
Universit

�

a degli Studi dell'Aquila

Fa
olt

�

a di S
ienze Matemati
he Fisi
he e Naturali

Tesi di Laurea in Informati
a

Co.M.E.T.A.

Mobility support in the Siena publish/subs
ribe middleware

Candidato Relatori

Mauro Caporus
io Prof. Paola Inverardi

Prof. Alexander L. Wolf

Anno A

ademi
o 2000-2001

\Da qui messere si domina la valle. . .

Ci�o
he si vede, �e."

B.M.S.

A
knowledgement

I would like to thank my advisors, Prof. Paola Inverardi and Prof. Alexander

L. Wolf, for making this experien
e possible and for their help and guidan
e

through the entire
ourse of this thesis.

I would like to thank Antonio Carzaniga for his patien
e
orre
ting my \bad

English", for his friendly tea
hing and be
ause this work
ould not have been

done without many dis
ussions with him.

I would also like to thank the USENIX Asso
iation for supporting my work

through the Resear
h Ex
hange (ReX) grant.

I dedi
ate this work to my wonderful family: to my mom, my dad and my

honey sister, for their love, help, support,
on�den
e and guidan
e through-

out my life. . . Thanks a lot. . . I love you so, so mu
h!!

A spe
ial thanks to Maria Benigni for loving me and for her en
ouragement

during all my study.

I would like to remember all my good friends: Mi
hele \Fal
e" Mer
uri and

Fran
es
o \Bugia" Troiani with whom I shared all the good and bad things

of my (and their) life; Antonio \Lupo" Di Berardino, Romolo \Re" Salvi and

Lorenzo \Rampyn" Felli for being my roommates for many years; \Il so

io"

Alfredo \Freski" Navarra, Vin
enzo \Bi
iu" Cesarini, Ni
ola \Alanghiro"

Pi

one, Emanuele \Os
ar" and Alessandro \Soft" As
i, Simone \S
rigno"

S
riboni, and Fabio \Xenon" Man
inelli, with whom I spent many beautiful

days, for all smiles they gave to me; Armando \Bardone" Botti
ella for his

marvelous diet; Mar
o \Egomet" Castaldi and Nathan \Peller Dude" D.

Ryan, with whom I shared all Ameri
a's \bullshit" (do you know what I

mean?) and fun, for their friendship and help throughout my experien
e in

Boulder (USA); and all the others, who do not appear in this list, ea
h one

important for a spe
ial thing. . . Thanks to all you guys! I'll
arry you in my

heart forever!!

Finally, but not less importantly, I would like to thank myself \Meskall" for

my instability, my perseveran
e and my \hard head" in everything I did.

Boulder - Mar
h 21, 2002 Mauro Caporus
io

Contents

1 Introdu
tion 1

1.1 Contribution of This Thesis 2

1.2 Stru
ture of This Thesis . 4

2 Ba
kground 5

2.1 Mobility . 5

2.1.1 Host Mobility . 6

2.1.2 Code Mobility . 7

2.2 The Siena Middleware . 8

2.2.1 A Brief Overview on Siena API and Semanti
s 10

2.2.2 Ar
hite
ture of Siena 13

2.2.3 Pro
essing Strategies 15

3 Evaluating Siena in a Wireless Network 18

3.1 Java 2 Platform, Mi
ro Edition 20

3.1.1 Con�gurations . 21

3.1.2 Virtual Ma
hines . 22

3.1.3 Pro�les . 23

3.2 Servi
e Dis
overy . 25

3.2.1 A Request-O�er Combination 26

3.2.2 Observations . 29

3.3 Au
tion System . 30

3.3.1 Au
tion
hara
teristi
s 31

3.3.2 Quality of Servi
e . 33

3.3.3 Implementation . 33

i

Contents

3.4 General Pa
ket Radio Servi
e 36

3.4.1 Network Features of GPRS 37

3.4.2 GPRS System Ar
hite
ture 40

3.4.3 GPRS Proto
ol Sta
k 43

3.4.4 Signalling Plane . 46

3.4.5 Survey of GPRS Tools 46

3.5 Experimentation . 49

3.6 Sample Results . 53

4 Mobility Support in Siena 55

4.1 Mobile Dispat
her . 58

4.2 Noti�
ation Persisten
e Servi
e 58

4.2.1 Implementation . 59

4.3 Event Re-routing . 60

4.4 Event Downloading . 61

4.4.1 Implementation . 62

4.4.2 Observations . 63

4.5 Event Downloading With Path Test 64

4.5.1 Implementation . 66

4.6 Mobile Server Dis
overy . 67

4.7 Implementation . 68

4.8 Observations . 70

5 Con
lusions 71

A Au
tion Class Diagrams 75

A.1 Seller Class Diagram . 75

A.2 Buyer Class Diagram . 76

B Seawind v3.0 77

B.1 Components of Seawind . 77

B.1.1 Graphi
al User Interfa
e (GUI) 78

B.1.2 Seawindd (SWD) . 78

B.1.3 Workload Generator (WLG) 78

ii

Contents

B.1.4 Network Proto
ol Adapter (NPA) 78

B.1.5 Simulation Pro
ess (SP) 78

B.1.6 Ba
ground load (BGL) 79

B.2 Parameters of Seawind . 79

C MobileDispat
her.java 80

C.1 Class MobileSubs
riber . 81

C.2 Class MobileDispat
her . 86

iii

List of Figures

2.1 Host Mobility : hosts move in the real world. 6

2.2 Code Mobility :
ode moves through hosts. 7

2.3 Siena: Distributed Event Noti�
ation Servi
e. 9

2.4 A Siena Filter and a Siena Noti�
ation 10

2.5 Hierar
hi
al
lient/server ar
hite
ture. 14

2.6 A
y
li
 peer-to-peer server ar
hite
ture. 14

2.7 General peer-to-peer server ar
hite
ture. 15

3.1 GPRS network makes a \bridge" between Client and Server. . 19

3.2 High-level view of J2ME. 20

3.3 J2ME ar
hite
ture. 23

3.4 Ali
e subs
ribes before Bob advises for a ti
ket. 25

3.5 Bob advises for a ti
ket availability before Ali
e subs
ribes . . 26

3.6 Both users send a pair <request, o�er>. 26

3.7 The
lient-pair is sent before the provider-pair. 27

3.8 The
lient-pair is sent after the provider-pair. 28

3.9 The
lient-pair and provider-pair are sent at the same time. . 28

3.10 Client/server
ommuni
ation between
lient and provider. . . 29

3.11 Publish/Subs
ribe is unreliable ar
hite
ture. 29

3.12 The pair formatted as <noti�
ation, subs
ription> does not

work. 30

3.13 The Au
tion System's ar
hite
ture 31

3.14 The Conne
t GUI. 34

3.15 The Sell GUI. 35

3.16 The Buy GUI. 35

iv

List of Figures

3.17 GPRS system ar
hite
ture . 40

3.18 GPRS proto
ol sta
k . 44

3.19 A Siena mapping onto Seawind 50

4.1 A
ode fragment moves from host to host and
hanges its

server master after the motion. 55

4.2 Code moves together with its host and
hanges its server after

the motion. 56

4.3 A

ess-points swit
hing a
tions. 57

4.4 Hierar
hi
alDispat
her and MobileDispat
her work together. . 58

4.5 Noti�
ation persisten
e servi
e. 59

4.6 T Downloads the events stored in H 62

4.7 Download events stored on the old server with syn
hronization. 64

4.8 Events downloading: time-steps syn
hronization 66

4.9 How Dis
over another MobileDispat
her 68

4.10 How Dis
over another MobileDispat
her 69

5.1 Dynami
 re
on�guration using Mobile Support 73

5.2 Dynami
 re
on�guration using Mobile Support 74

A.1 Seller
lasses intera
tion. 75

A.2 Buyer
lasses intera
tion. 76

B.1 Seawind Ar
hite
ture. 77

v

List of Tables

2.1 Interfa
e of Siena . 11

3.1 CLDC vs. CDC . 22

3.2 Channel
oding s
hemes parameters. 38

3.3 GPRS CS-1 simulation parameters 52

3.4 GPRS error simulation parameters 52

3.5 Siena behavior in the wireless GPRS network. 53

3.6 Siena behavior in a lo
al-area, wired network. 54

4.1 Interfa
e Siena Mobility Support 70

vi

Chapter 1

Introdu
tion

This thesis is
on
erned with mobile appli
ations that use a publish/subs
ribe

infrastru
ture. In parti
ular, this work
onsists of (1) a
ase study on the

deployment of a publish/subs
ribe middleware on top of a wireless
ommu-

ni
ation servi
e, where mobility is supported at the network level, and (2)

a design and initial implementation of a mobility support servi
e realized

within the publish/subs
ribe middleware.

The in
reasing size and performan
e of
omputer networks is generating

a new phenomenon: networks are being pervasive and ubiquitous. While per-

vasive means that network
onne
tivity is going to be a basi
 feature of any

omputing fa
ility, ubiquitous refers to the ability of utilizing network
on-

ne
tivity independently of the physi
al lo
ation of the user. In this
ontext

(usually referred to as a wide-area network), appli
ations are
hara
terized

by the fa
t that they are loosely
oupled, asyn
hronous, and heterogeneous.

This promotes a
lass of software system based on the abstra
t design
alled

event intera
tion whi
h in turn is supported by an emerging infrastru
ture

alled Event noti�
ation servi
e [6℄.

Development in wireless te
hnology are freeing appli
ation hosts from a

onstrained, �xed physi
al lo
ation in the network and enables the pra
ti
al

realization of the idea of mobile
omputing. In fa
t, portable
omputers (su
h

as laptops and PDAs) are growing in popularity while they are shrinking in

size. This pro
ess of miniaturization,
ombined with the emergen
e of high-

1

Contribution of This Thesis Introdu
tion

speed wireless
ommuni
ations, allows users to use portable devi
e with on-

demand
onne
tions. In this s
enario, mobile users
an move together with

their hosts a
ross di�erent physi
al lo
ations, while remaining
onne
ted to

the network through wireless links.

In addition to the mobility of hosts, new te
hniques based on
ode mi-

gration [10℄ have been developed to allow appli
ations to move from host to

host. These mobile appli
ations, often referred to as \mobile agents", aim to

optimize information retrieval and other similar tasks by moving
lose to the

data stores of interest, where they
an exe
ute their queries with low laten
y

and network usage.

With the work des
ribed in CoMETA (Component M obility using the

Event noT i�
ation Ar
hite
ture), we intend to
ombine the bene�ts of mo-

bile appli
ations (moving along with their host, or migrating from host

to host) with the
ommuni
ation servi
es o�ered by an advan
ed pub-

lish/subs
ribe servi
e.

1.1 Contribution of This Thesis

In integrating publish/subs
ribe te
hnology with mobile appli
ations, we

have two general
hoi
es of ar
hite
ture: In one
ase we
ould simply atta
h

the publish/subs
ribe system on top of a network that o�ers native support

for mobility. In the opposite
ase, we
ould have the publish/subs
ribe sys-

tem handle mobility without any dire
t support from the underlying network

layers. In this latter
ase, the publish/subs
ribe servi
e would implement an

additional set of servi
es designed to support mobile appli
ations. These two

alternative methods, detailed below,
hara
terize the
ontribution of this

thesis.

Siena over a wireless network We studied the integration of an event-

based middleware on top of a wireless network, in a situation in whi
h the

mobility of
lients is transparently managed at the network level. In parti
u-

lar, we fo
used on the Siena distributed event-noti�
ation system [5℄, hosted

over a General Pa
ket Radio Servi
e (GPRS) network.

2

Contribution of This Thesis Introdu
tion

In order to evaluate the behavior of Siena and its demands over the
om-

muni
ation resour
es of the wireless network, we developed a test appli
ation

(a distributed au
tion system) that we used in several simulated s
enarios.

Developing su
h an appli
ation required us to port the Siena
lient-side

library to the Java

TM

2 Mi
ro Edition, a platform spe
i�
ally targeted at

mobile devi
es su
h as
ell phones and PDAs. The resulting appli
ation and

library allowed us to run experiments on a simulated PDA, in
ombination

with a highly
on�gurable GPRS network emulator.

The primary goal of our experiments was to evaluate the impa
t of deploy-

ing Siena onto the wireless GPRS network. We did this from two di�erent

perspe
tives. The �rst was to gather data
hara
terizing the performan
e of

the three di�erent low-level transport me
hanisms (UDP, TCP, and \keep-

alive" TCP that attempts to reuse TCP
onne
tion) on the wireless network.

The se
ond was to
ompare these results with baseline data
olle
ted on a

lo
al-area, wired network. The results of the experiments gave us an initial

indi
ation of whether a seamless integration of wired and wireless
ommuni-

ation is feasible for a publish/subs
ribe
ommuni
ation servi
e.

Mobility support in Siena We studied how to support mobile appli-

ations that use the Siena publish/subs
ribe system implemented over a

wired-line network. We
onsider mobile appli
ations that either move along

with their host (e.g., be
ause they exe
ute on a laptop or a PDA) or move

from host to host using mobile
ode te
hnology. Regardless of the te
hnology

supporting mobility, we assume that appli
ation
an deta
h from one Siena

a

ess point, travel to another network lo
ation, and re
onne
t to another

Siena a

ess point.

To support su
h appli
ations, we designed and implemented a mobility

servi
e within the Siena publish/subs
ribe system. This servi
e allows ap-

pli
ations to re
eive noti�
ations published while they are traveling to a new

destination, and to restore the
ow of noti�
ations and their subs
riptions

when and where they re
onne
t to the Siena network at their destination.

As a basis for the mobility servi
e, we implemented a persistent storage of

noti�
ations. We then implemented two additional fun
tions,
alled move-

3

Stru
ture of This Thesis Introdu
tion

OutMaster and moveInMaster, that allow
lients to swit
h from their

urrent a

ess point over to a new one, re-establishing their subs
riptions as

well as their
ow of noti�
ations. We implemented the moveInMaster fa
il-

ity in su
h a way that it
an provide di�erent levels of
onsisten
y for the

swit
h-over fun
tion.

1.2 Stru
ture of This Thesis

Se
tion 2 introdu
es our starting-points and ba
kground. It presents in de-

tails the
on
epts of mobility and explains what Siena is and how it works.

Chapter 3 des
ribes how we put Siena middleware on top of the GPRS

Network and how we
ombined the
on
ept of Host Mobility with the event-

based ar
hite
ture. It also explains the experimentation we made, in order

to understand Siena performan
es in a mobile environment, and presents

our results.

Se
tion 4 talks about our resear
h in Client Mobility exploring the prob-

lems that it implies and des
ribes how we allowed Siena to support the

mobility of its
lients. This se
tion also presents the algorithms we have

been designing to solve the problems explained.

Finally in Se
tion 5 we draw some
on
lusions summarizing our experi-

en
e and dis
ussing future developments.

4

Chapter 2

Ba
kground

In this
hapter we would make an overview about our starting points: we

brie
y introdu
e the theory about mobility, illustrating di�erent approa
hes

and possible s
enarios, and we give an high level presentation of the Siena

middleware and its prin
ipal
hara
teristi
s. These
on
epts should be useful

to understand the work explained through the next Se
tions in whi
h we will

examine how we put in tou
h the
on
epts of mobility and Siena.

2.1 Mobility

Mobility breaks all bindings between hosts and software; the network stru
-

ture may be mutable, nodes may
ome and go, pro
esses may move between

nodes, and programs may evolve and
hange stru
ture. As some authors

des
ribe it, mobility is a \total meltdown" of the stability assumed by dis-

tributed systems [31℄. From the software engineering perspe
tive, mobility

is de�ned as the study of systems in whi
h
omputational
omponents may

hange lo
ation, in a voluntary or involuntary manner, and move a
ross a

spa
e that may be de�ned to be either logi
al or physi
al. This distin
tion is

ne
essary to distinguish the di�erent level in whi
h mobility is handled.

5

Mobility Ba
kground

2.1.1 Host Mobility

Host mobility (some authors refer to it as either physi
al mobility [31℄ or mo-

bile
omputing [2℄) entails the movement of mobile hosts (of all sorts and size)

in the real world. It is assumed to be the next evolutionary step in the devel-

opment of the worldwide
ommuni
ation infrastru
ture and the extension of

wire-line networks. In fa
t, one
an imagine a traditional stati
 network, in

whi
h �xed hosts with stati
 addresses ex
hange messages via the standard

Internet infrastru
ture, with at the end-points some wireless-networks, made

by an aggregation of base stations, that
ontrol message traÆ
 from and to

mobile devi
es (as showed in Figure 2.1). Mobile devi
es, even if physi
ally

deta
hed from the �xed infrastru
ture, may intera
t with ea
h other and

with the �xed hosts, throughout wireless link. Sending data to and from

Fixed Network

Mobile Networks

code

Code

Figure 2.1: Host Mobility : hosts move in the real world.

a mobile unit requires the ability to �nd the
urrent lo
ation of the devi
e

and to maintain the data
ow as the unit moves from one pla
e to another.

This kind of mobility is managed at the network-layer and, therefore, the

movement of the host is
ompletely transparent at the appli
ation-layer. For

example
ellular phone system a

omplish this through a
ombination of

broad
ast signals and hand-o� proto
ols.

6

Mobility Ba
kground

2.1.2 Code Mobility

Code mobility (or either logi
al mobility [31℄ or mobile
omputation [2℄) in-

stead, involves the movement of
ode (in all its forms) among hosts. At a

level above the physi
al, there is a logi
al layer,
alled Code Mobility, that

removes stati
 bindings between the software
omponents and the network

hosts where they are exe
uting. This allows
omponents to be relo
ated to

a
hieve
exibility and in
rease re
on�guration
apability. In this s
enario,

Code
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Figure 2.2: Code Mobility :
ode moves through hosts.

omponents are logi
al units that may move, together with their
ode frag-

ments, from host to host a
ross both wire-line and wireless network (see

Figure 2.2). A system may be
omposed of several units some of whi
h may

be mobile. The overall ar
hite
ture of the system
an be
onsidered to be

independent of the lo
ation of ea
h individual
omponent.

Code mobility
an be distinguished in two main
ategories depending on

how the state of the exe
ution of a mobile
omponent is a�e
ted by the

migration of that
omponent from one host to the other. In parti
ular, two

types of mobility have been identi�ed in the literature [4℄:

weak mobility Weak mobility refers to the
ases in whi
h the
ode fragment

is relo
ated by
reating a fresh
opy at the destination point or prior

to start of its exe
ution.

strong mobility By
ontrast, strong mobility refers to the movement of

ode that maintains the state of exe
ution. The exe
ution state is

relo
ated along with the
ode thus allowing it to
ontinue running even

after the move.

7

The Siena Middleware Ba
kground

Code mobility is viewed as o�ering designers a new set of
on
eptual and

programming tools that seek to exploit the opportunities made available by

the distributed
omputing infrastru
ture. An example of su
h te
hnologies

is a new family of programming languages, usually referred to as mobile

ode languages (MCL) [9℄, su
h as Java

TM

by Sun Mi
rosystem [35℄ and

Teles
ript

TM

by General Magi
 [18℄, that support mobility at various degree

of sophisti
ation.

An important aspe
t of mobility that is
ommon to both host mobility and

ode mobility is the relation between a mobile
omponent and other mobile

or �xed
omponents. These relations, that may obviously
hange during the

lifetime of the
omponent, are
aptured by the notion of
ontext. Depend-

ing on the nature of the mobile system and on the nature of the mobility

support, some
ontext relations may be maintained through the migration,

other may have to be temporary suspended and others may be dis
arded

or
hanged after a migration. The �rst option is most
ommon in settings

involving physi
al mobility while the third is implemented when logi
al mo-

bility takes pla
e a
ross
onne
ted sites, as in the
ase of Internet. This brief

introdu
tion to the mobility will result useful to understand problems, and

proposed solutions, dis
ussed in Se
tions 3 and 4.

2.2 The Siena Middleware

A
ommon approa
h to a
hieving loose
oupling is a event-based design style.

In a event-based system,
omponent intera
tion are modeled as asyn
hronous

o

urren
es of, and responses to, events. To inform other
omponents about

the o

urren
es of internal events,
omponents emit noti�
ations
ontaining

information about the events (i.e. to
ommuni
ate a state
hanges). Upon re-

eiving noti�
ations, other
omponents
an rea
t by performing a
tion that,

in turn, may result in the o

urren
e of other events and the generation of ad-

ditional noti�
ations. In general, the asyn
hrony, heterogeneity, and inherent

high degree of loose
oupling that
hara
terize appli
ations for wide-area net-

works suggest event intera
tion as a natural design abstra
tion for a growing

8

The Siena Middleware Ba
kground

event service

access pointservers

subscribe

notify

advertise

publish ���
���
���

���
���
���

��
��
��
��

��
��
��
��

publisher subscriber

Figure 2.3: Siena: Distributed Event Noti�
ation Servi
e.

lass of distributed systems.

