes this dispather

* for a speial filter representing a servie request.

*

* �param s is the information about this dispather.

*

**/

publi void StartAvailability(String s)

throws SienaExeption {

ServieReplay sr = new ServieReplay(this, s);

Filter f = new Filter();

f.addConstraint("servive__","Mobile_Server_request__");

subsribe(f, sr);

}

}

//==

lass ping_pong implements Notifiable{

MobileSubsriber ms;

MobileDispather md;

publi ping_pong(MobileDispather d, MobileSubsriber s){

ms = s;

md = d;

}

publi void notify(Notifiation[℄ s) throws SienaExeption {

}

108

Class MobileDispather MobileDispather.java

publi void notify(Notifiation n) throws SienaExeption {

String type = n.getAttribute("type__").toString();

if (type.ompareTo(new

AttributeValue("SYNC_PONG").toString()) == 0)

ms.pingak = true;

if (type.ompareTo(new

AttributeValue("SYNC_PING").toString()) == 0)

{

Notifiation e = new Notifiation();

e.putAttribute("id__",new String(ms.identity));

e.putAttribute("type__","SYNC_PONG");

md.publish(e);

}

}

}

lass ServieReplay implements Notifiable{

String info;

MobileDispather md;

publi ServieReplay(MobileDispather m, String s){

md = m;

info = s;

}

publi void notify(Notifiation[℄ s) throws SienaExeption {

}

publi void notify(Notifiation n) throws SienaExeption {

Notifiation e = new Notifiation();

e.putAttribute("servive__","Mobile_Server_replay__");

e.putAttribute("uri__",new String(md.getReeiver().uri()));

e.putAttribute("info__",info);

md.publish(e);

109

Class MobileDispather MobileDispather.java

}

}

110

Bibliography

[1℄ G. Brashe and B. Walke. Conept, servies and protools for the new

GSM Phase 2+ General Paket Radio Servie. Tehnial report, IEEE

Communiations Magazine, 1997.

[2℄ L. Cardelli and A. D. Gordon. Mobile Ambients. Theoretial Computer

Siene, 2000.

[3℄ A. Carzaniga. Siena 1.3.0 Api Doumentation.

www.s.olorado.edu/�arzanig/siena/.

Copyright

2000-2002 University of Colorado.

[4℄ A. Carzaniga, G. Pio, and G. Vigna. Designing Distributed Appli-

ations with Mobile Code Paradigms. In Proeedings of the 19

th

In-

ternational Conferene on Software Engineering, pages 22{32, Boston,

Massahusetts, May 1997.

[5℄ A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Ahieving Salability

and Expressiveness in an Internet-Sale Event Noti�ation Servie. In

Proeedings of the Nineteenth Annual ACM Symposium on Priniples of

Distributed Computing, pages 219{227, Portland, OR, July 2000.

[6℄ A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evalua-

tion of a Wide-Area Event Noti�ation Servie. ACM Transations on

Computer Systems, 19(3):332{383, Aug. 2001.

[7℄ G. Combs. The Ethereal Network Analyzer. UNIX manual.

Available from www.ethereal.om.

111

Bibliography

[8℄ D. E. Comer. Internetworking with TCP/IP, volume Volume I - Prin-

iples, protools and arhiteture. Prentie Hall, third edition edition,

1995.

[9℄ G. Cugola, C. Ghezzi, G. P. Pio, and G. Vigna. Analyzing Mobile

Code Languages. In Mobile Objet Systems: Towards the Programmable

Internet, pages 93{110. Springer-Verlag: Heidelberg, Germany, 1997.

[10℄ E. Duroher and I. Filotti. Native Code Migration over a Heterogeneous

Network - An EÆient Approah to Proess Migration.

[11℄ Erisson Mobility World. GATE II.

www.erisson.om/mobilityworld/.

[12℄ ETSI. GSM 03.60: Digital ellular teleommuniations system (Phase

2+); General Paket Radio Servie (GPRS); Servie Desription; Stage

2.

[13℄ ETSI. GSM 03.64: Digital ellular teleommuniations system (Phase

2+); General Paket Radio Servie (GPRS); Overall desription of the

GPRS radio interfae.