Siena (S
alable Internet Event N oti�
ationAr
hite
ture) is an Internet-

s
ale event noti�
ation servi
e that is representative of
apabilities for s
al-

able event noti�
ation middleware. Siena is implemented as distributed

network of servers (as show in Figure 2.3) that provide
lients with a

ess

points o�ering an extended publish/subs
ribe interfa
e. The
lients are of

two kinds: Obje
t of interest, whi
h are the generators of noti�
ations, and

interested parties, whi
h are the
onsumers of noti�
ations; of
ourse, a
lient

an a
t as both of them. Clients use the a

ess point of their lo
al servers to

advertise the information about noti�
ations that they generate and publish

the advertised noti�
ations. Clients also use the a

ess points to subs
ribe

for individual noti�
ations of interest. Siena is responsible for sele
ting the

noti�
ations that are of interest to
lients and then delivering those noti�
a-

tions to the
lients via the a

ess points.

Siena is a best e�ort servi
e in that it does not attempt to prevent ra
e

onditions in
luded by network laten
y. This is a pragmati

on
ession to the

realities of Internet-s
ale servi
es, but it means that
lients of Siena must

be resilient to su
h ra
e
onditions. For instan
e,
lients must allow for the

possibility of re
eiving a noti�
ation for a
an
elled subs
ription.

9

The Siena Middleware Ba
kground

2.2.1 A Brief Overview on Siena API and Semanti
s

At a minimum, an event noti�
ation servi
e has to export two fun
tions that

together de�ne what is usually referred to as the publish/subs
ribe proto
ol.

Interested parties spe
ify the events in whi
h they are interested by means of

the fun
tion subs
ribe. Obje
ts of interest publish noti�
ations via the fun
-

tion publish. Figure 2.4 shows a �lter on the top and a noti�
ation mat
hing

the �lter on the bottom. Siena extends the publish/subs
ribe proto
ol with

string dest=MXP

int pri
e< 500

string
arrier =UA

string dest=MXP

int pri
e= 400

bool upgradeable= true

Figure 2.4: A Siena Filter and a Siena Noti�
ation

an additional interfa
e fun
tion
alled advertise, whi
h an obje
t of interest

uses to advertise the noti�
ations it publishes. Siena also adds the fun
tions

unsubs
ribe and unadvertise. Subs
ription
an mat
hed repeatedly until they

are
an
elled by a
all to unsubs
ribe. Advertisement remain in e�e
t until

they are
an
elled by a
all to unadvertise.

Table 2.2.1 shows the interfa
e fun
tion of Siena. The expression given to

subs
ribe and unsubs
ribe is a pattern, while the expression given to advertise

and unadvertise is a �lter. The parameter identity spe
i�es the identity of

the obje
t of interest or interested party. The only requirement that Siena

imposes on identi�ers is that they be unique.

Noti�
ation

An event noti�
ation is a set of typed attributes. Ea
h individual attribute

has a type, aname, and a value, but the noti�
ation as a whole is purely

a stru
tural value derived from its attributes. Attribute names are simply

hara
ter strings. The attribute types belong to a prede�ned set of primi-

10

The Siena Middleware Ba
kground

publish(noti�
ation n)

subs
ribe(string identity, pattern expression)

unsubs
ribe(string identity, pattern expression)

advertise(string identity, �lter expression)

unadvertise(string identity, �lter expression)

Table 2.1: Interfa
e of Siena

tive types
ommonly found in programming languages and database query

languages, and for whi
h a �xed set of operators is de�ned.

Filters

An event �lter (or simply a �lter) sele
ts event noti�
ation by spe
ifying

a set of attributes and
onstraints on the values of those attributes. Ea
h

attribute
onstraint is a tuple spe
ifying a type, a name, a binary predi
ate

operator (i.e. =, 6=, <, >, et
) and a value for an attribute.

When a �lter is used in a subs
ription, multiple
onstraints for the same

attribute are interpreted as a
onjun
tion (all su
h
onstraint must be mat
h-

ing): a noti�
ation n mat
hes a �lter f or equivalently that f
overs n. Noti
e

that the noti�
ation may
ontain other attributes that have no
orrespon-

dents in the �lter.

Patterns

While a �lter is mat
hed against a single noti�
ation based on the noti�
a-

tion's attribute value, a pattern is mat
hed against one or more noti�
ations

based on both their attribute values and on the
ombination they form. At

its most generi
, a pattern might
orrelate events a

ording to any relation.

Siena does not provide a
omplete pattern language, but a pattern is

de�ned as a sequen
e of �lters:

f

1

� f

2

� � � f

n

11

The Siena Middleware Ba
kground

This is mat
hed by a temporally ordered sequen
e of noti�
ations, ea
h one

mat
hing the
orresponding �lter.

Advertisements

The motivation for advertisements is to inform the event noti�
ation servi
e

about whi
h kind of noti�
ations will be generated by whi
h obje
t of inter-

ests, so that it
an best dire
t the propagation of subs
riptions. The idea

is, that while a subs
ription de�nes the set of interesting noti�
ations for an

interested party, an advertisement de�nes the set of noti�
ations potentially

generated by an obje
t of interest. Therefore, the advertisement is relevant

to the subs
ription only if these two set of noti�
ations have a nonempty

interse
tion.

Unsubs
riptions and Unadvertisements

Unsubs
riptions and unadvertisements serve to
an
el previous subs
riptions

and advertisements, respe
tively. Given a simple unsubs
ription unsub-

s
ribe(X, f), where X is the identity of an interested party and f is a

�lter, the event noti�
ation servi
e
an
els all simple subs
riptions sub-

s
ribe(X, g) submitted by the same interested party X with a subs
ription

�lter g
overed by f. In analogous way, unadvertisements
an
el previous

advertisements. Note that an unsubs
ription (unadvertisement) either
an-

els previous subs
riptions (advertisements) or else has no e�e
t. It
annot

impose further
onstraints onto existing subs
riptions. For example, sub-

s
ribing with a �lter [pri
e>100℄ and than unsubs
ribing with [pri
e>200℄

does not result in
reation of a redu
ed subs
ription [pri
e>100, pri
e�200℄.

Rather, the unsubs
ription simply has no e�e
t, sin
e it does not
over the

subs
ription. Note also that all subs
ription
overed by an unsubs
ription

are
an
elled by that unsubs
ription.

Timing issues

The semanti
s of Siena depends on the order in whi
h Siena re
eives

and pro
ess requests (subs
riptions, noti�
ation, et
.). For instan
e, in the

12

The Siena Middleware Ba
kground

subs
ription-based semanti
s, a subs
ription s is e�e
tive after it is pro
essed

and until an unsubs
ription u that
an
els s is pro
essed.

In the most general
ase, a servi
e request R, say a subs
ription, is gen-

erated at time R

g

, re
eived at time R

r

, and
ompletely pro
essed at time

R

p

(with R

g

� R

r

� R

p

). Siena guarantees the
orre
t interpretation of R

immediately after R

p

. Noti
e that the external delay R

r

�R

g

is
aused by ex-

ternal
ommuni
ation me
hanisms and is by no means
ontrollable by Siena.

The pro
essing delay R

p

�R

r

is instead dire
tly
aused by
omputations and

possibly by other
ommuni
ation delay internal to Siena.

2.2.2 Ar
hite
ture of Siena

As show in Figure 2.3, the implementation of Siena
omprises a number of

inter
onne
ted servers, ea
h serving some subset of the
lients of the servi
e.

In e�e
t Siena is a wide-area network of pattern mat
hes and routers over-

laid atop some other wide-area
ommuni
ation fa
ility, su
h as the Internet.

One reasonable allo
ation of su
h servers might be to pla
e a server at ea
h

administrative domain within the low-level, wide-area
ommuni
ation net-

work. A pair or inter
onne
ted servers use a server/server
ommuni
ation

proto
ol that determines what kinds of information they
an ex
hange, and

in whi
h dire
tion. An inter
onne
tion topology and a proto
ol together de-

�ne what we refer to as an ar
hite
ture for Siena. There are three basi

ar
hite
tures for Siena: Hierar
hi
al
lient/server, a
y
li
 peer-to-peer, and

general peer-to-peer.

Hierar
hi
al
lient/server

In the hierar
hi
al
lient/server ar
hite
ture (see Figure 2.5), the servers form

a hierar
hi
al topology, with ea
h server (ex
ept the root server) behaving

like a Siena
lient of the server one level up the hierar
hy. The main problems

exhibited by this ar
hite
ture are the potential overloading of servers high in

the hierar
hy and the fa
t that ea
h server is a single point of failure.

13

The Siena Middleware Ba
kground

H

Clients

Servers

H

H

H

H

client/server

Protocol

Figure 2.5: Hierar
hi
al
lient/server ar
hite
ture.

A
y
li
 peer-to-peer

In this ar
hite
ture, servers
ommuni
ate with ea
h other symmetri
ally as

peers in an a
y
li
 undire
ted graph (as showed in Figure 2.6), adopting a

proto
ol that allow a bi-dire
tional
ow of subs
riptions and noti�
ations.

The
on�guration of the topology forms an a
y
li
 undire
ted graph.

client/server

Protocol

server/server

Protocol

A

A

A

A

A

Figure 2.6: A
y
li
 peer-to-peer server ar
hite
ture.

General peer-to-peer

Removing the
onstraint of a
y
li
ity from the a
y
li
 peer-to-peer ar
hite
-

ture, Siena network may be
on�gured as a general peer-to-peer ar
hite
-

ture. As depi
ted in Figure 2.7, a general peer-to-peer ar
hite
ture
an have

14

The Siena Middleware Ba
kground

multiple paths of bi-dire
tional
ommuni
ation between servers. Allowing

redundant
onne
tions makes it more robust respe
t to failures of a single

servers. These three basi
 ar
hite
tures
an be
ombined to form hybrid ar-

client/server

Protocol

server/server

Protocol

A

A

A

A

A

Figure 2.7: General peer-to-peer server ar
hite
ture.

hite
tures, su
h as an a
y
li
 peer-to-peer topology of subnets, ea
h subnet

being hierar
hy. On
e topology of servers is de�ned, they must establish ap-

propriate routing paths to ensure that noti�
ations published by an obje
t

of interest are
orre
tly delivered to all the interested parties that subs
ribed

for them. In general, noti�
ations must \meet" subs
riptions somewhere in

the network so that the noti�
ations
an be sele
ted a

ording to the sub-

s
riptions and then dispat
hed to the subs
ribers.

2.2.3 Pro
essing Strategies

On
e a topology of servers is de�ned, the servers must establish appropriate

routing paths to ensure that noti�
ations published by an obje
t of interest

are
orre
tly delivered to all the interested parties that subs
ribed for them.

In general, noti�
ations must \meet" subs
riptions somewhere in the network

so that the noti�
ations
an be sele
ted a

ording to the subs
riptions and

then dispat
hed to the subs
ribers.

15

The Siena Middleware Ba
kground

Routing strategies in Siena hierar
hi
al ar
hite
ture

The main idea behind the routing strategy of Siena is to send a noti�
ation

only toward event servers that have
lients that are interested in that noti-

�
ation, possibly using the shortest path. There are two simple prin
iples

that be
ome requirements for the Siena routing algorithms:

downstream repli
ation: A noti�
ation should be routed in one
opy as

far as possible and should be repli
ated only downstream, that is, as
lose as

possible to the parties that are interested in it.

upstream repli
ation: Filters are applied, and patterns are assembled

upstream, that is, as
lose as possible to the sour
es of (patterns of) noti�-

ations.

These prin
iples are implemented by two
lasses of routing algorithms,

the �rst of whi
h involves broad
asting subs
riptions and the se
ond of whi
h

involves broad
asting advertisements:

subs
ription forwarding: In an implementation that does not use adver-

tisements, the routing paths for noti�
ations are set by subs
riptions, whi
h

are propagated throughout the network so as to form a tree that
onne
ts

the subs
ribers to all the servers in the network. When an obje
t publishes a

noti�
ation that mat
hes that subs
ription, the noti�
ation is routed toward

the subs
riber following the reverse path put in pla
e by the subs
ription.

advertisement forwarding: In an implementation that uses advertise-

ments, it is safe to send a subs
ription only toward those obje
t of interest

that intend to generate noti�
ations that are relevant to that subs
ription.

Thus, advertisements set the paths for subs
ription, whi
h in turn set the

paths for noti�
ations. Every advertisement is propagated throughout the

network, thereby forming a tree that rea
hes every server. When a server re-

eives a subs
ription, it propagates the subs
ription in reverse, along the path

to all advertisers that submitted relevant advertisements, thereby a
tivating

16

The Siena Middleware Ba
kground

those paths. Noti�
ation are then forwarded only through the a
tivated

paths.

Subs
ription-forwarding algorithms realize a subs
ription-based seman-

ti
s, while advertisement-forwarding algorithms realize an advertisement-

based semanti
s.

17

Chapter 3

Evaluating Siena in a Wireless

Network

As we explained in the previous se
tions, our interest is to study the integra-

tion of the bene�ts of mobile appli
ations (moving along with their host or

migrating from host to host) with the
ommuni
ation servi
e o�ered by an

advan
ed publish/subs
ribe middleware.

We de�ned the host mobility as the ability of devi
es (together with their

appli
ation) to move around the real world. These physi
al
omponents are

generally referred to as mobile hosts and they
ome in di�erent sizes from a

laptop to a
ellular phone or other wearable devi
es. It is reasonable to imag-

ine some software-
omponents running on them with the ne
essity to send

(re
eive) messages to (from) other remote hosts, mobile or �xed. Of
ourse,

in order to allow the information ex
hange between
omponents, the mobile

hosts in whi
h they are running need some form of wireless
ommuni
ation

link.

In this
hapter we will fo
us on the integration of host mobility with

Siena. We assume that a
omponent is running on a mobile devi
e (su
h

as a PDA) and it uses a Siena
lient in order to ex
hange messages with

the external world. As we des
ribed in Se
tion 2.2, a Siena
lient that

publishes or re
eives events must be
onne
ted to a Siena server (a

ess

point). In parti
ular we adopt a server running on a �xed Internet host.

18

Evaluating Siena in a Wireless Network

This means that the wireless link a
ts as a \bridge" between the mobile

INTERNET

GPRS

GPRS

���
���
���

���
���
���

���
���
���

���
���
���Client

Siena

Client
Siena

Client
Siena

Client
Siena

Siena Server

Figure 3.1: GPRS network makes a \bridge" between Client and Server.

lient and the �xed server, handling mobility of the
lient in a way that is

ompletely transparent to the server and the whole Siena middleware.

In this s
enario (depi
ted in Figure 3.1), we want to study Siena's perfor-

man
e in
ombination with to di�erent network proto
ols (TCP and UDP).

In order to evaluate the behavior of Siena and its demands over the
ommu-

ni
ation resour
es of the wireless network, we developed a distributed test

appli
ation
alled au
tion system (see Se
tion 3.3) that we used in several

simulated s
enarios. Developing su
h an appli
ation required us to port the

Siena
lient-side library to the Java

TM

2 Mi
ro Edition (dis
ussed in Se
-

tion 3.1), a platform spe
i�
ally targeted at mobile devi
es su
h as
ell phones

and PDAs. We have also studied how to set up the graphi
 user interfa
e,

using the J2ME

TM

Wireless Toolkit [37℄, in order to make the appli
ation

user-friendly. We then used the resulting appli
ation to run experiments on

a simulated PDA.

In the situation des
ribed above, a
lient may
hange its status qui
kly

and often. Thus, it
ould
onne
t (or dis
onne
t) to the network in every

moment. This may be a problem when using a publish/subs
ribe middle-

ware like Siena. In fa
t, sin
e Siena does not provide a me
hanism for

19

Java 2 Platform, Mi
ro Edition Evaluating Siena in a Wireless Network

messages persisten
e, a mobile
lient
ould lose some noti�
ations while it

is dis
onne
ting. We studied a simple solution (des
ribed in Se
tion 3.2) for

this problem, and we used it in the development of the au
tion System.

Finally, to establish wireless links, we
hoose a GPRS network (refer to

Se
tion 3.4) be
ause it allows us to use IP-based proto
ols and be
ause it

represents the last step in path to UMTS Network.

In the following Se
tions we will introdu
e the tools we used for our ex-

periments, we will dis
uss the experiment set up and the results we obtained.

3.1 Java 2 Platform, Mi
ro Edition

J2ME [19, 36℄, a version of the Java

TM

2 Standard Edition (J2SE

TM

) [38℄,

is aimed at the
onsumer and embedded devi
es market. It spe
i�
ally ad-

dresses the rapidly growing
onsumer spa
e that
overs
ommodities su
h as

ellular telephones, pagers, palm organizers, set-top boxes, and others. J2ME

provides a
omplete set of solutions for
reating state-of-the-art networked

appli
ations for
onsumer and embedded devi
es. It enables devi
e manu-

fa
turers, servi
e providers, and appli
ation developers to deploy
ompelling

appli
ations and servi
es to their
ustomers. J2ME de�nes the following set

Host Operating System

Java Virtual Machines

Configurations

Profiles

Figure 3.2: High-level view of J2ME.

of tools that
an be used with
onsumer devi
es:

� A Java virtual ma
hine

20

Java 2 Platform, Mi
ro Edition Evaluating Siena in a Wireless Network

� Libraries and APIs that are suitable for
onsumer devi
es (
on�gura-

tions and pro�les)

� Tools for deployment and devi
e
on�guration

The �rst two
omponents make up the J2ME runtime environment. Fig-

ure 3.2 shows how the di�erent high-level layers of J2ME �t together.

3.1.1 Con�gurations

Cellular telephones, pagers, organizers, and so on, are diverse in form, fun
-

tionality, and feature. For these reasons, J2ME supports minimal
on�gu-

rations of the JVM and APIs that
apture the essential
apabilities of ea
h

kind of devi
e. At the implementation level, a J2ME
on�guration de�nes a

set of horizontal APIs for a family of produ
ts that have similar requirements

on memory budget and pro
essing power. A
on�guration spe
i�es:

� Java programming language features supported

� JVM features supported

� Java libraries and APIs supported

Currently there are two standard
on�gurations: The Conne
ted Limited De-

vi
e Con�guration (CLDC), and the Conne
ted Devi
e Con�guration (CDC).

CLDC

The Conne
ted Limited Devi
e Con�guration (CLDC) is intended for
ellular

phones, two-way pagers, and organizers. It targets devi
es with between 160

and 512 KB of memory. A referen
e implementation of the CLDC is available.

A
on�guration, su
h as the CLDC or CDC, is more useful when used along

with a pro�le.

CDC

The Conne
ted Devi
e Con�guration (CDC) is intended for set-top boxes,

Internet TVs, and in-
ar entertainment systems. The CDC targets devi
es

21

Java 2 Platform, Mi
ro Edition Evaluating Siena in a Wireless Network

CLDC CDC

Implements a subset of Java

features and APIs

A full Java implementation

The Java virtual ma
hine is

KVM

The Java virtual ma
hine is

CVM

For limited devi
es For more powerful devi
es

Pro
essor: 16 or 32-bit Pro
essor: 32-bit

Targets devi
es with 160 - 512

KB of memory

Targets devi
es with at least 2

MB of memory

Table 3.1: CLDC vs. CDC

that have at least 2 MB of memory, and
an support a
omplete imple-

mentation of the standard JVM, and Java programming language. A brief

omparison of CLDC and CDC is shown in Table 3.1.1.

3.1.2 Virtual Ma
hines

The CLDC and CDC
on�gurations ea
h de�ne the set of Java and virtual

ma
hine features supported. Therefore, ea
h
on�guration will have its own

JVM. Clearly, the CLDC virtual ma
hine will be smaller than the virtual

ma
hine required by the CDC sin
e it supports less features. The virtual

ma
hine for the CLDC is the Kilo Virtual Ma
hine (KVM), and the one for

the CDC is the CVM.

KVM

The Kilo Virtual Ma
hine (KVM) is a
omplete Java runtime environment

for small devi
es. It is a true Java virtual ma
hine as de�ned by the JVM

Spe
i�
ation ex
ept for some spe
i�
 deviations that are ne
essary for proper

fun
tioning on small devi
es. It is spe
i�
ally designed from the ground up

for small, resour
e-
onstrained devi
es with a few hundred kilobytes of total

memory.

The KVM is derived from a resear
h proje
t
alled Spotless at Sun Mi-

rosystems Laboratories. The aim of the proje
t was to implement a Java

system for the Palm Conne
ted Organizer.

22

Java 2 Platform, Mi
ro Edition Evaluating Siena in a Wireless Network

CVM

Initially, the CVM used to stand for "Compa
t Virtual Ma
hine". Sun En-

gineers however, realized that it might be
onfused with the KVM. So the C

does not stand for anything now. It is just the C Virtual Ma
hine or CVM. It

is designed for
onsumer and embedded devi
es, and it supports all Java

TM

2

Platform, version 1.3, VM features and libraries for se
urity, weak referen
es,

JNI, RMI, and JVMDI.

3.1.3 Pro�les

J2ME makes it possible to de�ne Java platforms for verti
al markets by intro-

du
ing pro�les. At the implementation level, a pro�le is a set of verti
al APIs

that reside on top of a
on�guration to provide domain-spe
i�

apabilities,

su
h as user interfa
es.

Host Operating System

CLDC CDC

PDA

PersonalRMI

MIDP Foundation Profile

CVMKVM

Figure 3.3: J2ME ar
hite
ture.

Currently, referen
e implementations exist for two pro�les: The Mobile

Information Devi
e Pro�le (MIDP), and the Foundation Pro�le (FP). MIDP

is to be used with the CLDC and FP is to be used with the CDC. Other

pro�les in the works in
lude: The PDA pro�le, RMI pro�le, and Personal

Pro�le. The stru
ture of the various J2ME
on�gurations and pro�les is

depi
ted in Figure 3.3.

23

Java 2 Platform, Mi
ro Edition Evaluating Siena in a Wireless Network

The MID Pro�le (MIDP)

The Mobile Information Devi
e Pro�le (MIDP) extends the CLDC to provide

domain spe
i�
 APIs for user interfa
es, networking, databases, and timers.

MIDP is meant to target wireless phones and two-way pagers. A referen
e

implementation is available, and an easy-to-use development environment

(Wireless Toolkit [37℄) is also available.

The PDA Pro�le

The Personal Digital Assistant (PDA) pro�le is based on the CLDC and will

provide user interfa
e APIs (whi
h are expe
ted to be a subset of the AWT)

and data storage APIs for handheld devi
es. The PDA pro�le is still in the

works and no referen
e implementation is available yet.

The Foundation Pro�le (FP)

The Foundation Pro�le extends the APIs provided by the CDC, but it does

not provide any user interfa
e APIs. As the name "foundation" implies, the

Foundation Pro�le is meant to serve as a foundation for other pro�les, su
h

as the Personal Pro�le and the RMI pro�le.

The Personal Pro�le (PP)

The Personal pro�le extends the Foundation pro�le to provide GUIs
apable

of running Java Web applets. Sin
e PersonalJava

TM

is being rede�ned as

the Personal pro�le, it will be ba
kward-
ompatible with PersonalJava 1.1.

and 1.2 appli
ations. No referen
e implementation for the Personal Pro�le

is available yet.

The RMI Pro�le

The RMI pro�le extends the Foundation pro�le to provide Remote Method

Invo
ation (RMI) for devi
es. It is meant to be used with the CDC/Founda-

tion and not the CLDC/MIDP.

24

Servi
e Dis
overy Evaluating Siena in a Wireless Network

The RMI pro�le will be
ompatible with J2SE RMI API 1.2.x or higher.

However, no referen
e implementation is available yet.

3.2 Servi
e Dis
overy

In traditional
lient/server
omputing, a
lient that needs a parti
ular ser-

vi
e must known the address of the Servi
e Provider. For example, a
lient

that intend to use a Time-Syn
hronization servi
e must know the address of

a time server. Servi
e Dis
overy is the pro
ess by a
lient �nds out about

one or more servi
e providers for a spe
i�
 servi
e. The publish/subs
ribe

subscribe

publish

Alice Bob

notification will be catched and
system will send it to the client

Figure 3.4: Ali
e subs
ribes before Bob advises for a ti
ket.

ar
hite
ture seem to o�er a natural solution to the problem of servi
e dis-

overy. In fa
t, in this approa
h a user (the Servi
e Client) subs
ribes for a

servi
e and, when it is available, he will re
eive a noti�
ation (see Figure 3.4).

This simple proto
ol introdu
es new problems that we will des
ribe in the

following se
tions.

In the s
enario depi
ted in Figure 3.4, Ali
e
at
hes the noti�
ation pub-

lished by Bob, whi
h allows Ali
e to
onta
t Bob. Unfortunately, the same

proto
ol would fail in
ase Bob announ
ed the availability of his servi
e before

Ali
e submitted her subs
ription, as show in Figure 3.5.

There are two possible solutions for this problem. One is to insert an

additional
omponent, a Repeater, to provide
a
hing fun
tions, in the system

ar
hite
ture. The other one is using a pair <request, o�er>. We will des
ribe

the se
ond one in the following. This solution is appli
ation-level in the

25

Servi
e Dis
overy Evaluating Siena in a Wireless Network

subscribe

publish

Alice Bob

Figure 3.5: Bob advises for a ti
ket availability before Ali
e subs
ribes

sense that it does not
hange the publish/subs
ribe ar
hite
ture, but instead

ombines its own features to put
lient and server in tou
h.

3.2.1 A Request-O�er Combination

The basi
 idea is to use a
ombination of a subs
ription and a noti�
ation. As

explained before, the main problem is when a
lient subs
ribes for a servi
e

after the provider published an announ
ement for that servi
e. The following

client provider
offer−sub

request−pub
request−sub

offer−pub

Figure 3.6: Both users send a pair <request, o�er>.

a
tions explain how a pair <request, o�er> works (see also Figure 3.6):

� provider-pair:

step p1: subs
ribe for \I need servi
e S" Request Subs
ription

step p2: publish \Servi
e S" O�er Publi
ation

26

Servi
e Dis
overy Evaluating Siena in a Wireless Network

�
lient-pair:

step
1: subs
ribe for \Servi
e S" O�er Subs
ription

step
2: publish \I need servi
e S" Request Publi
ation

In the rest of se
tion we will refer to the pair made by the servi
e provider as

provider-pair and we will refer to the pair made by the
lient as
lient-pair.

Note that these are not atomi
 a
tions but there is a little time between

the subs
riptions and the noti�
ations. Moreover, we assume that the pub-

lish/subs
ribe servi
e is unreliable and messages
ould be delayed through

the network. So, di�erent
ases are possible and we will des
ribe these in the

following subse
tions. We will show how the
ouple <provider-pair,
lient-

pair> works in every one of these.

providerclient

c1

c2

p1

p2

Figure 3.7: The
lient-pair is sent before the provider-pair.

ase 1 We suppose that
lient subs
ribed for servi
e before the provider

publish its announ
ement. As depi
ted in Figure 3.7, the Ali
e's noti�
ation

will be lost, but her o�er-subs
ription will
at
h the Bob's o�er-publi
ation.

ase 2 This
ase, in whi
h we suppose that Ali
e (the
lient) subs
ribes for

servi
e after Bob (the provider) sends his noti�
ation (see Figure 3.5), repre-

sents the main problem. Sin
e now we are using the pair <request, o�er> (as

depi
ted in Figure 3.8), Bob has been subs
ribing for interested party (a
tion

p1). This request-subs
ription will
at
h Ali
e's request-publi
ation (a
tion

2) and now Bob knows that a user needs his servi
e. Therefore Bob
an

27

Servi
e Dis
overy Evaluating Siena in a Wireless Network

publish again his noti�
ation. This allows Bob to
onta
t Ali
e and o�ers

her the servi
e.

providerclient

c1

c2

p1

p2

publish

Figure 3.8: The
lient-pair is sent after the provider-pair.

ase 3 Sin
e the Publish/Subs
ribe ar
hite
ture is unreliable, messages

ould be delayed through the network. Therefore we
ould have another

possible s
enario (su
h as depi
ted in Figure 3.9). In this
ase publi
ations

will interse
t and both users, provider and
lient, will re
eive ea
h other's

publi
ation. We suppose that the provider always publishes another noti�-

ation. This will
ause that the
lient will re
eive the same noti�
ation for

two times. Anyway, we are sure that they will be able to establish a session

and we
an
on
lude the pair <request, o�er> also works in this
ase.

providerclient

c1

c2

p1

p2

publish

Figure 3.9: The
lient-pair and provider-pair are sent at the same time.

28

Servi
e Dis
overy Evaluating Siena in a Wireless Network

3.2.2 Observations

It is important to note that the �nal
ommuni
ation, between provider and

lient, should be established and
ondu
ted a

ording to the spe
i�
 servi
e

proto
ol (as depi
ted in Figure 3.10). For example, if the o�ered servi
e is a

printing servi
e, the
ommuni
ation must be established using the appropri-

ate printing proto
ol (e.g. using IPP [20℄).

client provider

user user

user

Figure 3.10: Client/server
ommuni
ation between
lient and provider.

We des
ribed how the pair <request, o�er> works in di�erent
ases but,

it is also important to note that this solution may not works if messages are

lost through the network. In fa
t, if a noti�
ation does not rea
h the node

(see Figure 3.11) where subs
riber is
onne
ted, the
lient
an not re
eive

the message asso
iated to the event.

and system can not send it
to the service client

client

notification will be lost

subscribe

publish

provider

Figure 3.11: Publish/Subs
ribe is unreliable ar
hite
ture.

Finally, it is important to note that pair must be issued in the ex-

a
t sequen
e, that is with the notify message following the subs
ribe mes-

29

Au
tion System Evaluating Siena in a Wireless Network

sage. In fa
t there are
ases in whi
h the pairs formatted as <noti�
ation,

subs
ription> does not work. As depi
ted in Figure 3.12 the pair sent by

the
lient
ould not interse
t the provider ones and none of them will know

client provider

request−pub offer−pub

offer−sub request−sub

Figure 3.12: The pair formatted as <noti�
ation, subs
ription> does not

work.

about the other.

As we explained above, this solution is appli
ation-level and it does not

hange the down-level ar
hite
ture. This means that some problems su
h as

the unreliability of the proto
ol
annot be �xed using the
ouple <
lient-pair,

provider-pair>. Moreover if a number of
lients and providers are using the

pair <request, o�er>, it
ould
ause a traÆ
 overload through the network

and thus a denial of servi
e
ould be happen.

3.3 Au
tion System

We de
ide to develop an au
tion system be
ause it is a simple system but

with high number of message ex
hange and real-time
onstraints. Thus, it

allows us to study the Siena performan
es in the presen
e of low bandwidth

and high error probability network su
h as a wireless network.

What we want is to develop a peer-to-peer appli
ation that allows
lients

to sell and buy items. Buyers and sellers,
ould be viewed as independent

omponents of the system that use the event-based middleware to
ommu-

ni
ate with ea
h other. The high level ar
hite
ture of the system is showed

in Figure 3.13. In parti
ular, if a
lient is interested in buying a ti
ket

30

Au
tion System Evaluating Siena in a Wireless Network

(buyer), he will subs
ribe for events that advertise the availability of ti
kets.

Conversely, a
lient that wants to sell a ti
ket (seller) emits an event to
om-

muni
ate the availability of ti
kets. When the buyer re
eive this noti�
ation,

he
an publish a bid for the ti
ket.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
��� ���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

Event Service

Siena Servers

Auction actors

Figure 3.13: The Au
tion System's ar
hite
ture

3.3.1 Au
tion
hara
teristi
s

In this se
tion, we de�ne the rules that determine the behavior of the au
tion

system and the properties of the system.

Type of available au
tions

We want to develop a system that allows users to
hoi
es di�erent kinds of

au
tions. These
an be:

lose: A user
an send the amount of his bid, but he
an not
he
k the

Au
tion status.

open: A user
an send the amount of his bid and he will be informed whether

he is not
urrently the higher bidder. In this latter
ase, he
an raise

his bit.

31

Au
tion System Evaluating Siena in a Wireless Network

Selling

Before advertising an item for sale, a seller must set up the following infor-

mation:

kind of au
tion: An Open or Closed au
tion.

title/item Name: Brief des
ription of the item he is selling.

ategory: Category in whi
h the items will be listed.

des
ription: A
omplete des
ription of his item.

duration: The period of time during whi
h the item
an be au
tioned.

starting pri
e: If seller wants the bidding to start at a
ertain pri
e, he

needs to put it in there. This will set the starting bid at the pri
e he

spe
ify.

reserve pri
e: Setting a pri
e, gives seller the option of not selling the item

if the bids do not rea
h his reserve pri
e.

bid in
rement: The amount seller wants the au
tion to in
rease after ea
h

bid is pla
ed.

payment method: One or multiple methods of payment.

shipping: Seller must
hoose whether he will ship nationally only or inter-

nationally. He must also sele
t who pays for shipping:

� seller

� buyer

� �fty-�fty

Buying

When user has found an item he would like to bid on, he
an send the amount

of his bid applying the bid in
rement established by the seller. After re
eiving

a bid from a buyer, the system may notify the buyer of following events:

32

Au
tion System Evaluating Siena in a Wireless Network

out-bidding: While bidder is waiting for the open au
tion �nish, he will

re
eive a noti�
ation informing him whether he has been out-bid by

another bidder. Only in this
ase, the bidder
an raise his bid. Instead,

During a
losed au
tion, the bidder will not re
eive any noti�
ation and

therefor will not be able to raise his bid.

winning: If a user is the highest bidder when the open/
losed au
tion ends,

he will re
eive a noti�
ation,
ontaining the personal information of

the seller, that he
an use in order to
onta
t the seller. In the
losed

au
tion, a noti�
ation will also be sent to all users, that bid for that

item, to inform them that the au
tion has been
losed and to tell them

who the winner is.

3.3.2 Quality of Servi
e

The following quality of servi
e apply to the au
tion system:

real-time delivery: It is important that every message is delivered in real

time. In fa
t, high network laten
y may
ause undesired e�e
ts su
h

as bids swit
hing and advertisement losing.

guaranteed delivery: Delivery of every message should be guaranteed.

message
on�dentiality: Only the interested parties may read the mes-

sages.

message integrity: Nobody
an modify the messages.

3.3.3 Implementation

As explained above, we have developed this system using Java

TM

2 Platform,

Mi
ro Edition and we designed it to run on limited resour
e devi
es. The

appli
ation is
omposed of two distinguished sub-
omponents: Sell and Buy.

Ea
h one of these, has one spe
i�
 GUI as well as a shared GUI
alled

Conne
t.

33

Au
tion System Evaluating Siena in a Wireless Network

normal size zoom

Figure 3.14: The Conne
t GUI.

Conne
t The Conne
t form implements is the �rst step to take part in

the au
tion. It allows users to
onne
t to a spe
i�ed Siena server lo
ated on

a internet host. The user has to �ll in the form (as show in Figure 3.14) in

whi
h he must write his personal data and the Internet address of the server.

This information is used allow the buyer to get in tou
h with the seller.

This pro
edure simply stores user information in a data stru
ture. The

pro
edure also uses the ThinClient(String uri)
lass of the Siena API to

establish the
onne
tion with the Siena master referred by uri (uri must

have the <s
hema>://hostname:port number format).

Sell This allows a seller to advertise an arti
le available for sell, and starts

a new au
tion for it. The pro
edure Sell is
omposed of two sub-pro
edures:

Edit Au
tion and In
oming Bids.The �rst one allows the user to publish

information about the au
tioned item. The pro
edure gets the information

from the GUI (see Figure 3.15.a) and
reates a noti�
ation with them. This

information are also used to
reate a unique identi�er for this arti
le. After

the publi
ation of this event, a subs
ription will be made, using the item

identi�er as �lter. The purpose of this subs
ription is to
at
h the in
oming

bids related to this item. The In
oming Bids GUI (Figure 3.15.b), displays

the re
eived bid about the running Au
tion.

Internally (see Appendix A.1) a Siena ThinClient, previously
reated by

Conne
t, is used to send advertisements for new items, and to re
eive bids.

34

Au
tion System Evaluating Siena in a Wireless Network

a) b)

Figure 3.15: The Sell GUI.

When the obje
t Bid Update re
eives an event representing a bid, it will

update the appropriate data stru
ture and the new bid will be displayed on

the In
oming Bids form.

Buy After a
onne
tion has been established, in order to take part in an

au
tion, the Buyer needs to know the identi�er of a parti
ular item. The

Item Sear
h form (see Figure 3.16.a) works like a sear
h engine and enables

the user to set �lter
onstraints, and to
reates the subs
ription
orresponding

to the given sear
h
riteria. When somebody publishes an event mat
hed

by the Buyer �lter, this will be
aught and stored in the appropriate data

stru
ture.

a) b)
)

Figure 3.16: The Buy GUI.

35

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

After an advertisement is stored, the buyer may use the Sear
h Results

form (Figure 3.16.b) to navigate through the data stru
ture and
hoose the

item he is interested. When an item has been sele
ted, GUI Outgoing bids

form will appear (refer to Figure 3.16.
) allowing the buyer to submit his bid

for this arti
le.

If during the Au
tion the user has been out-bid by another bidder, he

will re
eive a noti�
ation and an Alert pop-up will appear. After re
eiving

an out-bid alert, the buyer may open the Outgoing bids form and raise his

bid.

Internally (refer to Appendix A.2) a siena.ThinClient() is used to submit

bids and
reate sear
h �lters. Sear
h results will be
aught by the obje
t

Sear
h Update and stored in Sear
h Results obje
t.

Observations

Sin
e an advertise
ould be generated before the buyer has set up his �lters

or a bid
ould be submitted while the seller is momentary dis
onne
ted,

advertisements, bids and sear
hes are
onstru
ted with the pair <request,

o�er> paradigm explained in Se
tion 3.2. As we showed in Se
tion 3.2,

the pair <request, o�er> gives us an additional level of reliability using the

fun
tionalities of Siena.

3.4 General Pa
ket Radio Servi
e

The General Pa
ket Radio Servi
e (GPRS) is a new standard for wireless

data that will be implemented in GSM and other mobile
ommuni
ation

systems. The new te
hnology provides e�e
tive utilization of the s
ar
e radio

resour
es and is therefore ideally suited for bursty pa
ket transmissions. It

enables instant and
onstant wireless a

ess to IP based networks su
h as

the publi
 Internet and Lo
al Area N etworks (LAN).

GPRS fa
ilitates new appli
ations in wireless
ommuni
ation that have

not been available previously, due to the limitations in GSM Cir
uit Swit
hed

Data (CSD) [28℄. Through its pa
ket swit
hed (PS) nature, GPRS opens up

36

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

for dire
t
onne
tivity to the Internet with all its inherent user value. Exam-

ples of possible appli
ations are Internet servi
es su
h as Wireless Appli
ation

Proto
ol (WAP), e-mail, web-browsing.

In
reased
apa
ity for data transmissions
ompared to GSM CSD is the

obvious advantage that applies to the GPRS-system. Even so, mu
h of the

user-value lies in the possibility of obtaining immediate and
onstant
onne
-

tivity to external networks su
h as Internet and Intranet, without repeatedly

having to
arry out a time-
onsuming setup pro
edure. Furthermore, the

GPRS-system will in
orporate new billing
on
epts, whi
h in
ludes paying for

the volume of transmitted data, rather than the time of the data-
onne
tion

as it is done today. This means that the user
an stay
onne
ted and online

to the networks even when nothing is transmitted, without paying ex
essive

amounts for the duration of the data-
onne
tion.

3.4.1 Network Features of GPRS

GPRS as an overlay to the existing GSM-network may pose several paradigm-

shifts to the and-users. In order to understand the inherent
apa
ity issues

of GPRS, some network features must be examined.

Pa
ket swit
hing

Most wireless data
onne
tions require the mobile user to go through a
um-

bersome setup pro
edure, resulting in a
onstant allo
ation of one timeslot

during the entire length of the session. GPRS introdu
es fast a

ess to net-

works through pa
ked data te
hnology. Rather than sending and re
eiving

in a
ontinuous stream as in the
ir
uit swit
hed (CS) world, data travels

through routers for fast pa
ket data transmission to and from the mobile

subs
ribers. Pa
ket swit
hing means that GPRS radio resour
es are used

only when are a
tually sending or re
eiving data [1℄. Rather than dedi
ating

a radio
hannel (timeslot) to a mobile data user for a �xed period time, the

bursty nature of pa
ket swit
hed data allows the available radio
hannels for

GPRS to be
on
urrently shared between several
onne
tion.

37

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

Coding

S
heme

Data bits in

radio blo
k

Data rate per

time slot kb/s

on radio layer

Max data rate

per8 timeslots

kb/s

CS-1 181 9.05 72.4

CS-2 268 13.4 107.2

CS-3 312 15.6 128.8

CS-4 428 21.4 171.2

Table 3.2: Channel
oding s
hemes parameters.