[14℄ ETSI. GSM 08.18: Digital ellular teleommuniations system (Phase

2+); General Paket Radio Servie (GPRS); Base Station System (BSS)

- Serving GPRS Support Node (SGSN) - BSS GPRS Protool (BSSGP).

[15℄ ETSI. GSM 09.60: Digital ellular teleommuniations system (Phase

2+); General Paket Radio Servie (GPRS); GPRS Tunneling Protool

(GTP) aross the Gn and Gp Interfae.

[16℄ K. Fall and K. Varadhan. The ns Manual. The VINT Projet, Novem-

ber 2001. A Collaboration between researhers at UC Berkeley, LBL,

USC/ISI and Xerox PARC.

[17℄ A. Fugetta, G. Pio, and G. Vigna. Understanding Code Mobility.

IEEE Transation on Software Engineering, 24(5), 1998.

[18℄ General Magi. Telesript Language Referene, Ot 1995.

112

Bibliography

[19℄ E. Giguere. Java

TM

2 Miro Edition. Professional Developer's Guide.

John Wisley & Son, release 1.0 edition, 2001.

[20℄ Internet Engineering Task Fore. Internet Printing Protool (IPP).

www.ietf.org/html.harters/ipp-harter.html.

[21℄ Internet Engineering Task Fore. Mobile Ad-Ho Networks (MANET)

WG Charter. www.ietf.org/html.harters/manet-harter.html.

[22℄ V. Jaobson, C. Leres, and S. MCanne. tpdump - dump traÆ on a

network. UNIX manual. Available from www.tpdump.org.

[23℄ R. Jain. GPRS Simulations using ns-Network Simulator. PhD thesis,

Department of Eletrial Engineering, Indian Institute of Tehnology -

Bombay, June 2001.

[24℄ M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, and K. Raatikainen. Sea-

wind: a Wireless Network Emulator. University of Helsinki, Finland.

[25℄ M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, and K. Raatikainen. Sea-

wind v3.0 User Manual. University of Helsinki, Finland, September

2001.

[26℄ L. Lamport. Time, loks, and the ordering of events in a distributed

system, 1978.

[27℄ Motorola Wireless Development Centre. The Motorola GPRS Emulator.

developers.motorola.om/developers/wireless/global/uk/emulator.htm.

[28℄ M. Mouly and M. Pautet. Current Evolution of the GSM Systems.

Tehnial report, IEEE Pers. Commun., 1995.

[29℄ A. L. Murphy, G.-C. Roman, and G. P. Pio. Coordination and Mobil-

ity. In A. Omiini and F. Zambonelli and M. Klush and R. Tolksdorf,

editor, Coordination of Internet Agents: Models, Tehnologies, and Ap-

pliations, pages 254{273. Springer, 2000.

113

Bibliography

[30℄ Nokia. Net At Planner.

www.nokia.om/networks/servies/netat/netat planner/.

[31℄ G.-C. Roman, G. P. Pio, and A. L. Murphy. Software Engineering for

Mobility: A Roadmap. In A. Finkelstein, editor, The Future of Software

Engineering, pages 241{258. ACM Press, 2000. Invited ontribution.

[32℄ W. Simpson. The Point-to-Point Protool (PPP). Request for Com-

ments, July 1994. RFC 1661.

[33℄ J. Stamos and D. Gi�ord. Remote Evaluation. ACM Trans. on Pro-

gramming Languages and System, pages 537{565, Otober 1990.

[34℄ R. Stine. FYI on a network management tool atalog: Tools for mon-

itoring and debugging TCP/IP internets and interonneted devies.

Request for Comments, Apr. 1990. RFC 1147.

[35℄ Sun Mirosystem. The Java Language Spei�ation, Ot 1995.

[36℄ The Soure for Java Tehnology. Java

TM

2 Platform Miro Edition.

Available from java.sun.om/j2me/.

[37℄ The Soure for Java Tehnology. Java

TM

2 Platform Miro Edition,

Wireless Toolkit. Available from java.sun.om/produts/j2mewtoolkit/.

[38℄ The Soure for Java Tehnology. Java

TM

2 Platform Standard Edition.

Available from java.sun.om/j2se/.

[39℄ D. Wong, N.Paiorek, and D. Moore. Java-based Mobile Agents. Com-

muniation of the ACM, pages 92{102, 1999.

114