Channel
oding s
hemes

Four di�erent
hannel
oding s
hemes are de�ned in the GPRS spe
i�
a-

tions [13℄. Ea
h
oding s
heme in
orporates a di�erent level of data in-

tegrity
he
ks (error
orre
tion overhead) to data transmitted over the radio-

interfa
e. They are
ommonly labelled CS-1 to CS-4. Given �xed-
hannel

apa
ity
onstraints, there is an inverse relation between the amount of a
tual

data that
an be transmitted and the amount of data integrity assuran
e.

Basi
ally, the
hannel
an either be used to transfer data itself or error
he
ks

on the respe
tive data. The di�erent error
oding pro
edure form varying

size of the radio blo
ks, whi
h produ
es four progressive data rates as listed

in Table 3.2. It must be
lear that these data rates are only valid for the

radio-layer, and the data rates on the appli
ation layer will be somewhat less

due to pa
ket-overhead.

The higher the data rates, the higher the required signal to noise ratio

(SNR). In good
hannel
onditions with high SNR, any of the four s
hemes

ould be used. In this
ase the
hannel
oding s
hemes with the least
hannel

prote
tion (CS-4) will yield the highest throughput. When interferen
e is

high on the other hand, the
oding s
heme with the highest amount of
hannel

prote
tion will a
hieve the highest throughput (CS-1), due to its extensive

error
oding whi
h
auses fewer retransmissions.

Te
hni
al limitation to the theoreti
al
apa
ity

Although the system is awaited with high expe
tations from manufa
turers

and operators, the a
tual take-up of GPRS usage among subs
ribers is still

38

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

an open issue. As explained in the previous se
tion, the maximum theoreti
al

data rate of 171.2kbps require an optimal
oding s
heme (CS-4). As su
h,

the maximum speeds must be
he
ked against the a
tual
onstraints in the

network and terminals. The reality is that mobile networks are always likely

to have lower transmissions speeds than �xed networks.

The in
reased data rates of GPRS are as result of two major aspe
ts

of the GPRS-system: improved
oding s
hemes and the support of multiple

timeslots. However, three main aspe
ts prevent a user from ever a
hieving the

maximum theoreti
al speed, namely the allo
ation of timeslots, restri
tions

in the terminals, as well as the a
tual availability of
oding s
hemes.

Allo
ation of timeslots Be
ause GPRS and GSM use the same radio

resour
es, it is unlikely that a network operator would ever assign all eight

timeslots to GPRS-traÆ
, sin
e voi
e still will be a dominant servi
e. In

fa
t, how to allo
ate the timeslots to GPRS and GSM is supposedly an

open issue among the operators. It seems
lear, however, that GSM-traÆ

will have pre
eden
e over GPRS-traÆ
. Sin
e GSM-traÆ
 has pre
eden
e,

GPRS-traÆ
 will be o�ered a varying amount of
apa
ity. The available

timeslots will in turn be divided between all GPRS-users an the
arrier at

the given time. It should also be noted that among the
arriers of one base

station there will always be at least one signalling
hannel (mapped to the

same amount of timeslots). The number of signalling
hannels depend on

the number of
arriers as well as the parti
ular network environment.

Restri
tions in terminals To take advantage of higher data transmission

speed the GPRS-terminals will have to support several multiple timeslots

simultaneously. In fa
t, in able to send and re
eive the theoreti
al maxi-

mum of 171.2 kbps the terminal must in
orporate transmission and re
eption

of timeslots (in both the downlink and uplink). This requires
onsiderable

amounts of pro
essing and trans
eiver power in the terminal, adding great

omplexity to su
h a small devi
e.

In reality, terminal manufa
tures are indi
ating that they will support

a limited number of multislot
lasses, at least in the �rst stage of GPRS-

39

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

terminal evolution. A

ording to the representatives from the manufa
turers,

the terminals will initially support 1 timeslot uplink and 3 timeslots down-

links. Whether the evolution
ontinues to improve further is not
lear, but

it is supposedly diÆ
ult to produ
e terminals that in
orporate more than 4

timeslots in either dire
tion.

3.4.2 GPRS System Ar
hite
ture

As mentioned previously, the GPRS-system is built upon the existing GSM-

infrastru
ture. So to enable GPRS, mobile network operators merely need to

upgrade their GSM-infrastru
ture by introdu
ing three new GPRS-elements,

as well as updating a few of the existing GSM-nodes. Most importantly, this

upgrade in
ludes the GPRS Servi
e Nodes (GSN), spe
i�
ally the Serving

GSN (SGSN) and the Gateway GSN (GGSN), but the upgrade also in
ludes

a new Border Gateway (BG) that provides a

ess to other GPRS networks

through a �rewall. All new elements in GPRS system-ar
hite
ture are illus-

trated in Figure 3.17.

GGSN

GGSN

SGSN

SGSNSGSN

SGSN

SGSN

SGSN

GGSN

(Internet)
network

packet−data
external

IP backbone

IP backbone IP backbone

BSS

BSS

BSS BSS BSS

BSS

BSS

BSS BSS

service area
network

service area
network

service area
network

service area
network

Figure 3.17: GPRS system ar
hite
ture

40

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

Mobile Station (MS)

The Mobile Station (MS) is a
ombination of the Mobile Terminal (MT) and

the Terminal Equipment (TE). It is important to be aware of that the MT

and TE
ould be in the same devi
e (su
h as a smartphone) or in separate

devi
es like a regular GPRS-phone
onne
ted to a handheld
omputer or a

laptop.

� The Terminal Equipment is the
omputer terminal that sends and re-

eives end-user pa
ket data.

� TheMobile Terminal
ommuni
ates with the TE through
able or wire-

less te
hnologies su
h as IrDA or Bluetooth. Over the air-link the MT

ommuni
ates with the BTS. In order to be GPRS-
apable, the MT

must be equipped with spe
i�
 software and hardware for the GPRS-

system.

Mobile Stations developed for the GPRS-system will be di�erentiated in

terms of their spe
i�
 MS- and Multislot-
lass. The purpose of this de�nition

is to enable the di�erent needs of the various markets to be satis�ed by a

number of di�erent MS types with distin
t
apabilities.

GPRS MS Class A Supports simultaneous atta
h, simultaneous a
ti-

vation, simultaneous monitoring, simultaneous invo
ation and simultaneous

traÆ
. This means that the mobile user
an simultaneously re
eive and

transmit
alls on the GPRS PS system and the GSM CS system. In order

for GPRS and GSM to take advantage of the trans
eiver
apa
ity at the

same time, a minimum of one timeslot must be available to both servi
es

when required.

GPRS MS Class B Supports both GPRS and GSM
onne
tivity, but

the
lass B mobile
annot transmit and re
eive in GSM and GPRS mode

simultaneously. However, signalling su
h \atta
h" and \a
tivation"
an be

simultaneous. This means that a GPRS
onne
tion shall not be
leared

down (dea
tivated), due to invo
ation of GSM traÆ
. The sele
tion of the

41

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

appropriate servi
e is performed automati
ally (i.e. an a
tive GPRS virtual

onne
tion is put on hold, if the user a

epts an in
oming CS
all or estab-

lishes an outgoing CS
all.It is worth noti
ing that pre
aution is needed when

interrupting appli
ations running over the GPRS-network. For instan
e, if

the user establishes a CS session during an ongoing and time-
onsuming �le

transfer, the GPRS
onne
tion may abort due to a timeout.

GPRS MS Class C Supports both GPRS and GSM
onne
tivity, but
an

only transmit and re
eive in one servi
e at time. Furthermore, no simulta-

neous \atta
h" and \a
tivation" is possible. The status of non-a
tive servi
e

is always \deta
hed" and the desired type of servi
e is sele
ted manually by

the user.

Base Station Subsystem (BSS)

The Base Station Subsystem (BSS)
onsist of Base Station Controller (BSC)

and Base Trans
eiver Station (BTS). All radio signals are transmitted and

re
eived by BSS, making it a shared resour
e between the CS GSM system

and GPRS system. Spe
i�
ally, a BSS upgraded for GPRS systems is pro-

vided with fun
tionality adapted to a pa
ket data. This in
ludes pa
ket data

handling, GPRS information broad
ast, resour
e administration, as well as

new interfa
ing to the SSGN node.

Base Trans
eiver Station It is basi
ally the re
eiving and transmitting

fa
ilities, in
luding antennas and all the signalling related to the radio in-

terfa
e. When radio signals are re
eived, the BTS separates GSM
ir
uit

swit
hed data/voi
e from GPRS pa
ket data and forwards both
ategories

to the Base Station Controller (BSC) using standard GSM proto
ols for
om-

patibility.

Base Station Controller Generi
ally, the BSC has fun
tionality to set

up, supervise and dis
onne
t CS and PS
onne
tions. These
onne
tions go

to and from the BTSs on the radio side, as well as to and from one SGSN on

the
ore network side. To manage this the BSC
onsists of a high
apa
ity

42

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

swit
h that provides fun
tions su
h as hand-over
ell
on�guration data and

hannel assignment.

Serving GPRS Support Nodes (SGSN)

The SGSN forwards in
oming and outgoing IP pa
kets addressed to and for a

mobile station. It serves all GPRS-subs
ribers that are lo
ated and atta
hed

within the geographi
al SGSN servi
e area. A subs
riber may be served by

any SGSN in the GPRS-network depending on lo
ation. The traÆ
 is routed

from the SGSN to BSC, via the BTS to the mobile station.

Gateway GPRS Support Nodes (SGSN)

Most importantly, the GGSN provides the interfa
e towards the external IP

pa
ket networks. A
tually, from the external IP network's point of view, the

GGSN a
ts as a router for the IP-addresses of all subs
ribers served by the

GPRS-network. To make this possible the GGSN ex
hanges routing infor-

mation with the external networks and sets up
onne
tion towards external

networks. Similar to the SGSN, the GGSN deals with session management,

spe
i�
ally the
onne
tion towards the external networks. Also, as many

SGSN
an
onne
t to one GGSN, it has asso
iate subs
ribers to the right

SGSN.

3.4.3 GPRS Proto
ol Sta
k

The GPRS data
ommuni
ation ar
hite
ture is based on the physi
al-layer

of GSM [13℄. It will
ontinue to support the well-known prin
iple of proto
ol

layering a

ording to the Open System Inter
onne
tion (OSI)
ommuni
a-

tion ar
hite
ture. The GPRS-system distinguishes between two proto
ols

planes [1℄:

� The transmission plane
overs the proto
ols for the transmission of user

information and the asso
iated
ontrol pro
edures like
ow
ontrol and

error handling.

43

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

� The signalling plane
onsist of proto
ols that
ontrol and support the

user transmission. GPRS-relevant fun
tions in the signalling plane are

onne
tion
ontrol, routing and mobility management.

Transmission plane

The Transmission Plane, as show in Figure 3.18, illustrates the proto
ol layers

of GPRS as well as the Internet data network.

UDP
TCP

UDP
TCP

GTP

LLC

BSSGP

Frame relay

SNDCP

L2 L2

MAC

RLC

SNDCP

LLC

GTP

MAC

RLC BSSGP

Mobile
Station Support Node

Serving GPRS Gateway GPRS

Support Node Network

External

Subsystem

Base Station

L1 L1 L1 L1 L1L1PHY

IP IP

L2 L2

LLC relay

GPRS

Internet

Others

PHY

Frame relay

Application

IP IP IPIP

Application

Figure 3.18: GPRS proto
ol sta
k

Appli
ation Layer The appli
ation layer is very broad in the sense that

it in
orporates several sublayers of fun
tionality. It
ontains the logi
 needed

to support various user appli
ations. For ea
h type of appli
ation, di�erent

proto
ols are needed that spe
i�
ally manage the appli
ation sessions as well

as the presentation of user data. These proto
ols are spe
i�
 to the software

and have no
onne
tion to the GPRS-ar
hite
ture.

TCP/UDP The transport layer in
ludes me
hanisms for the ex
hange of

user data on the end-to-end
onne
tion, whi
h are essentially independent to

the nature of the appli
ation. There exist two vastly di�erent transport pro-

to
ols, namely Transmission Control Proto
ol (TCP) and User Data Proto
ol

(UDP) [8℄:

� TCP providing a reliable data
ow between two hosts.

44

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

� UDP instead provides a simple servi
e to the appli
ation layer without

reliability.

IP/X.25 The transport-layer may be
arried on the network level by two

types of Pa
ket Data Proto
ols (PDPs), the Internet Proto
ol (IP) or the

X.25-proto
ol.

IP user-addresses are lo
ated by (or via) the GGSN, but the pool of ad-

dresses are not ne
essary lo
ated there. It
ould be an external network

su
h as an Internet Servi
e Provider (ISP) or a
orporate Lo
al Area Net-

work (LAN) that a
tually hand out the IP-addresses. Ea
h external network

has its own, unique, a

ess point in the GGSN,
ontaining fun
tionality for

handling network a

ess and IP-address assignment.

SNDCP The Subnetwork Dependent Convergen
e Proto
ol (SNDCP)

maps network-level
hara
teristi
s onto the underlying radio-layers. This

enables both IP and X.25 to be
arried on top of the SNDCP-layer.

LLC The Logi
al Link Control (LLC) layer provides a highly reliable logi
al

link. LLC shall be independent of the underlying radio interfa
e proto
ols

in order to allow introdu
tion of alternative radio solution with minimum

hanges to the GPRS internal network.

RLC and MAC The Radio Link Control (RLC) and the Medium A

ess

Control (MAC) are
onsidered to be part of same layer. The RLC deals with

segmentation of LLC data-pa
kets into RLC data blo
ks. This RLC data

blo
k is given a MAC header and a Blo
k Che
k Sequen
e (BCS) to form a

radio blo
k.

The Physi
al Radio-Interfa
e The physi
al radio interfa
e in
ludes pro-

edures for GPRS when it
omes to
hannel
oding,
ell re-sele
tion pro
e-

dures and power regulation [13℄. This layer also deals with frequen
y hopping

and signal-modulation, improving the signal to noise ratio (SNR) through in-

terfa
e and frequen
y diversity.

45

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

BSSGP and Frame Relay On the reliable interfa
e between the BSC

and SGSN, the Base Station Subsystem GPRS Proto
ol (BSSGP) transmits

pa
kets and routing-information. To make the interfa
e open it is stan-

dardized through Frame Relay (FR) [14℄. The frame relay
ommuni
ations

standard enables high data rate.

GSN inter
onne
tion Between the GSNs, the GPRS Tunnel Proto
ol

(GTP) tunnels the PDUs through the GPRS ba
kbone network by adding

routing information [15℄. Below the GTP, the usual TCP/UDP and IP/X.25

are used as transport and network layer proto
ols. The latter
ombination of

proto
ols will be most
ommon on reliable and over-dimensioned
onne
tion

of the GPRS-ba
kbone network. Ethernet, Integrated Servi
e Digital Net-

work (ISDN) and Asyn
hronous Transfer Mode (ATM) base proto
ols may

be used below IP depending on the operators network ar
hite
ture [1℄.

3.4.4 Signalling Plane

The signalling plane of the GPRS-system
onsists of proto
ols for
ontrol

and support of the transmission plane fun
tions [12℄. This in
ludes:

�
ontrolling the GPRS network a

ess
onne
tions, su
h as atta
hing to

add deta
hing from GPRS network;

�
ontrolling the attributes of an established network a

ess
onne
tion,

su
h as a
tivation of a Pa
ket Data Proto
ol (PDP) address;

�
ontrolling the routing path of a network
onne
tion, in order to sup-

port user mobility

�
ontrolling the assignment of network resour
es.

3.4.5 Survey of GPRS Tools

In this se
tion we brie
y survey several GPRS tools. The tools range from

those for doing network planning to those for doing performan
e evaluations.

46

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

They also range from those developed by
ommer
ial vendors of GPRS te
h-

nology to those developed by resear
h institutions. While this survey is

almost
ertainly not
omplete, the tools are all those for whi
h we were able

to obtain some amount of do
umentation.

Nokia NetA
t

TM

Planner

Nokia's NetA
t Planner [30℄ is an integrated set of tools for planning radio-

based voi
e and data networks, in
luding those based on GPRS te
hnology.

The tools allow one to \plan" in the sense of designing how the network will

be deployed to satisfy usage and physi
al
onstraints. For example, there is

a tool
alled the Rollout Planner that supports the pro
ess of site a
quisi-

tion and proje
t tra
king. Another tool is the Transmission Planner, whi
h

supports the planning of the transmission and data
om network, in
luding

dimensioning and network ar
hite
ture
omparisons. A third tool supports

an analysis of the pla
ement and strength of mi
rowave links.

Motorola GPRS Emulator

Motorola's GPRS emulator [27℄ is designed to help developers understand

how their appli
ations
an be expe
ted to behave over a typi
al GPRS
on-

ne
tion. The emulator runs on a standalone Linux
omputer, with appli
a-

tion
lients and servers
onne
ted to that
omputer over a normal IP link.

In essen
e, the standalone
omputer a
ts as a monolithi
 GPRS network.

The emulator provides
ommuni
ation e�e
ts that re
e
t the performan
e

of
lient/server intera
tion over the GPRS network under a variety of
on-

ditions, in
luding normal loads, heavy (\busy hour") loads, and both short

and long interruptions in signals.

Eri
sson GATE II

Eri
sson's GATE II [11℄ is another Linux-based emulator of a GPRS net-

work. It emulates typi
al properties of a GPRS network, in
luding varying

bandwidths, loads, laten
ies, and radio
onditions. The emulator is made

47

General Pa
ket Radio Servi
e Evaluating Siena in a Wireless Network

available in a rather unusual way: Rather than being available for instal-

lation and use in the evaluator's environment, it is provided as a servi
e

to whi
h one brings an appli
ation for evaluation. The evaluation itself is

arried out by trained personnel at designated servi
e
enters.

University of Helsinki Seawind

In
ooperation with Nokia Mobile Phone and Sonera Corporation, the Uni-

versity of Helsinki has developed Seawind [24℄, a Linux-based emulator of

wireless networks. The emulator
an be used to study network
ow and
on-

gestion
ontrol, as well as other properties of an appli
ation
ommuni
ating

over a GPRS network. Like the Motorola GPRS emulator, it based on the

use of a normal wireline lo
al-area network. Link
hara
teristi
s are emu-

lated by delaying, dropping, and modifying the
ow of pa
kets a

ording to

a set of simulation parameters.

Network Simulator

NS-2 (Network Simulator) [16℄ is a general-purpose dis
rete event simulator

for networks. The ar
hite
ture of the simulator is designed to allow the

spe
i�
s of a given network to be provided as a pluggable module. Re
ently,

a module for simulating a GPRS network has be
ome available [23℄, but we

have not yet had an opportunity to fully study its
apabilities. What we do

understand at this point is that it is more suited to studying the internal

behavior of the GPRS network than it is to studying the intera
tion of an

appli
ation with the network.

Sele
ting a tool

In order to
arry out our evaluation, we needed to sele
t from among the

available GPRS tools. In a sense, our
hoi
e was easy. The Nokia NetA
t

Planner is targeted at network planning, not performan
e evaluation. The

Motorola emulator, while it appears extremely well suited for our evaluation,

is simply not yet available. The Eri
sson GATE II emulator might also be

48

Experimentation Evaluating Siena in a Wireless Network

suitable, but the fa
t that it is available only as a se
ond-hand servi
e makes

it very in
onvenient to iteratively develop experiments.

We sele
ted Seawind be
ause of its
ombination of reasonable fun
tional-

ity and immediate availability. Nevertheless, as we detail in the next se
tion,

Seawind is limiting in the kind of information that we
an gather, spe
i�
ally

in regard to the e�e
t of deploying and operating Siena servers in the GPRS

network. NS-2 might well be an alternative worth exploring in the future,

but it too has its limitations. In fa
t, Seawind and NS-2 appear to be
om-

plementary, sin
e Seawind
on
entrates on the intera
tion of an appli
ation

with the (monolithi
) network, while NS-2
ombined with the GPRS module

on
entrates on the performan
e of the network itself.

3.5 Experimentation

In this se
tion, we will explain our experimentation and the results we ob-

tained. We imagined a s
enario in whi
h users engage an au
tion using

wireless devi
es (as explained in previous se
tions). This means that buy-

ers and sellers are using an Au
tion System appli
ation installed on mobile

devi
es and a GPRS Network as wireless link to
onne
t their
lients to an

Internet host.

Sin
e the impossibility to use a real GPRS network, and thus real mobile

devi
es, we simulated this s
enario using the Wireless Network Emulator

Seawind [24℄ and a J2ME Wireless Toolkit [37℄.

Seawind emulates a point-to-point
ommuni
ation
hannel extending over

a GPRS network. One end of the
hannel represents the mobile station,

while the other endpoint represents the remote host. The mobile station

and the remote host a
t as workload generators for the GPRS network. A

network proto
ol adapter binds a workload generator at ea
h endpoint of the

emulated
hannel. The traÆ
 produ
ed by one workload generator is fed into

the Seawind emulation pro
ess through one adapter. It is then pro
essed by

Seawind and passed on to the workload generator at the other end through

the
orresponding adapter. In pro
essing through-traÆ
, Seawind emulates

the behavior of a GPRS network a

ording to its
on�guration parameters,

49

Experimentation Evaluating Siena in a Wireless Network

thereby introdu
ing
hara
teristi
 delays, errors, and pa
ket loss.

The
urrent version of Seawind
omes with a proto
ol adapter for the

point-to-point proto
ol [32℄ that
an be used to redire
t IP traÆ
 though

Seawind. In pra
ti
e, running Seawind amounts to running the main Seawind

emulation pro
ess
onne
ted with two PPP adapters (running as separate

pro
esses). Ea
h adapter
reates a PPP interfa
e
on�gured with a given IP

address, and with a \peer" address
orresponding to the IP address of the

other adapter. A workload generator is implemented by an ordinary network

appli
ation, appropriately
on�gured to dire
t some of its traÆ
 to the IP

address of one of the PPP adapters bound to Seawind. Seawind produ
es a

traÆ
 tra
e in t
pdump format [22℄ that
an be analyzed by a variety tools [7℄.

I_p = ThinClient(senp://10.0.0.81:12345);
siena.StartServer −port 12345

pub = ThinClient(senp://leone:12345);

sub.setReceiver(tcpr)

Seawind
10.0.0.80 10.0.0.81

Server

Mobile Side Remote Side

serl

leonecanto

sub

tcpr = TCPPacketReceiver(10.0.0.80, 5555);

pub

Figure 3.19: A Siena mapping onto Seawind

Seawind has two signi�
ant limitations for the studies that we would like

to perform. First, it models the GPRS network as a simple tunnel,
apable

only of moving data between a mobile station and the external pa
ket-data

network. In parti
ular, Seawind does not model workload generators de-

ployed within the GPRS network, whi
h for us means that it
annot be used

to study the performan
e of multiple, distributed Siena routers. Se
ond,

Seawind fo
uses on a single pair of workload generators, not taking into

50

Experimentation Evaluating Siena in a Wireless Network

a

ount the intera
tions among multiple mobile stations sharing the same

pool of radio links and base-station resour
es. While Seawind does in fa
t

model the e�e
t of other appli
ations in the same
ell, it does so by simu-

lating generi
, stati
 \ba
kground" traÆ
. Su
h an approa
h
aptures some

on
i
ts in resour
e allo
ation, but it does not reveal potential destru
tive

dynami
s resulting from the
ombination of interrelated appli
ations.

Despite these two short
omings, we
an still extra
t some useful data

using Seawind. For our experiments, we used a Siena subs
riber and a

Siena server as workload generators. The experiment setup is depi
ted in

Figure 3.19. The subs
riber plays the role of the mobile station. The server

plays the role of the remote host. Noti�
ations are produ
ed by a publisher

onne
ted to the server dire
tly on the remote host. Ea
h experiment is

de�ned by the sequen
e of subs
riptions and noti�
ations ex
hanged between

subs
riber and server, by the
on�guration of the
onne
tions between the

subs
riber and the server, and by the
on�guration of the GPRS network.

The workload that we used in our experiments
onsists of one subs
ription

posted by the subs
riber, followed by a number of mat
hing noti�
ations sent

from the server to the subs
riber.

Siena uses a generi
 message-based
ommuni
ation me
hanism that is

realized in the
urrent implementation by three spe
ialized
onne
tors. The

on�guration of the server-subs
riber
onne
tion is obtained by sele
ting a

spe
i�

onne
tor. In parti
ular, the
hoi
es in
lude a UDP
onne
tor, a ba-

si
 TCP
onne
tor, and what we refer to as a \keep-alive" TCP
onne
tor. A

UDP
onne
tor sends messages through UDP pa
kets, a basi
 TCP
onne
-

tor uses one TCP
onne
tion per message, and a keep-alive TCP
onne
tor

attempts to use the same TCP
onne
tion for multiple messages.

For the
on�guration of the GPRS network, we experimented with a

subset of the ri
h set of parameters o�ered by Seawind. In parti
ular, in

a

ordan
e with the GPRS CS-1 spe
i�
ation, we emulated a mobile station

apable of using one uplink
hannel and up to three downlink
hannels. This

setting is shown in the parameters of Table 3.3.

The ms max rate parameter de�nes the
apabilities of the mobile station.

A value of 3 sele
ts the most advan
ed
lass of mobile stations,
apable of

51

Experimentation Evaluating Siena in a Wireless Network

Parameter Uplink Downlink

ms max rate 3 3

available rate 0-1 0-3

rate base 9050 bps 9050 bps

Table 3.3: GPRS CS-1 simulation parameters

handling data
ommuni
ations (GPRS) and normal
alls (GSM) at the same

time. The rate base is the bandwidth of an individual
hannel. available rate

determines the range of
hannels available to the mobile station. The a
tual

number of
hannels allotted to the mobile station at any time depends on

the presen
e of other GPRS or GSM users in the same
ell.

In addition to the parameters of Table 3.3, whi
h serve to
hara
terize

the
onne
tivity of the mobile station to its base station, we must set other

parameters that determine the quality of the
ommuni
ation
hannel. These

parameters are listed in Table 3.4.

Parameter Value

error rate type BIT

error probability

stati
 10

�3

stati
 10

�4

error handling

DELAY ITERATE

FORWARD

DROP

error delay fun
tion uniform distribution 40{50ms

delay drop threshold stati
 10s

Table 3.4: GPRS error simulation parameters

The e�e
t of noise is to introdu
e transmission errors or delays. Errors o
-

ur with a probability determined by the error rate type and error probability

parameters. In our experiments, errors are set to o

ur at the level of indi-

vidual bits with a probability of 10

�3

and 10

�4

.

The error handling parameter determines how the GPRS network han-

dles transmission errors. With \DELAY ITERATE" the network provides

a reliable delivery servi
e by simply for
ing retransmission, whi
h in turn

52

Sample Results Evaluating Siena in a Wireless Network

introdu
es a delay for end-to-end
ommuni
ations. Alternative modes are

\FORWARD", in whi
h errors are simply ignored and passed on to higher

levels in the
ommuni
ation sta
k, and \DROP", whi
h
auses the network

to drop pa
kets that
ontain errors. In the
ase of \DELAY ITERATE",

error delay fun
tion determines the interval before retransmission and de-

lay drop thresholds de�nes an upper bound for the total retransmission delay,

after whi
h a pa
ket is simply dropped.

3.6 Sample Results

This se
tion presents some sample results that we were able to obtain using

Seawind to evaluate the
on�guration des
ribed in the previous se
tion. The

primary goal of these experiments was to evaluate the impa
t of deploying

Siena onto the wireless GPRS network. We did this from two di�erent

perspe
tives. The �rst was to gather data
hara
terizing the performan
e of

the three di�erent low-level
onne
tors (UDP, TCP, and keep-alive TCP) on

the wireless network. The se
ond was to
ompare these results with baseline

data
olle
ted on a lo
al-area, wired network. By doing this we should get

an initial indi
ation of whether a seamless integration of wired and wireless

ommuni
ation is feasible for a publish/subs
ribe
ommuni
ation servi
e.

error probability = 10

�3

DELAY ITERATE FORWARD DROP

notif. IP pa
kets notif. IP pa
kets notif. IP pa
kets

Keep Alive 79 875 17 350 8 285

TCP 100 1173 64 1205 62 1571

UDP 79 82 73 78 66 97

error probability = 10

�4

DELAY ITERATE FORWARD DROP

notif. IP pa
kets notif. IP pa
kets notif. IP pa
kets

Keep Alive 82 855 72 458 70 443

TCP 100 1153 100 1156 99 1152

UDP 100 106 84 95 76 91

Table 3.5: Siena behavior in the wireless GPRS network.

53

Sample Results Evaluating Siena in a Wireless Network

Table 3.5 shows the network usage
orresponding to the three low-level

onne
tors under two di�erent error probabilities. In essen
e, this table
ap-

tures data on the
ross produ
t of the parameter values of Table 3.4. We

olle
ted
ounts of appli
ation-level noti�
ations re
eived by the subs
riber

and the resulting
ounts of IP pa
kets. The
ounts shown in ea
h
ell are

the average taken from �ve runs of the simulation. In all
ases, there were

100 noti�
ations published. The data give an indi
ation of the
ir
umstan
es

that lead to di�erent noti�
ation loss rates. For example, as we would ex-

pe
t, the highest loss rate o

urs at an error probability of 10

�3

under the

DROP error-handling mode. We
an also see that the keep-alive
onne
-

tor is the most sensitive to in
reasing error rates and de
reasing quality of

error-handling servi
e.

notif. IP pa
kets

Keep Alive 100 437

TCP 100 828

UDP 100 102

Table 3.6: Siena behavior in a lo
al-area, wired network.

Table 3.6 shows the baseline behavior obtained by running the appli
ation

on a lo
al-area, wired network. The data
hara
terize the relative overhead

of ea
h of the low-level
onne
tor proto
ols. For instan
e, UDP en
ounters

no overhead (The two extra pa
kets are used to
arry the subs
ription and

unsubs
ription messages). On the other hand, approximately eight pa
kets,

on average, are required by TCP to deliver a single noti�
ation. We
an

ompare the baseline overhead to that experien
ed in the wireless network.

The overhead of TCP in the wireless
ase is approximately twelve pa
kets

per noti�
ation,
onsiderably higher than in the lo
al-area, wired
ase.

54

Chapter 4

Mobility Support in Siena

As we explained in Se
tion 2.1 while host mobility is
on
erned with the

physi
al movement of hosts, Code Mobility is the ability to transfer data

and/or
ode from one host to another by using a network. Data mobility is a

very
ommon me
hanism and is often used to ex
hange or spread information

among di�erent hosts distributed on a network. At a level above this,
ode

mobility allows the migration of exe
utable
ode. Data mobility
an be

Event ServiceSiena Servers

Code
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

Local Host Remote Host

Figure 4.1: A
ode fragment moves from host to host and
hanges its server

master after the motion.

a
hieved with simple transport proto
ols, or with higher-lever proto
ols su
h

as RPC by passing parameters to a remote pro
edure. A simple example of

55

Mobility Support in Siena

ode mobility
onsist in a WEB browsers loading an applet from a remote

site. For instan
e, data e
ode mobility in Java are supported through obje
t

serialization and
lass loading. The status of obje
ts
an be serialized and

transfered from one host to another while the
lass loading strategies
an vary,

depending on the appli
ation. The
lass of the moved obje
t
an migrate onto

the new host or it
an be fet
hed from a remote server.

Two more sophisti
ated mobile
ode paradigms are
lassi�ed as remote

evaluation and mobile agents [17℄. Remote evaluation allows the proa
tive

shipping of
ode to a remote host to be exe
uted [33℄. Mobile agents [39℄ are

autonomous obje
ts
arrying their state and
ode that a
tively move a
ross

the network. Agent mobility requires the migration of both
ode and state

of the agent at the same time and they
an move a
tively performing tasks

on be half of users. In this s
enario, it is reasonable to think about mobile

agents that use a publish/subs
ribe system to
ommuni
ate with ea
h other

and with other non-mobile
omponents.

Event ServiceSiena Servers

Code Code

Figure 4.2: Code moves together with its host and
hanges its server after

the motion.

This introdu
es some problems that must be solved. In fa
t, in a pub-

lish/subs
ribe system su
h as Siena the state of a mobile agent is non
om-

pletely stored within the agent, but it is partially maintained by the event-

servi
e. Spe
i�
ally subs
riptions are maintained by Siena-servers, and pos-

56

Mobility Support in Siena

sibly spread a
ross the network (refer to Se
tion 2.2.3). Therefore, an agent

that moves to a new lo
ation must inform Siena about its movement, to

allows an appropriate re-routing of noti�
ations of interest. In this
hapter

we will des
ribe the solutions we propose to manage the problem arising with

the mobility of
lients in Siena.

We suppose to have s
enarios (depi
ted in Figures 4.1, and 4.2) in whi
h

a
lient wants to swit
h, after its migration, from a lo
al master server to

a remote master server. Noti
e that from the point of view of Siena, the

way in whi
h a
lient performs the movement is
ompletely transparent. In

fa
t, whether the
lient moves together with its host or it migrates using

some mobile
ode te
hnology, the problems related to its dis
onne
tion, and

re
onne
tion remain the same.

Sin
e in a publish/subs
ribe ar
hite
ture part of the
lient's status is

stored in its a

ess-point (su
h as its subs
riptions or its lo
ation) we need

some new operations to manage the swit
hing. In fa
t, during the swit
hing,

a
lient
ould lose some events or get dupli
ates.

To avoid these problems we propose two solutions that di�er from ea
h

other in the quality of servi
e they o�er. The �rst solution favors speed over

quality of servi
e, while the se
ond one o�ers better servi
e guarantees at

the
ost of a slower, and more
omplex pro
ess. In next Se
tions we will

H T

Figure 4.3: A

ess-points swit
hing a
tions.

des
ribe whi
h solutions we developed, and how they work. As �rst instan
e

we examine the simple
ase in whi
h a �xed
lient wants to swit
h from a

57

Mobile Dispat
her Mobility Support in Siena

lo
al master server to a remote master server (see Figure 4.3). Then we will

extend this parti
ular
ase in order to manage the more general
ase in whi
h

a
lient
hanges its master server at the end of the motion.

4.1 Mobile Dispat
her

client/server

Protocol

Clients

MobileDispatcher
HierarchicalDispatcher

MD

HD

MD HD

HD

Figure 4.4: Hierar
hi
alDispat
her and MobileDispat
her work together.

We
reated a new kind of dispat
her,
alled Mobile Dispat
her with the

ability to manage
lient mobility. This dispat
her is based on the Hierar-

hi
alDispat
her
lass provided by Siena, and adds new features oriented to

mobility management. It is possible to use MobileDispat
her in
ombination

with old dispat
hers in order to
reate hybrid networks. Of
ourse we may

have networks made by only MobileDispat
hers in whi
h �xed
lients still

an use the old servi
es. In this
ase every server is able to a
hieve
lients

mobility.

4.2 Noti�
ation Persisten
e Servi
e

The �rst feature we added in MobileDispat
her is the persisten
e of noti�
a-

tions. This enables a
lient to be dis
onne
ted for a while, and to re
eive all

events it is interested in when it will re
onne
t (see Figure 4.5). In order to

do this, we developed two new a
tions. The �rst one,
alledmoveOutMas-

ter(), puts the
lient in a suspended mode, and asks the master server to store

58

Noti�
ation Persisten
e Servi
e Mobility Support in Siena

���
���
���
���

���
���
���
������
���
���

���
���
���
���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

event

C

C.moveOutMaster() C.moveInMaster()

C

b)a) c)

C

event

M M M

Figure 4.5: Noti�
ation persisten
e servi
e.

all events that mat
h its �lters. After the dis
onne
ted period, the
lient will

use the dual operation of moveOutMaster() (
alled moveInMaster()) to

re
onne
t. This operation allows the server to put the
lient ba
k in a
tive

mode, and to dispat
h all stored events to it. This feature results useful if

lient leaves, and returns to the same master server. Of
ourse, the
lient

ould
hange its position during the movement, but its master server will

remain the same. To
ommuni
ate this
hange of position to the server, the

lient
an use the setRe
eiver(new
oord) method provided by Siena. We

extend this a
tion, by
reating a new one
alledmoveInMaster(new
oord)

that sets up new position, and then a
ts as moveInMaster().

4.2.1 Implementation

The implementation of moveOutMaster() is really simple: when a remote

lient invokes the moveOutMaster(), a SENP.MVL massage, formatted in

a

ording to Siena proto
ol

1

[3℄, will be sent to the master server to inform

it about the Client request. Then, the server will sear
h the
lient's id into

its \
onta
ts" swit
hing it to a movingON mode (see Figure 4.5.a). Sin
e

this moment, every noti�
ation addressed to this
lient, will be stored in a

private queue (see Figure 4.5.b).

1

A Siena server uses a number of
odes to identify requests from
lients or other

servers. Those requests are de�ned by the Siena Event Noti�
ation Proto
ol (SENP). For

example a publi
ation is de�ned by the SENP.PUB
ode.

59

Event Re-routing Mobility Support in Siena

To return a
tive, the
lient has to
all the fun
tion moveInMaster().

This will send a SENP.MVI message to the master server that puts the

lient in movingOFF mode, and delivers every stored message to it (see

Figure 4.5.
). If
lient position is
hanged during the dis
onne
tion periods

(
lient
ould be moved to another host), but it would still use the same

server,
lient may invoke moveInMaster(new
oord) where new
oord is

a Pa
ketRe
eiver
lass (for more information refer to the Siena API [3℄).

moveInMaster(new
oord) will set up the new position in the server, by

sending a SENP.MAP request, and the it will a
t as the moveInMaster().

For more implementation details refer to Appendix C.1, and C.2.

4.3 Event Re-routing

It is reasonable to assume that a mobile
lient wants to move from an a
tual

master server to another one. In fa
t, during the motion, it may de
ide to

swit
h to a new a

ess-point
onsidered better than the old. In this s
enario,

the noti�
ation persisten
e servi
e represent only the �rst step of a new set

of possible solutions. As we explained above, sin
e part of the
lient state

is stored inside the event servi
e, if a
lient moved from a master server

to another, it must inform the event servi
e in order to modify its state,

and
on�guration. These in
lude events routing path,
lient's position, and

subs
riptions. In fa
t, if a
lient
hanged a server without inform the event

servi
e, the latter will still send the noti�
ation at the old address.

In the
urrent implementation of Siena [3℄ there is an available a
tion,

alled setMaster(new master), that allows a
lient to
hange its master

server. The single operations whi
h it performs are:

1. Unsubs
ribe all �lters from old master

2. Dis
onne
t from old master

3. Conne
t to new master

4. Subs
ribe all �lters

60

Event Downloading Mobility Support in Siena

But, sin
e setMaster(new master) is not an atomi
 a
tion, some problems

may o

ur. In fa
t, some events of interest for the
lient may be generated

while the
lient is still dis
onne
ted, or before it re-subs
ribes its �lters. This

means that the
lient will lose some noti�
ations.

In order to solve these problems, our idea is to store the
lient's noti�
a-

tions, and subs
riptions on the old master server throughout the swit
hing

pro
edure. During this time the status of the
lient should be suspended,

so that the noti�
ation persisten
e servi
e is a
tive, on both old and new

master server. This prevents lost events, but may
reate redundan
y. In fa
t

the same events
ould be stored in both master servers. Moreover, after the

motion the
lient should also be able to re
eive all noti�
ations stored on the

old master server. In the following Se
tion we detail our solution.

4.4 Event Downloading

One obvious solution is to download the events stored on the old master

server (
alled H) from the new one (
alled T), and then send them to the

lient (
alled C). To do this, we add a new a
tion,
alled moveInMas-

ter(dest), whi
h
onne
ts the
lient to the new server, subs
ribes all
lient's

�lter, downloads stored events from the old master server, and �nally it dis-

onne
ts the
lient from the server H (refer to Figure 4.6). Of
ourse, this

pro
edure requires some syn
hronization between master servers to avoid

losing or repli
ating events.

In order to solve these problems, we implemented themoveInMaster(T)

pro
edure with the following sequen
e of operations. Noti
e that the pro-

edure requires that the
lient
alls the moveOutMaster() method before

leaving the old server H:

1. Conne
t(T);

2. Store(T);

3. Subs
ribe(�lters, id);

61

Event Downloading Mobility Support in Siena

4. Download(H, T);

MergeEvents();

5. Dis
onne
t(H);

where �lters are �lters subs
ribed by the
lient, and id is the identity of

the
lient. After downloading the events (4), T has two queues of stored

1

TH

3

5

6

2 − 4
6: Disconnect(H);

5: Download(H,T);

1: Store(H);
2: Connect(T);
3: Store(T);
4: Subscribe(filters, id);

 MergeEvents();

Figure 4.6: T Downloads the events stored in H

events, many of whi
h
ould be repli
ations of the same noti�
ation. In order

to remove dupli
ated events, T will merge the two queues, and sends the

resulting queue to the
lient. The merge operation uses a simple
omparison

fun
tion based on the exa
t mat
h of all attributes and values.

4.4.1 Implementation

We assume the
lient has invoked the moveOutMaster() method before

it starts to move. When the
lient de
ides to return to an a
tive status,

thereby
hanges its master server, the
lient may
all the moveInMas-

ter(uri) (where uri is the address of the new server). This fun
tion will

perform the following a
tions:

1. The
lient C sends a
onne
tion request (SENP.WHO) to the new

master server T referred to by the uri parameter. T re
eives the request

and
reates a new MobileSubs
riber in its
onta
ts.

62

Event Downloading Mobility Support in Siena

2. C sends a MoveOutMaster request (SENP.MVL) to the new master T .

T re
eives it and puts C in movingON mode.

3. C re-subs
ribes all its �lters to the new master server T .

4. C sends an Event-download request (SENP.DWL) to T . T re
eives

it and sends an upload request (SENP.UPL) to H. H re
eives it and

sends all events it has stored (using SENP.PRV messages) to the new

master server T . When the download is
ompleted, the server T sends

a dis
onne
t request (SENP.BYE using the C's id) to H in order to

an
el all of C subs
riptions from the
onta
ts of H. Thus, the new

master server T merges the downloaded events with the lo
ally stored

events and sends the result to the
lient C. Finally, T put the C in the

movingOFF mode.

If also the position of the
lient C is
hanged during the dis
onne
tion

period (it
ould be moved to another host), C may invoke moveInMas-

ter(new
oord, uri) where new
oord is a Pa
ketRe
eiver obje
t (see the

Siena API [3℄). This operation will set up the new position of C in the

master T sending a SENP.MAP request, and then it will a
t as themoveIn-

Master(uri). For more implementation details refer to Appendix C.2.

4.4.2 Observations

This solution seems solve every problem, but sin
e Siena delivers all �l-

ters subs
ribed by C throughout the master server's hierar
hy (refer to Se
-

tion 2.2.3), there is a time gap between the �lters subs
ription and the �lters

a
tivation. This time gap may be long and, if during this time T downloads

the
lient's events stored in H (and thus dis
onne
ts C from H), there is a

high probability to lose events. In fa
t some noti�
ations
ould be generated

before the �lters a
tivate but after the events download. During this interval,

the noti�
ations
annot rea
h T . Furthermore, in H the events persisten
e

servi
e is no longer a
tive and this implies that these noti�
ations will be lost.

The duration of the a
tivation time may depend on a number of fa
tors, su
h

as network
ongestion, Siena workload, and others out of our
ontrol.

63

Event Downloading With Path Test Mobility Support in Siena

4.5 Event Downloading With Path Test

In order to solve problems explained in the previous se
tion, we need to

syn
hronize the event downloading (and then the
lient's dis
onne
tion from

the old master server) with the �lters a
tivation.

The main idea is to send a ping message (from the new master server T

to the old server H) throughout the Siena network and wait for a ping a
k

reply. When T
at
hes the ping a
k message, T
an download the events and

dis
onne
t the
lient C fromH (the a
tions sequen
e is showed in Figure 4.7).

The only way to send a message through the Siena master server's hier-

ar
hy is to build the ping message as a noti�
ation. Of
ourse H must be

subs
ribed for the ping and T must subs
ribe a �lter for the ping a
k.

1 − 2

TH

3

4 − 5 − 6

7

9

8 7: Publish(ping(id));

10

4: Store(T);

1: Store(H);
2: Subscribe(ping(id), H);
3: Connect(T);

5: Subscribe(filters, id);
6: Subscribe(pong(id), T);

9: Download(H,T);
MergeEvents();

10: Disconnect(H);

8: Publish(ping_ack(id));

Figure 4.7: Download events stored on the old server with syn
hronization.

We implemented a new version of themoveInMaster(T) pro
edure with

the following sequen
e of operations:

1. Conne
t(T);

2. Store(T);

3. Subs
ribe(�lters, id);

64

Event Downloading With Path Test Mobility Support in Siena

4. Subs
ribe(ping a
k(id), T);

5. Publish(ping(id));

6. Download(H, T);

MergeEvents();

7. Dis
onne
t(H);

Also in this
ase the pro
edure requires that the
lient C
alls the move-

OutMaster() method before leaving the old master server H. Noti
e that

in this
ase, the moveOutMaster() method must be modi�ed in order to

enable H to
at
h the ping message and reply to it with:

1. Store(H);

2. Subs
ribe(ping(id), H);

3. Wait(ping(id));

4. Publish(ping a
k(id));

This solution, based on \ping-pong" syn
hronization, seems to se
ure us

from losing pa
kets. Of
ourse, sin
e we are talking about a s
alable network

(su
h as the Internet), we have to use the expression \highly probable" in-

stead of \se
ure". In fa
t, Siena is not reliable, and thus some pa
kets
ould

be lost along the path between two
onse
utive Siena master servers.

The main idea behind this implementation of the event downloading is

the following: In order to re
eive the ping-a
knowledgement, T must be sub-

s
ribed for the ping a
k event and the related �lter must be a
tive through

the Siena network. The idea is that T subs
ribes the �lter for the ping a
k,

then C re-subs
ribed all its �lters. When T re
eives the ping a
k message,

the others �lters are also probably a
tive. If this is true, T is able to
at
h

all events in whi
h C is interested and store them in the appropriate queue.

Thus, T
an download the events stored in H and
an merge them with the

events lo
ally stored. Only at this point T
an dis
onne
t the
lient C from

the old master server H and make C a
tive. The syn
hronization time-steps

performed by the download pro
edure are shown in Figure 4.8.

65

Event Downloading With Path Test Mobility Support in Siena

(old position)
Client (new position)

Client

pong(id)

MoveOutMaster()

deliver(events)

Connect(new_master)

disconnect(id)

download_req()

download()

subscribe(filters)

ping(id)

store()

old_master new_master

Figure 4.8: Events downloading: time-steps syn
hronization

4.5.1 Implementation

We assume the
lient has invoked the moveOutMaster(true) before it

starts to move. The new parameter true for
es the master server T to use

the Hierar
hi
al-path test before it downloads the events. When the
lient

alls the moveOutMaster(true) fun
tion, the server H
reates a listener

that waits for a ping message.

When the
lient C de
ides to return to an a
tive status, it may
all the

moveOutMaster(uri, true) (where uri is the address of the new master

server and true means that the C wants to use the Hierar
hi
al-path test).

ThemoveOutMaster(uri, true) fun
tion will perform the following a
tion:

1. Client C sends a
onne
tion request (SENP.WHO) to the new master

server T referred to by the uri parameter. T re
eives it and
reates a

new MobileSubs
riber in its
onta
ts.

2. C sends a MoveOutMaster request (SENP.MVL) to T . The master

server T re
eives it and puts C in movingON mode.

3. C re-subs
ribes all its �lters to the new master server.

66

Mobile Server Dis
overy Mobility Support in Siena

4. C sends an Event-download request (SENP.DWH) to the new mas-

ter server T . T re
eives it, subs
ribes for the ping a
k, sends a ping

message through the Siena dispat
her hierar
hy, and waits for a reply.

When the server H
at
hes the ping, H will reply with the ping a
k

message. After T
at
hes the ping a
k it will send an upload request

(SENP.UPL) to the master server H. H re
eives it and will send

all events it has stored (using SENP.PRV messages) to the master

server T . When the download is �nished, T sends a dis
onne
t re-

quest (SENP.BYE using the C's id) to H in order to
an
el all of the

C's subs
riptions from the
onta
ts of H. Thus, T merges the down-

loaded events with the lo
ally stored events and sends the result to the

lient C. Finally, the master server T puts C in the movingOFF mode.

In order to manage both a
hange of lo
ation and master server swit
hing,

we also added the fun
tion moveInMaster(new
oord, uri, true) where

new
oord is a Pa
ketRe
eiver
lass (refer to the Siena API [3℄). This oper-

ation will set up the new position in the master server, sending a SENP.MAP

request, and then it will a
t as the moveInMaster(uri, true). For more

implementation details refer to Appendix C.2.

4.6 Mobile Server Dis
overy

A usual problem to be solved in mobility management is how dis
over servi
e

servers during the motion. For instan
e, in wireless networks ea
h server has a

physi
al dedi
ated
hannel (typi
ally a radio frequen
y) used for
ontinually

sending the server identi�er and lo
ation. When a Mobile Station (MS)

enters the zone served by a spe
i�
 server, the MS
at
hes this signal and

MS
an perform the server swit
hing using information it has read. In the

Internet environment, this solution is not appli
able (see Figure 4.9) be
ause

a dis
onne
ted Mobile Agent does not have the possibility to re
eive any kind

of message.

A simple solution we deployed is to o�er a server dis
overy servi
e to

the
lient. The idea is that, before its dis
onne
tion, the
lient
an ask

67

Implementation Mobility Support in Siena

Hierarchical Dispatcher

Event Service

Mobile Dispatcher

T

H

?

Figure 4.9: How Dis
over another MobileDispat
her

the Siena network for a list of available hosts whi
h are able to manage

the
lient's mobility. This new fun
tionality, invoked by addMobileDis-

pat
herFinder(Noti�able n), sends a publi
 message from the a
tual
lient's

server through the network, and every MobileDispat
her will reply to it with

their own lo
ation and information. Every reply pa
ket,
aught by the sour
e

master server, will be delivered to the interested
lient (refer to Figure 4.10).

Of
ourse, the server dis
overy servi
e may be stopped at any moment

by the
lient by invoking the removeMobileDispat
herFinder(Noti�able

n). After this operation, the mobile
lient has a list of available MobileDis-

pat
hers and it
an
hoose one of them to re
onne
t itself after the motion.

4.7 Implementation

This servi
e is implemented using the standard features o�ered by Siena.

In fa
t, when a Siena mobile server is started, it simply
reates a Noti�able

obje
t subs
ribed for the �lter

f

s

: servi
e = Mobile Server Request

68

Implementation Mobility Support in Siena

C.addMobileDispatcherFinder(n);

"M3"

"M2"

"M4"

"M1"

M1

M3H

H

H

H

H

H

M2

M4

C

"M1","M2","M3","M4"

M1

M3H

H

H

H

H

H

M2

M4

C

Figure 4.10: How Dis
over another MobileDispat
her

. This �lter remains a
tive during the life
y
le of this master server.

When a
lient wants to know where the servers that o�er the mobil-

ity servi
e are lo
ated, it may invoke addMobileDispat
herFinder(re
),

where re
 is the the obje
t that will re
eive the noti�
ations. This fun
tion

subs
ribes re
 for

f

r

: servi
e = Mobile Server Reply

and publishes the

e

s

: servi
e = Mobile Server Request

event. the event e

s

will mat
h with f

s

and, at this point, the master servers

that
aught this event will reply to it by generating the event

e

r

: servi
e = Mobile Server Reply; uri = lo
aluri; info = lo
alinfo

where lo
aluri is the address of the replyer's master server, and lo
alinfo

ould represent some useful information about this server. This information

may be spe
i�ed when the server is starting up by setting the \-info string"

option in the siena.StartMobile
ommand. For more information refer to the

69

Observations Mobility Support in Siena

moveOutMaster()

moveOutMaster(boolean QoS)

moveInMaster()

moveInMaster(Pa
ketRe
eiver pr)

moveInMaster(string uri)

moveInMaster(string uri, boolean QoS)

moveInMaster(Pa
ketRe
eiver pr, string uri)

moveInMaster(Pa
ketRe
eiver pr, string uri, boolean QoS)

addMobileDispat
herFinder(Noti�able re
)

removeMobileDispat
herFinder(Noti�able re
)

Table 4.1: Interfa
e Siena Mobility Support

Siena implementation [3℄.

After that, a
lient may stop the sear
h by
alling the removeMo-

bileDispat
herFinder(re
) method. This method will simply unsubs
ribe

the re
 obje
t for the �lter f

r

.

4.8 Observations

In Table 4.8 there are listed the APIs we added to Siena in order to support

the
lient's mobility. Note that the parameter QoS represent the Quality

of Servi
e guaranteed by the referred fun
tions. The default value of QoS

is false. This means that the default kind of download does not test the

hierar
hi
al-path. If a
lient wants to use this spe
i�
 downloading mode, it

must invoke the relevant fun
tion with \QoS=true". Obviously, the
lient

has to
hoose the same QoS for themoveOutMaster andmoveInMaster.

For example, if it
alled moveOutMaster(false) at the old site, it must

invoke moveInMaster(pr, uri, false) from the new lo
ation.

70

Chapter 5

Con
lusions

In Se
tion 3.6 we have des
ribed our attempt at performan
e evaluations of a

distributed appli
ation deployed over a wireless network. The appli
ation is

hara
terized by the intera
tion of multiple
lients residing at the periphery

of the network, as well as by the need to deploy elements of the appli
ation

deep into the network.

We evaluated the impa
t of deploying Siena onto the wireless GPRS

network from two di�erent perspe
tives. The �rst was to gather data
har-

a
terizing the performan
e of the three di�erent low-level
onne
tors (UDP,

TCP, and keep-alive TCP) on the wireless network. The se
ond was to
om-

pare these results with baseline data
olle
ted on a lo
al-area, wired network.

The data shown in Table 3.5 gives an indi
ation of the
ir
umstan
es that

lead to di�erent noti�
ation loss rates. For example, as we would expe
t, the

highest loss rate o

urs at an error probability of 10

�3

under the DROP error-

handling mode. We
an also see that the keep-alive
onne
tor is the most

sensitive to in
reasing error rates and de
reasing quality of error-handling

servi
e. By
omparing these results with the baseline overhead (showed in

Table 3.6) one simple thing we
an note is the high overhead of TCP. In

fa
t in the wireless
ase it is approximately twelve pa
kets per noti�
ation,

onsiderably higher than in the lo
al-area, wired
ase.

To our disappointment, we were not able to �nd tools
apable of sup-

porting a full evaluation of this appli
ation. We were limited to the narrow

71

Con
lusions

evaluation of a single
lient intera
ting a
ross the network with a single server.

Nevertheless, our experien
e should not be taken as a
riti
ism of Seawind,

the tool that we de
ided to use for our evaluation. In fa
t, we found Seawind

to be a reasonable and useful tool for its purpose.

Clearly, a need exists for a di�erent kind of tool for wireless-network per-

forman
e evaluation. Before embarking on the development of su
h a tool

ourselves, we �rst plan to study the
apabilities of NS-2 and its GPRS mod-

ule, whi
h hold some promise for modeling and evaluating servi
es deployed

deeply into a wireless network. We might in fa
t be able to extend them to

also allow modeling and evaluation of
lient intera
tion over the network.

As we explained in Se
tion 4, our intent was to deploy a mobility support

in the Siena publish/subs
ribe middleware. This introdu
ed some problems,

su
h as messages persisten
e during the
lient motion, noti�
ation re-routing

after the movement, events downloading from the new
lient's destination,

that we have studied and solved. We extended the set of available operations

in Siena adding new a
tions spe
i�
ally oriented to manage the mobility of

the
lients. These allow the
lient to relo
ate from host to host updating

its information maintained by the event-servi
e. The basi
 operations we

developed are moveOutMaster and moveInMaster. moveOutMaster

allows a
lient to de
lare its intention to move and
auses the event-servi
e

to suspend the delivery of noti�
ations to that
lient. Of
ourse, all events

addressed to this
lient will be stored by the event-servi
e. When the
lient

rea
hes its new lo
ation, it
an use the moveInMaster operation to re
on-

ne
t to the event-servi
e and retrieve all noti�
ation stored while the
lient

was dis
onne
ted (see Se
tion 4.8). Finally, we also added some operations

that allow the
lient to dis
over other mobility-servi
e-enabled servers avail-

able throughout the network.

The API extension we presented in Se
tion 4.8 provide spe
i�
 servi
es

for mobile
lients. However we do not
onsider them as a de�nitive solution,

but rather as a basis for future works. In fa
t they allow us to perform

additional
ase studies. One important aspe
t that we would like to study

is the level of reliability provided by the new servi
es. In parti
ular, we

72

Con
lusions

would like to quantify the probability of losing or dupli
ated messages, or of

hanging the their ordering [26℄. As another further development, we would

like to perform additional tests whi
h we believe are very important due the

probabilisti
 nature of the errors a�e
ting the system.

Protected LAN

Trusted Link

H

C

C.moveInMaster(T);

T

Event download

Firewall

��������������������������

Figure 5.1: Dynami
 re
on�guration using Mobile Support

It is also important to note that this solution
ould not work in the pres-

en
e of network se
urity
onstraint. In fa
t, the downloading pro
ess
ould

be restri
ted in
ase in whi
h one of two masters involved in the downloading

pro
ess is lo
ated behind a network �rewall (as in the s
enario of Figure 5.1).

We would have to study alternative solutions for
ases su
h as this.

Sin
e a
omponent is unrea
hable during its dis
onne
tion, it
annot re-

eive events and thus it
annot perform any kind of operation in replying to

it. This may be an undesired behavior in presen
e of real-time
onstraints in

the system.

Finally, sin
e in Siena
lients and masters are built using the same
lass

and ar
hite
ture, a
lient
an also a
t as server. This allows us to
hange

master for dynami
ally re
on�guring the Siena network (see Figure 5.2).

In fa
t, even if a master is usually �xed in the network, we may use the

mobile
apabilities (su
h as moveOutMaster() and moveInMaster(uri))

to momentary dis
onne
t the master, re
on�gure the Siena network topology

and re
onne
t it to another master avoiding lost pa
kets.

Next milestones in these dire
tions should be to �nish the testing phase

73

Con
lusions

T

H

C.moveInMaster(T)

C

H

T

Figure 5.2: Dynami
 re
on�guration using Mobile Support

and evaluate the results. Furthermore, we should understand if reliability

is indeed a
riti
al non-fun
tional requirement in the
ontext of mobility.

After that, we would also like to experiment with mobile agents using the

Sienamobility support in order to study the impa
t of the publish/subs
ribe

ar
hite
ture in this
ontext. Finally we would like to
ombine the mobility

support we deployed in Siena with the host mobility for example using an ad-

ho
 network [21℄. In fa
t, sin
e this is
ompletely
omposed by mobile hosts,

its topology (and then the relations between the masters whi
h
omposed it)

hanges qui
kly over the time. In a situation like this, we imagine a Siena

MobileDispat
her running in every mobile hosts and using the mobile features

to manage its relation to the other
omponents (this is usually referred by the

term Context Management [29℄). It would be useful to validate our solution

in this s
enario and possibly study alternative solutions.

74

Appendix A

Au
tion Class Diagrams

A.1 Seller Class Diagram

starSell

public void main()
void showOutput()
void readInput()

MIDP

selling

void connect()
void disconnect()
void publish_Item()

Item_Info

int ItemID
String Auction
String Category
String Title
String Description
String Payment
String Shipping
double Reserve
double Startbid
double Increment
double mybid

User_Info

String FName
String LName
String Address
String URL
int port

Bid_Update

void notify(Notification n)

Date

int dd
int mm
int yy

Time

int hh
int mm

Rec_Bids

void addBid(Notification n)
Bid_Info getBid(int Index)

Bid_Info

int ItemID
double bid
String UFname
String ULname

String toString()

ThinClient

void publish(Notification n)
void subscribe(filter f, Notifiable n)

0..*

Figure A.1: Seller
lasses intera
tion.

75

Buyer Class Diagram Au
tion Class Diagrams

A.2 Buyer Class Diagram

buying

void connect()
void disconnect()
viod searc()
void publish_bid()

StartBuy

public void main()
void showOutput()
void readInput()

MIDP

<<>>

Search_Results

Vector ItemList

void addItem(Notification n)
public Item_Res getItem(int i)

Searc_Update

void notify(Notification n)

Item_Res

String FName
String LName
int ItemID
String Auction
String Category
String Title
String Description
String day
String month
String year
String hour
String minute
String Payment
String Shipping
double Reserve
double Startbid
double Increment
double mybid

0..*

ThinClient

void publish(Notification n)
void subscribe(filter f, Notifiable n)

User_Info

String FName
String LName
String Address
String URL
int port

Figure A.2: Buyer
lasses intera
tion.

76

Appendix B

Seawind v3.0

Seawind enables resear
hers to emulate the behavior of wireless network using

a
ommon wireline lo
al area network. The emulator allows examination

of data transfer of wireless network like GSM and GPRS. The ability to

emulate a wireless data network gives the possibility to �nd enhan
ements

in transport proto
ol and network parameters.

B.1 Components of Seawind

The emulator a
ts like a bla
k box that takes information in, handles it, and

sends it out. Seawind produ
es output whi
h
an be investigated graphi
ally.

Figure B.1 present the logi
al ar
hite
ture of the system. This
on�guration

SWD SWD

WLG WLGNPASP

Mobile WLG

GUI

SPNPA

SWD

Emulator Remote WLG

BLG BLG

Figure B.1: Seawind Ar
hite
ture.

77

Components of Seawind Seawind v3.0

sets up two Simulation Psro
ess (SP) and they are lo
ated in the same net-

work node.

B.1.1 Graphi
al User Interfa
e (GUI)

The GUI interfa
e intera
ts dire
tly with the user and
onsist of a few win-

dows in whi
h the user
an
ontrol the system.

B.1.2 Seawindd (SWD)

The seawindd is the Seawind daemon and runs in every ma
hine where Sea-

wind
omponents work. It starts other
omponents after getting
oherent

messages from the GUI.

B.1.3 Workload Generator (WLG)

The WLG generates the workload used in tests run. Seawind provides for

two types of WLGs: unidire
tional and bidire
tional tt
p [34℄. Other external

WLGs
an be used but those need to be
ontrolled outside Seawind.

B.1.4 Network Proto
ol Adapter (NPA)

If Seawind own WLG is used, the NPA is used to en
apsulate the data and

forward it to the SP. Vi
e versa on the other end the NPA gets data from the

SP and de
apsulates the data before forwarding it to the re
eiving WLG. In

this version of Seawind there is only one type of NPA de�ned:the type PPP

(Point-to-Point proto
ol) [32℄.

B.1.5 Simulation Pro
ess (SP)

The simulation Pro
ess is the heart of Seawind. It a�e
ts the
ommuni
ation

between workload generators by delaying and dropping pa
kets a

ording to

given parameters. In addition, the SP produ
e output information whi
h

des
ribes the
urrent
ommuni
ation
ow.

78

Parameters of Seawind Seawind v3.0

Befor a test
an be run the user needs to de�ne the parameters and

thus behavior for all the mentioned
omponents. The SP parameters, like

spped and error distributions,
an be de�ned independently for the Uplink

1

and downlink

2

. After the test, the user
an utilize third party tools (like

t
pdump [22℄ and ethereal [7℄) for analyzing the transfer.

B.1.6 Ba
ground load (BGL)

The ba
kground load simulates the real
ommuni
ationsystem's problem that

also other users utilize network resour
es and a�e
t data transmitting of

primary users.

B.2 Parameters of Seawind

Setting up a test with Seawind requires a number of parameters to be set

in the graphi
al user interfa
e (GUI). The numerous parameters of Seawind

are distributed among the di�erent emulator system
omponents. Every

omponent has its own parameters.

The user starts the setting up by
hoosing di�erent repli
ation sets. A

repli
ation set de�nes the workload to be used, the network setup, and the

number of repli
ations. A test run
an in
lude several repli
ation sets, whi
h

are run one after the other. The results of all repli
ation sets are written in

log �les.

The network setup de�nes the lo
ation of di�erent Seawind
omponents

and the network subsystem parameters for both dire
tions of the transfer.

The
onne
tion between the WLGs and the emulator kernel
an either be a

TCP
onne
tion or a serial link through the
omputers
ommuni
ation ports.

PPP
an be used to
arry the workload from tt
p sender through Seawind to

the tt
p re
eiver. Also ba
kground load parameters are part of SP parameters

set. For more information, refer to the Seawind User Manual [25℄.

1

Uplink is the dire
tion from the mobile station to the network server.

2

Downlink is the dire
tion from the network server to the mobile station.

79

Appendix C

MobileDispat
her.java

//

// This file is part of Siena, a wide-area event

// notifi
ation system.

// See http://www.
s.
olorado.edu/serl/siena/

//

// Author: Mauro Caporus
io <
aporus
�
s.
olorado.edu>

//

// Copyright (C) 1998-2002 University of Colorado

//

// This program is free software; you
an redistribute

// it and/or modify it under the terms of the GNU

// General Publi
 Li
ense

// as published by the Free Software Foundation;

// either version 2 of the Li
ense, or (at your option)

// any later version.

// This program is distributed in the hope that it will

// be useful, but WITHOUT ANY WARRANTY; without even the

// implied warranty of MERCHANTABILITY or FITNESS FOR A

// PARTICULAR PURPOSE. See the GNU General Publi
 Li
ense

// for more details.

//

// $Id: MobileDispat
her.java,v 1.00 2002/03/05 18:51:31

// based on Hierar
hi
alDispat
her.java, v 1.50

//

pa
kage siena;

import siena.
omm.*;

import java.util.Colle
tion;

80

Class MobileSubs
riber MobileDispat
her.java

import java.util.Set;

import java.util.HashSet;

import java.util.Map;

import java.util.Map.Entry;

import java.util.HashMap;

import java.util.List;

import java.util.LinkedList;

import java.util.Iterator;

import java.util.ListIterator;

import java.util.Ve
tor;

import java.io.IOEx
eption;

import java.io.*;

import java.net.InetAddress;

import java.net.ServerSo
ket;

import java.net.So
ket;

C.1 Class MobileSubs
riber

//

// this is the abstra
tion of the subs
riber used by the

// MobileDispat
her. It represents remote as well as lo
al

// notifiable obje
ts. In addition to that, this o

// bje
t keeps tra
k of failed attempts to
onta
t the notifiable

// obje
t so that MobileDispat
her
an periodi
ally
lean up

// its subs
riber tables.

//

lass MobileSubs
riber implements Pa
ketNotifiable {

publi
 short failed_attempts = 0;

publi
 long latest_good = 0;

private boolean suspended = false;

private Notifiable lo
alobj = null;

private Pa
ketSender remoteobj = null;

int ref
ount = 0;

private SENPPa
ket spkt = new SENPPa
ket();

private boolean moving = false;

private Ve
tor storedEvents = null;

private Ve
tor dwlEvents = null;

81

Class MobileSubs
riber MobileDispat
her.java

private int aspe
tedSize = -1;

publi
 final byte[℄ identity;

publi
 Filter pfilter = null;

publi
 ping_pong pingpong;

publi
 boolean pinga
k;

syn
hronized publi
 Ve
tor getStoredEvents(){

return storedEvents;

}

syn
hronized publi
 void movingON(){

moving = true;

}

syn
hronized publi
 void movingOFF(){

if (isLo
al())

while(!storedEvents.isEmpty())

{

try {

lo
alobj.notify((Notifi
ation)

storedEvents.remove(0));

}

at
h (Ex
eption ex) {

handleNotifyError(ex);

return;

}

}

else

while(!storedEvents.isEmpty())

{

try {

SENPPa
ket pkt = (SENPPa
ket)

storedEvents.remove(0);

remoteobj.send(pkt.buf, pkt.en
ode());

}

at
h (Ex
eption ex) {

handleNotifyError(ex);

return;

}

}

moving = false;

}

82

Class MobileSubs
riber MobileDispat
her.java

syn
hronized publi
 void movingOFF(Ve
tor stored){

if (isLo
al())

{

while(!stored.isEmpty())

{

try {

lo
alobj.notify((Notifi
ation)

stored.remove(0));

}

at
h (Ex
eption ex) {

handleNotifyError(ex);

return;

}

}

}

else

{

while(!stored.isEmpty())

{

try {

SENPPa
ket pkt = (SENPPa
ket)

storedEvents.remove(0);

remoteobj.send(pkt.buf, pkt.en
ode());

}

at
h (Ex
eption ex) {

handleNotifyError(ex);

return;

}

}

}

moving = false;

}

syn
hronized publi
 boolean dwlEvent(SENPPa
ket pkt){

int pos = pkt.ttl - 10;

if (pkt.event == null)

aspe
tedSize = pos;

else

{

if (dwlEvents == null) dwlEvents = new Ve
tor();

pkt.method = SENP.PUB;

dwlEvents.add(pkt);

83

Class MobileSubs
riber MobileDispat
her.java

}

int a
tualsize = dwlEvents.size();

if (a
tualsize == aspe
tedSize)

{

mergeEvents();

return true;

}

else return false;

}

syn
hronized publi
 void mergeEvents(){

moving = false;

if ((dwlEvents == null) && (storedEvents.size() == 0))

return;

if (dwlEvents == null)

{

movingOFF();

return;

}

if (storedEvents.size() == 0)

{

movingOFF(dwlEvents);

return;

}

for(int i = 0; i < dwlEvents.size(); i++)

{

SENPPa
ket objd = (SENPPa
ket) dwlEvents.get(i);

for(int j = 0; j < storedEvents.size(); j++)

{

SENPPa
ket objs = (SENPPa
ket)

storedEvents.get(j);

String str1 = objd.event.toString();

String str2 = objs.event.toString();

if (str1.
ompareTo(str2) == 0)

storedEvents.remove(j);

}

}

dwlEvents.addAll(storedEvents);

movingOFF(dwlEvents);

}

syn
hronized publi
 boolean notify(SENPPa
ket pkt) {

84

Class MobileSubs
riber MobileDispat
her.java

if (suspended) return true;

try {

if (lo
alobj != null) {

if (moving) storedEvents.add(new

Notifi
ation(pkt.event));

else lo
alobj.notify(pkt.event);

} else {

if (moving) storedEvents.add(pkt);

else remoteobj.send(pkt.buf, pkt.en
ode());

}

failed_attempts = 0;

return true;

}
at
h (Ex
eption ex) {

handleNotifyError(ex);

return false;

}

}

syn
hronized publi
 void notify(Notifi
ation n,

byte[℄ our_id) {

if (suspended) return;

try {

if (lo
alobj != null) {

if (moving) storedEvents.add(n);

else lo
alobj.notify(n);

} else {

spkt.init();

spkt.id = our_id;

spkt.method = SENP.PUB;

spkt.event = n;

spkt.to = identity;

if (moving) storedEvents.add(spkt);

else remoteobj.send(spkt.buf, spkt.en
ode());

}

}
at
h (Ex
eption ex) {

handleNotifyError(ex);

}

}

syn
hronized publi
 void notify(Notifi
ation [℄ s,

byte[℄ our_id) {

if (suspended) return;

85

Class MobileDispat
her MobileDispat
her.java

try {

if (lo
alobj != null) {

//

// here I purposely do not dupli
ate the

// sequen
e for effi
ien
y reasons.

// Clients should never modify

// obje
ts passed through notify().

//

if (moving)

{

for(int i=0; i < s.length; ++i)

storedEvents.add(s[i℄);

}

else lo
alobj.notify(s);

} else {

spkt.init();

spkt.id = our_id;

spkt.method = SENP.PUB;

spkt.events = s;

spkt.to = identity;

if (moving) storedEvents.add(spkt);

else remoteobj.send(spkt.buf, spkt.en
ode());

}

}
at
h (Ex
eption ex) {

handleNotifyError(ex);

}

}

}

C.2 Class MobileDispat
her

publi

lass MobileDispat
her implements Siena, Runnable {

private MPoset subs
riptions = new MPoset();

private Map
onta
ts = new HashMap();

private MSenderManager pqueue = null;

private byte[℄ master_id = null;

private byte[℄ master_handler = null;

private Pa
ketSender master = null;

private Pa
ketRe
eiver listener = null;

private byte[℄ my_identity = null;

86

Class MobileDispat
her MobileDispat
her.java

private List mat
hers = new LinkedList();

private SENPPa
ket spkt = new SENPPa
ket();

private byte [℄ sndbuf = new byte[SENP.MaxPa
ketLen℄;

private Pa
ketSenderFa
tory sender_fa
tory;

stati
 private Pa
ketSenderFa
tory default_sender_fa
tory

= new Generi
SenderFa
tory();

private void pro
essRequest(SENPPa
ket req) {

Logging.prlnlog("pro
essRequest: " + req);

if (req == null) {

Logging.prlnerr("pro
essRequest: null request");

return;

}

if (req.ttl <= 0) return;

req.ttl--;

try {

swit
h(req.method) {

ase SENP.NOP: break;

ase SENP.PUB: publish(req); break;

ase SENP.SUB: subs
ribe(req); break;

ase SENP.BYE: req.pattern = null;

req.filter = null;

ase SENP.UNS: unsubs
ribe(req); break;

ase SENP.WHO: reply_who(req); break;

ase SENP.INF: get_info(req); break;

ase SENP.SUS: suspend(req); break;

ase SENP.RES: resume(req); break;

ase SENP.MAP: map(req); break;

ase SENP.CNF:
onfigure(req); break;

ase SENP.OFF: shutdown();

//

// BEGIN_UNOFFICIAL_PATCH

try { Thread.sleep(500); }

at
h (Ex
eption ex) {};

System.exit(0);

// END_UNOFFICIAL_PATCH

//

break;

//BEGIN_MOBILITY_PATCH

87

Class MobileDispat
her MobileDispat
her.java

ase SENP.MVL: moveoutLOW(req); break;

ase SENP.MVH: moveoutHIGH(req); break;

ase SENP.MVI: movein(req); break;

ase SENP.DWL: downloadNotifi
ationLOW(req);

break;

ase SENP.DWH: downloadNotifi
ationHIGH(req);

break;

ase SENP.UPL: uploadNotifi
ation(req); break;

ase SENP.PRV: req.ttl++; privateEvent(req);

break;

//END_MOBILITY_PATCH

default:

Logging.prlnerr("pro
essRequest:

unknown method: " + req);

//

//
an't handle this request (yet)

// ...work in progress...

//

}

}
at
h (Ex
eption ex) {

Logging.exerr(ex);

//

// log something here ...work in progress...

//

}

}

//==

// MOBILITY SUPPORT PATCH

//==

//--

//Lo
al Requests

//--

/** suspends the delivery of notifi
ation to the

* given subs
riber n and allows the master to store

* all notifi
ation addressed to this dispat
her .

*

* This
auses the master server to stop sending

* notifi
ation to this subs
riber and to store

* them in a queue.

* The master
orre
tly maintains all the existing

88

Class MobileDispat
her MobileDispat
her.java

* subs
riptions so that the flow of notifi
ation
an be

* later resumed

* (see moveIn(Notifiable n)).

* This operation
an be used when this

* dispat
her, that is this virtual ma
hine, is going to be

* temporarily dis
onne
ted from the network or somehow

* unrea
hable from its master server.

*

**/

syn
hronized publi
 void moveOut(Notifiable n)

throws SienaEx
eption {

if (n == null) return;

MobileSubs
riber s;

s = (MobileSubs
riber)
onta
ts.get(n);

if (s != null) s.movingON();

}

/** resumes the delivery of notifi
ation to the given

*subs
riber n.

*

* This
auses the master server to resume sending

* stored and new notifi
ations to this subs
riber.

*

*

* �see #moveOut(Notifiable n)

* �see #suspend(Notifiable n)

* �see #resume(Notifiable n)

**/

syn
hronized publi
 void moveIn(Notifiable n)

throws SienaEx
eption {

if (n == null) return;

MobileSubs
riber s;

s = (MobileSubs
riber)
onta
ts.get(n);

if (s != null) s.movingOFF();

}

//--

//Remote Requests

//--

syn
hronized private void dis
onne
tMaster(

byte[℄ omaster_handler, Pa
ketSender omaster, String id) {

if (omaster != null) {

try {

spkt.init();

89

Class MobileDispat
her MobileDispat
her.java

spkt.method = SENP.BYE;

spkt.id = id.getBytes();

spkt.to = omaster_handler;

omaster.send(spkt.buf, spkt.en
ode());

}
at
h (Pa
ketSenderEx
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString() + ": " + ex.toString());

//

// well, what would you do in this
ase?

// ...work in progress...

//

}

//master = null;

//master_handler = null;

}

}

syn
hronized private void moveoutLOW(SENPPa
ket req) {

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

MobileSubs
riber s = (MobileSubs
riber)

onta
ts.get(id);

if (s != null) s.movingON();

}

syn
hronized private void moveoutHIGH(SENPPa
ket req) {

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

//System.out.println(id);

MobileSubs
riber s = (MobileSubs
riber)

onta
ts.get(id);

if (s != null)

{

s.movingON();

try{

s.pingpong = new ping_pong(this, s);

s.pfilter = new Filter();

s.pfilter.addConstraint("id__",id);

s.pfilter.addConstraint("type__",

"SYNC_PING");

this.subs
ribe(s.pfilter, s.pingpong);

}

at
h (SienaEx
eption ex)

90

Class MobileDispat
her MobileDispat
her.java

{

Logging.prlnerr("error subs
ribing ");

Logging.exerr(ex);

}

}

}

syn
hronized private void movein(SENPPa
ket req) {

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

//System.out.println(id);

MobileSubs
riber s = (MobileSubs
riber)

onta
ts.get(id);

if (s != null) s.movingOFF();

}

syn
hronized private void downloadNotifi
ationLOW(

SENPPa
ket req){

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

MobileSubs
riber s = (MobileSubs
riber)

onta
ts.get(id);

if (s != null)

{

//ServerSo
ket server;

Pa
ketSender oldmaster;

try {

//send the server address to the OLD master

oldmaster =

sender_fa
tory.
reatePa
ketSender(

new String(req.to));

spkt.init();

spkt.method = SENP.UPL;

spkt.id = req.id;

spkt.to = oldmaster.toString().getBytes();

spkt.handler = listener.uri();

oldmaster.send(spkt.buf, spkt.en
ode())

}

at
h (Ex
eption ex) {

Logging.prlnerr("error

sending pa
ket to " + master.toString());

Logging.exerr(ex);

91

Class MobileDispat
her MobileDispat
her.java

}

}

}

syn
hronized private void downloadNotifi
ationHIGH(

SENPPa
ket req){

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

MobileSubs
riber s = (MobileSubs
riber)
onta
ts.get(id);

if (s != null)

{

try{

s.pinga
k = false;

s.pingpong = new ping_pong(this, s);

s.pfilter = new Filter();

s.pfilter.addConstraint("id__", id);

s.pfilter.addConstraint("type__", "SYNC_PONG");

this.subs
ribe(s.pfilter, s.pingpong);

Notifi
ation n = new Notifi
ation();

n.putAttribute("id__",id);

n.putAttribute("type__","SYNC_PING");

this.publish(n);

int tent = 0;

while ((!s.pinga
k) && (tent < 60)){

try{

Thread.sleep(1000);

tent++;

}

at
h (java.lang.InterruptedEx
eption ex) {

System.out.println("interrupted");

}

}

if (tent == 60)

{

Logging.prlnerr("error dowloading");

return;

}

92

Class MobileDispat
her MobileDispat
her.java

this.unsubs
ribe(s.pfilter, s.pingpong);

}

at
h (SienaEx
eption ex)

{

Logging.prlnerr("error subs
ribing ");

Logging.exerr(ex);

}

//ServerSo
ket server;

Pa
ketSender oldmaster;

try {

//send the server address to the OLD master

oldmaster =

sender_fa
tory.
reatePa
ketSender(

new String(req.to));

spkt.init();

spkt.method = SENP.UPL;

spkt.id = req.id;

spkt.to = oldmaster.toString().getBytes();

spkt.handler = listener.uri();

oldmaster.send(spkt.buf, spkt.en
ode());

}

at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to " +

master.toString());

Logging.exerr(ex);

}

}

}

syn
hronized private void uploadNotifi
ation(SENPPa
ket req){

if (req.id == null || req.ttl == 0) return;

String id = new String(req.id);

MobileSubs
riber s = (MobileSubs
riber)
onta
ts.get(id);

if (s != null)

{

Pa
ketSender so
;

try {

//Conne
tion

so
 = sender_fa
tory.
reatePa
ketSender(

93

Class MobileDispat
her MobileDispat
her.java

new String(req.handler));

//Downloading stored Events

Ve
tor storedEvents = s.getStoredEvents();

byte p
knum = 9;

while(!storedEvents.isEmpty())

{

p
knum ++;

SENPPa
ket prv = (SENPPa
ket)

storedEvents.remove(0);

prv.method = SENP.PRV;

prv.ttl = p
knum;

prv.id = my_identity;

prv.to = id.getBytes();

prv.handler = listener.uri();

so
.send(prv.buf, prv.en
ode());

}

//Download is finished

p
knum++;

spkt.method = SENP.PRV;

spkt.ttl = p
knum;

spkt.id = my_identity;

spkt.to = id.getBytes();

spkt.handler = listener.uri();

spkt.event = null;

so
.send(spkt.buf, spkt.en
ode());

}

at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
kets to "

+ new String(req.handler));

Logging.exerr(ex);

}

}

}

syn
hronized private void privateEvent(SENPPa
ket req){

if (req.id == null) return;

94

Class MobileDispat
her MobileDispat
her.java

String id = new String(req.to);

MobileSubs
riber s = (MobileSubs
riber)
onta
ts.get(id);

if (s != null)

if (s.dwlEvent(req))

{

try {

Pa
ketSender old_master =

sender_fa
tory.
reatePa
ketSender(

new String(req.handler));

dis
onne
tMaster(req.handler,

old_master, id);

}

at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ new String(req.handler));

Logging.exerr(ex);

}

}

}

//--

//Publi
 Methods

/** suspends the
onne
tion with the master server of

* this dispat
her and allows the master to store all

* notifi
ation addressed to this dispat
her.

*

* This
auses the master server to stop sending

* notifi
ation to this dispat
her and to store them

* in a queue.

* The master
orre
tly maintains all the

* existing subs
riptions so that the flow

* of notifi
ation
an be later resumed

* (see moveInMaster()).

* This operation
an be used when this

* dispat
her, that is this virtual ma
hine, is going to be

* temporarily dis
onne
ted from the network or somehow

* unrea
hable from its master server.

*

* �param QoS is the Quality of Servi
e

* if true high reliability

* if false low reliability

95

Class MobileDispat
her MobileDispat
her.java

*

* �see #suspendMaster()

* �see #resumeMaster()

* �see #moveInMaster()

**/

syn
hronized publi
 void moveOutMaster(boolean QoS) {

if (QoS)

try {

spkt.init();

spkt.method = SENP.MVH;

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.en
ode());

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

//

// of
ourse I should do something here...

// ...work in progress...

//

}

else

try {

spkt.method = SENP.MVL;

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.en
ode());

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

//

// of
ourse I should do something here...

// ...work in progress...

//

}

}

/** suspends the
onne
tion with the master server of

96

Class MobileDispat
her MobileDispat
her.java

* this dispat
her and allows the master to store all

* notifi
ation addressed to this dispat
her.

*

* see moveInMaster(boolean QoS).

*

* �see #suspendMaster()

* �see #resumeMaster()

* �see #moveInMaster()

**/

syn
hronized publi
 void moveOutMaster() {

moveOutMaster(false);

}

/** resumes the
onne
tion with the master server.

*

* This
auses the master server to resume sending

* stored and new notifi
ations to this dispat
her.

*

* �see #moveOutMaster()

**/

syn
hronized publi
 void moveInMaster() {

try {

spkt.init();

spkt.method = SENP.MVI;

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.en
ode());

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

//

// of
ourse I should do something here...

// ...work in progress...

//

}

}

/** resumes the
onne
tion with the master server.

*

* This
auses the master server to resume sending

97

Class MobileDispat
her MobileDispat
her.java

* stored and new notifi
ations to this dispat
her.

*

* This also sets the new pa
ket re
eiver for this server.

*

* This method simply
alls setRe
eiver(Pa
ketRe
eiver, int)

*

* �param pr is the re
eiver

*

* �see #moveOutMaster()

* �see #setRe
eiver(Pa
ketRe
eiver)

**/

syn
hronized publi
 void moveInMaster(Pa
ketRe
eiver pr) {

try {

setRe
eiver(pr);

spkt.init();

spkt.method = SENP.MVI;

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.en
ode());

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

//

// of
ourse I should do something here...

// ...work in progress...

//

}

}

/** resumes the
onne
tion with the master server.

*

* This
auses the master server to resume sending

* stored and new notifi
ations to this dispat
her.

*

* This also sets the new server for this dispat
her.

*

* �param uri is the external identifier

* of the master dispat
her

* (e.g., * senp://host.domain.edu:8765")

*

98

Class MobileDispat
her MobileDispat
her.java

* �param QoS is the Quality of Servi
e

* if true High reliability

* if false low reliability

*

* �see #moveOutMaster()

* �see #setRe
eiver(Pa
ketRe
eiver)

*

**/

syn
hronized publi
 void moveInMaster(String uri, boolean QoS)

throws InvalidSenderEx
eption, java.io.IOEx
eption {

byte[℄ old_master_handler = null;

Pa
ketSender old_master = null;

//Ba
kup old Master

old_master_handler = master_handler;

old_master = master;

//Create a new Master

Pa
ketSender new_master =

sender_fa
tory.
reatePa
ketSender(uri);

boolean new_listener = false;

if (listener == null) {

setRe
eiver(new TCPPa
ketRe
eiver(0));

new_listener = true;

}

master_handler = uri.getBytes();

master = new_master;

//

// sends a WHO pa
ket to figure out the identity of

// the master server.

// This dispat
her uses the "to" field of the SENP

// pa
ket to tell the master server the handler used

// by this server to rea
h the master server.

// (see reply_who())

//

try{

spkt.init();

spkt.method = SENP.WHO;

spkt.ttl = 2; // round-trip

99

Class MobileDispat
her MobileDispat
her.java

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.en
ode());

//

// perhaps I should sit here waiting for the

// INF response

// of the server

//

// ...to be
ontinued...

//

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

master = null;

master_handler = null;

if (new_listener) {

try {

listener.shutdown();

}
at
h (Pa
ketRe
eiverEx
eption pex) {

Logging.exerr(pex);

}

}

//

// of
ourse I should do something here...

// ...work in progress...

//

}

//Store the notifi
ation at the NEW Master

moveOutMaster();

//

// sends all the top-level subs
riptions to the new master

//

for(Iterator i = subs
riptions.rootsIterator();

i.hasNext();) {

MSubs
ription s = (MSubs
ription)i.next();

try {

spkt.init();

spkt.method = SENP.SUB;

spkt.ttl = SENP.DefaultTtl;

100

Class MobileDispat
her MobileDispat
her.java

spkt.id = my_identity;

spkt.handler = listener.uri();

spkt.filter = s.filter;

master.send(spkt.buf, spkt.en
ode());

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

//

// of
ourse I should do something here...

// ...work in progress...

//

}

}

//Download the events stored at the OLD Master

if (QoS)

try {

spkt.init();

spkt.method = SENP.DWH;

spkt.ttl = 2; // round-trip

spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

old_master.send(spkt.buf, spkt.en
ode());

}

at
h (Ex
eption ex)

{

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

}

else

try {

spkt.init();

spkt.method = SENP.DWL;

spkt.ttl = 2; // round-trip

spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

old_master.send(spkt.buf, spkt.en
ode());

}

at
h (Ex
eption ex)

101

Class MobileDispat
her MobileDispat
her.java

{

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

}

}

/** resumes the
onne
tion with the master server.

*

* This
auses the master server to resume sending

* stored and new notifi
ations to this dispat
her.

*

* This also sets the new server for this dispat
her.

*

* �param uri is the external identifier

* of the master dispat
her

* (e.g., * senp://host.domain.edu:8765")

*

* �see #moveOutMaster()

* �see #setRe
eiver(Pa
ketRe
eiver)

*

**/

syn
hronized publi
 void moveInMaster(String uri)

throws InvalidSenderEx
eption, java.io.IOEx
eption {

moveInMaster(uri, false);

}

/** resumes the
onne
tion with the master server.

*

* This
auses the master server to resume sending

* stored and new notifi
ations to this dispat
her.

*

* This also sets the new server and the new

* pa
ket re
eiver for this dispat
her.

*

* This method simply
alls setMaster(String)

* and setRe
eiver(Pa
ketRe
eiver, int)

*

* �param pr is the re
eiver

*

* �param uri is the external identifier

102

Class MobileDispat
her MobileDispat
her.java

of the master dispat
her

* (e.g., * senp://host.domain.edu:8765")

*

* �param QoS is the Quality of Servi
e

* if true High reliability

* if false low reliability

*

* �see #moveOutMaster()

* �see #setRe
eiver(Pa
ketRe
eiver)

*

**/

syn
hronized publi
 void moveInMaster(Pa
ketRe
eiver pr,

String uri, boolean QoS)

throws InvalidSenderEx
eption,

java.io.IOEx
eption {

// Change Client Lo
ation

try {

setRe
eiver(pr);

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

}

byte[℄ old_master_handler = null;

Pa
ketSender old_master = null;

//Ba
kup old Master

old_master_handler = master_handler;

old_master = master;

//Create a new Master

Pa
ketSender new_master =

sender_fa
tory.
reatePa
ketSender(uri);

boolean new_listener = false;

if (listener == null) {

setRe
eiver(new TCPPa
ketRe
eiver(0));

new_listener = true;

}

103

Class MobileDispat
her MobileDispat
her.java

master_handler = uri.getBytes();

master = new_master;

//

// sends a WHO pa
ket to figure out the identity of the

//master server.

// This dispat
her uses the "to" field of the SENP

// pa
ket to tell the master server the handler used

// by this server to rea
h the master server.

// (see reply_who())

//

try {

spkt.init();

spkt.method = SENP.WHO;

spkt.ttl = 2; // round-trip

spkt.to = master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

master.send(spkt.buf, spkt.en
ode());

//

// perhaps I should sit here waiting for the

// INF response

// of the server

//

// ...to be
ontinued...

//

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

master = null;

master_handler = null;

if (new_listener) {

try {

listener.shutdown();

}
at
h (Pa
ketRe
eiverEx
eption pex) {

Logging.exerr(pex);

}

}

//

// of
ourse I should do something here...

// ...work in progress...

//

104

Class MobileDispat
her MobileDispat
her.java

}

//Store the notifi
ation at the NEW Master

moveOutMaster();

//

// sends all the top-level subs
riptions to the new master

//

for(Iterator i = subs
riptions.rootsIterator();

i.hasNext();) {

MSubs
ription s = (MSubs
ription)i.next();

try {

spkt.init();

spkt.method = SENP.SUB;

spkt.ttl = SENP.DefaultTtl;

spkt.id = my_identity;

spkt.handler = listener.uri();

spkt.filter = s.filter;

master.send(spkt.buf, spkt.en
ode());

}
at
h (Ex
eption ex) {

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

//

// of
ourse I should do something here...

// ...work in progress...

//

}

}

//Download the events stored at the OLD Master

if (QoS)

try {

spkt.init();

spkt.method = SENP.DWH;

spkt.ttl = 2; // round-trip

spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

old_master.send(spkt.buf, spkt.en
ode());

}

at
h (Ex
eption ex)

105

Class MobileDispat
her MobileDispat
her.java

{

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

}

else

try {

spkt.init();

spkt.method = SENP.DWL;

spkt.ttl = 2; // round-trip

spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();

old_master.send(spkt.buf, spkt.en
ode());

}

at
h (Ex
eption ex)

{

Logging.prlnerr("error sending pa
ket to "

+ master.toString());

Logging.exerr(ex);

}

}

/** resumes the
onne
tion with the master server.

*

* This
auses the master server to resume sending

* stored and new notifi
ations to this dispat
her.

*

* This also sets the new server and the new

* pa
ket re
eiver for this dispat
her.

*

* This method simply
alls setMaster(String)

* and setRe
eiver(Pa
ketRe
eiver, int)

*

* �param pr is the re
eiver

*

* �param uri is the external identifier

* of the master dispat
her

* (e.g., * senp://host.domain.edu:8765")

*

* �see #moveOutMaster()

* �see #setRe
eiver(Pa
ketRe
eiver)

*

106

Class MobileDispat
her MobileDispat
her.java

**/

syn
hronized publi
 void moveInMaster(Pa
ketRe
eiver pr,

String uri)

throws InvalidSenderEx
eption,

java.io.IOEx
eption {

moveInMaster(pr, uri, false);

}

/** starts the Mobility server sear
h.

*

* This method simply subs
ribes the ``Notifiable n''

* for a spe
ial filter.

*

* �param n is the obje
t will re
eive the sear
h results

*

**/

syn
hronized publi
 void addMobileDispat
herFinder(

Notifiable n) throws SienaEx
eption {

Filter f = new Filter();

f.addConstraint("servive__","Mobile_Server_replay__");

subs
ribe(f,n);

Notifi
ation e = new Notifi
ation();

e.putAttribute("servive__","Mobile_Server_request__");

publish(e);

}

/** stop the Mobility server sear
h.

*

* This method simply unsubs
ribes the ``Notifiable n''

* for a spe
ial filter.

*

* �param n is the obje
t re
eiving the sear
h results

*

**/

syn
hronized publi
 void removeMobileDispat
herFinder(

Notifiable n) throws SienaEx
eption {

107

Class MobileDispat
her MobileDispat
her.java

Filter f = new Filter();

f.addConstraint("servive__","Mobile_Server_replay__");

unsubs
ribe(f,n);

}

/** start info sending about this dispat
her.

*

* This method simply subs
ribes this dispat
her

* for a spe
ial filter representing a servi
e request.

*

* �param s is the information about this dispat
her.

*

**/

publi
 void StartAvailability(String s)

throws SienaEx
eption {

Servi
eReplay sr = new Servi
eReplay(this, s);

Filter f = new Filter();

f.addConstraint("servive__","Mobile_Server_request__");

subs
ribe(f, sr);

}

}

//==

lass ping_pong implements Notifiable{

MobileSubs
riber ms;

MobileDispat
her md;

publi
 ping_pong(MobileDispat
her d, MobileSubs
riber s){

ms = s;

md = d;

}

publi
 void notify(Notifi
ation[℄ s) throws SienaEx
eption {

}

108

Class MobileDispat
her MobileDispat
her.java

publi
 void notify(Notifi
ation n) throws SienaEx
eption {

String type = n.getAttribute("type__").toString();

if (type.
ompareTo(new

AttributeValue("SYNC_PONG").toString()) == 0)

ms.pinga
k = true;

if (type.
ompareTo(new

AttributeValue("SYNC_PING").toString()) == 0)

{

Notifi
ation e = new Notifi
ation();

e.putAttribute("id__",new String(ms.identity));

e.putAttribute("type__","SYNC_PONG");

md.publish(e);

}

}

}

lass Servi
eReplay implements Notifiable{

String info;

MobileDispat
her md;

publi
 Servi
eReplay(MobileDispat
her m, String s){

md = m;

info = s;

}

publi
 void notify(Notifi
ation[℄ s) throws SienaEx
eption {

}

publi
 void notify(Notifi
ation n) throws SienaEx
eption {

Notifi
ation e = new Notifi
ation();

e.putAttribute("servive__","Mobile_Server_replay__");

e.putAttribute("uri__",new String(md.getRe
eiver().uri()));

e.putAttribute("info__",info);

md.publish(e);

109

Class MobileDispat
her MobileDispat
her.java

}

}

110

Bibliography

[1℄ G. Bras
he and B. Walke. Con
ept, servi
es and proto
ols for the new

GSM Phase 2+ General Pa
ket Radio Servi
e. Te
hni
al report, IEEE

Communi
ations Magazine, 1997.

[2℄ L. Cardelli and A. D. Gordon. Mobile Ambients. Theoreti
al Computer

S
ien
e, 2000.

[3℄ A. Carzaniga. Siena 1.3.0 Api Do
umentation.

www.
s.
olorado.edu/�
arzanig/siena/.

Copyright

2000-2002 University of Colorado.

[4℄ A. Carzaniga, G. Pi

o, and G. Vigna. Designing Distributed Appli-

ations with Mobile Code Paradigms. In Pro
eedings of the 19

th

In-

ternational Conferen
e on Software Engineering, pages 22{32, Boston,

Massa
husetts, May 1997.

[5℄ A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. A
hieving S
alability

and Expressiveness in an Internet-S
ale Event Noti�
ation Servi
e. In

Pro
eedings of the Nineteenth Annual ACM Symposium on Prin
iples of

Distributed Computing, pages 219{227, Portland, OR, July 2000.

[6℄ A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evalua-

tion of a Wide-Area Event Noti�
ation Servi
e. ACM Transa
tions on

Computer Systems, 19(3):332{383, Aug. 2001.

[7℄ G. Combs. The Ethereal Network Analyzer. UNIX manual.

Available from www.ethereal.
om.

111

Bibliography

[8℄ D. E. Comer. Internetworking with TCP/IP, volume Volume I - Prin-

iples, proto
ols and ar
hite
ture. Prenti
e Hall, third edition edition,

1995.

[9℄ G. Cugola, C. Ghezzi, G. P. Pi

o, and G. Vigna. Analyzing Mobile

Code Languages. In Mobile Obje
t Systems: Towards the Programmable

Internet, pages 93{110. Springer-Verlag: Heidelberg, Germany, 1997.

[10℄ E. Duro
her and I. Filotti. Native Code Migration over a Heterogeneous

Network - An EÆ
ient Approa
h to Pro
ess Migration.

[11℄ Eri
sson Mobility World. GATE II.

www.eri
sson.
om/mobilityworld/.

[12℄ ETSI. GSM 03.60: Digital
ellular tele
ommuni
ations system (Phase

2+); General Pa
ket Radio Servi
e (GPRS); Servi
e Des
ription; Stage

2.

[13℄ ETSI. GSM 03.64: Digital
ellular tele
ommuni
ations system (Phase

2+); General Pa
ket Radio Servi
e (GPRS); Overall des
ription of the

GPRS radio interfa
e.

[14℄ ETSI. GSM 08.18: Digital
ellular tele
ommuni
ations system (Phase

2+); General Pa
ket Radio Servi
e (GPRS); Base Station System (BSS)

- Serving GPRS Support Node (SGSN) - BSS GPRS Proto
ol (BSSGP).

[15℄ ETSI. GSM 09.60: Digital
ellular tele
ommuni
ations system (Phase

2+); General Pa
ket Radio Servi
e (GPRS); GPRS Tunneling Proto
ol

(GTP) a
ross the Gn and Gp Interfa
e.

[16℄ K. Fall and K. Varadhan. The ns Manual. The VINT Proje
t, Novem-

ber 2001. A Collaboration between resear
hers at UC Berkeley, LBL,

USC/ISI and Xerox PARC.

[17℄ A. Fugetta, G. Pi

o, and G. Vigna. Understanding Code Mobility.

IEEE Transa
tion on Software Engineering, 24(5), 1998.

[18℄ General Magi
. Teles
ript Language Referen
e, O
t 1995.

112

Bibliography

[19℄ E. Giguere. Java

TM

2 Mi
ro Edition. Professional Developer's Guide.

John Wisley & Son, release 1.0 edition, 2001.

[20℄ Internet Engineering Task For
e. Internet Printing Proto
ol (IPP).

www.ietf.org/html.
harters/ipp-
harter.html.

[21℄ Internet Engineering Task For
e. Mobile Ad-Ho
 Networks (MANET)

WG Charter. www.ietf.org/html.
harters/manet-
harter.html.

[22℄ V. Ja
obson, C. Leres, and S. M
Canne. t
pdump - dump traÆ
 on a

network. UNIX manual. Available from www.t
pdump.org.

[23℄ R. Jain. GPRS Simulations using ns-Network Simulator. PhD thesis,

Department of Ele
tri
al Engineering, Indian Institute of Te
hnology -

Bombay, June 2001.

[24℄ M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, and K. Raatikainen. Sea-

wind: a Wireless Network Emulator. University of Helsinki, Finland.

[25℄ M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, and K. Raatikainen. Sea-

wind v3.0 User Manual. University of Helsinki, Finland, September

2001.

[26℄ L. Lamport. Time,
lo
ks, and the ordering of events in a distributed

system, 1978.

[27℄ Motorola Wireless Development Centre. The Motorola GPRS Emulator.

developers.motorola.
om/developers/wireless/global/uk/emulator.htm.

[28℄ M. Mouly and M. Pautet. Current Evolution of the GSM Systems.

Te
hni
al report, IEEE Pers. Commun., 1995.

[29℄ A. L. Murphy, G.-C. Roman, and G. P. Pi

o. Coordination and Mobil-

ity. In A. Omi
ini and F. Zambonelli and M. Klus
h and R. Tolksdorf,

editor, Coordination of Internet Agents: Models, Te
hnologies, and Ap-

pli
ations, pages 254{273. Springer, 2000.

113

Bibliography

[30℄ Nokia. Ne
t A
t Planner.

www.nokia.
om/networks/servi
es/neta
t/neta
t planner/.

[31℄ G.-C. Roman, G. P. Pi

o, and A. L. Murphy. Software Engineering for

Mobility: A Roadmap. In A. Finkelstein, editor, The Future of Software

Engineering, pages 241{258. ACM Press, 2000. Invited
ontribution.

[32℄ W. Simpson. The Point-to-Point Proto
ol (PPP). Request for Com-

ments, July 1994. RFC 1661.

[33℄ J. Stamos and D. Gi�ord. Remote Evaluation. ACM Trans. on Pro-

gramming Languages and System, pages 537{565, O
tober 1990.

[34℄ R. Stine. FYI on a network management tool
atalog: Tools for mon-

itoring and debugging TCP/IP internets and inter
onne
ted devi
es.

Request for Comments, Apr. 1990. RFC 1147.

[35℄ Sun Mi
rosystem. The Java Language Spe
i�
ation, O
t 1995.

[36℄ The Sour
e for Java Te
hnology. Java

TM

2 Platform Mi
ro Edition.

Available from java.sun.
om/j2me/.

[37℄ The Sour
e for Java Te
hnology. Java

TM

2 Platform Mi
ro Edition,

Wireless Toolkit. Available from java.sun.
om/produ
ts/j2mewtoolkit/.

[38℄ The Sour
e for Java Te
hnology. Java

TM

2 Platform Standard Edition.

Available from java.sun.
om/j2se/.

[39℄ D. Wong, N.Pa
iorek, and D. Moore. Java-based Mobile Agents. Com-

muni
ation of the ACM, pages 92{102, 1999.

114

