UNIVERSITA DEGLI STUDI DELL’AQUILA
FACOLTA DI SCIENZE MATEMATICHE FISICHE E NATURALI

TESI DI LAUREA IN INFORMATICA

Co.M.E.T.A.

Mobility support in the SIENA publish/subscribe middleware

Candidato Relatori

Mauro Caporuscio Prof. Paola Inverardi

Prof. Alexander L. Wolf

ANNO AccaDEMICO 2000-2001

“Da qui messere si domina la valle. . .
Cio che si vede, e.”

B.M.S.

Acknowledgement

I would like to thank my advisors, Prof. Paola Inverardi and Prof. Alexander
L. Wolf, for making this experience possible and for their help and guidance
through the entire course of this thesis.

I would like to thank Antonio Carzaniga for his patience correcting my “bad
English”, for his friendly teaching and because this work could not have been
done without many discussions with him.

I would also like to thank the USENIX Association for supporting my work
through the Research Exchange (ReX) grant.

I dedicate this work to my wonderful family: to my mom, my dad and my
honey sister, for their love, help, support, confidence and guidance through-

out my life... Thanks a lot...I love you so, so much!!

A special thanks to Maria Benigni for loving me and for her encouragement
during all my study.

I would like to remember all my good friends: Michele “Falce” Mercuri and
Francesco “Bugia” Troiani with whom I shared all the good and bad things
of my (and their) life; Antonio “Lupo” Di Berardino, Romolo “Re” Salvi and
Lorenzo “Rampyn” Felli for being my roommates for many years; “Il soccio”
Alfredo “Freski” Navarra, Vincenzo “Biciu” Cesarini, Nicola “Alanghiro”
Piccone, Emanuele “Oscar” and Alessandro “Soft” Asci, Simone “Scrigno”
Scriboni, and Fabio “Xenon” Mancinelli, with whom I spent many beautiful
days, for all smiles they gave to me; Armando “Bardone” Botticella for his
marvelous diet; Marco “Egomet” Castaldi and Nathan “Peller Dude” D.
Ryan, with whom I shared all America’s “bullshit” (do you know what I
mean?) and fun, for their friendship and help throughout my experience in
Boulder (USA); and all the others, who do not appear in this list, each one
important for a special thing. .. Thanks to all you guys! I'll carry you in my

heart forever!!

Finally, but not less importantly, I would like to thank myself “Meskall” for

my instability, my perseverance and my “hard head” in everything I did.

Boulder - March 21, 2002 Mauro Caporuscio

Contents

Introduction
1.1 Contribution of This Thesis
1.2 Structure of This Thesis

Background

2.1 Mobility
2.1.1 Host Mobility
2.1.2 Code Mobility

2.2 The SIENA Middleware
2.2.1 A Brief Overview on SIENA API and Semantics
2.2.2 Architecture of STENA L.
2.2.3 Processing Strategies

Evaluating SIENA in a Wireless Network

3.1 Java 2 Platform, Micro Edition
3.1.1 Configurations
3.1.2 Virtual Machines
3.1.3 Profiles.

3.2 Service Discoveryo
3.2.1 A Request-Offer Combination
3.2.2 Observations

3.3 Auction System
3.3.1 Auction characteristics
3.3.2 Quality of Serviceo

3.3.3 Implementation

10
13
15

Contents

3.4 General Packet Radio Service 36
3.4.1 Network Featuresof GPRS. 37
3.4.2 GPRS System Architecture 40
3.4.3 GPRS Protocol Stacko 43
3.4.4 Signalling Plane 46
3.4.5 Survey of GPRS Tools 46

3.5 Experimentation Lo 49

3.6 Sample Results 53

Mobility Support in SIENA 55

4.1 Mobile Dispatcher o000 58

4.2 Notification Persistence Service 58
4.2.1 TImplementation 59

4.3 Event Re-routing 60

4.4 Event Downloading 61
4.4.1 Implementation, 62
4.4.2 Observations 63

4.5 Event Downloading With Path Test 64
4.5.1 Implementation 66

4.6 Mobile Server Discovery 67

4.7 TImplementation Lo Lo 68

4.8 Observations. 70

Conclusions 71

Auction Class Diagrams 75

A.1 Seller Class Diagram 75

A.2 Buyer Class Diagram 76

Seawind v3.0 77

B.1 Components of Seawind 7
B.1.1 Graphical User Interface (GUI) 78
B.1.2 Seawindd (SWD) 78
B.1.3 Workload Generator (WLG) 78

il

Contents

B.1.4 Network Protocol Adapter (NPA) 78

B.1.5 Simulation Process (SP) 78

B.1.6 Bacground load (BGL) 79

B.2 Parameters of Seawind L. 79

C MobileDispatcher.java 80
C.1 Class MobileSubscriber 81
C.2 Class MobileDispatcher 86

il

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14
3.15
3.16

Host Mobility: hosts move in the real world. 6
Code Mobility: code moves through hosts. 7
SIENA: Distributed Event Notification Service. 9
A Siena Filter and a Siena Notification 10
Hierarchical client/server architecture. 14
Acyclic peer-to-peer server architecture. 14
General peer-to-peer server architecture. 15

GPRS network makes a “bridge” between Client and Server. . 19

High-level view of J2ME. 20
J2ME architecture.o oL 23
Alice subscribes before Bob advises for a ticket. 25
Bob advises for a ticket availability before Alice subscribes . . 26
Both users send a pair <request, offer>. 26
The client-pair is sent before the provider-pair.. 27
The client-pair is sent after the provider-pair. 28
The client-pair and provider-pair are sent at the same time. . 28
Client /server communication between client and provider. . . 29
Publish/Subscribe is unreliable architecture. 29
The pair formatted as <notification, subscription> does not

work. . .. 30
The Auction System’s architecture 31
The Connect GUIL. 34
The Sell GUL 35
The Buy GUL. o o o 35

v

List of Figures

3.17
3.18
3.19

4.1

4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2

Al
A2

B.1

GPRS system architecture 40
GPRS protocol stack L. 44
A SIENA mapping onto Seawind 50
A code fragment moves from host to host and changes its

server master after the motion. %)
Code moves together with its host and changes its server after

the motion. L 56
Access-points switching actions. 57

HierarchicalDispatcher and MobileDispatcher work together. . 58

Notification persistence service. 29
T Downloads the events stored in H 62
Download events stored on the old server with synchronization. 64
Events downloading: time-steps synchronization 66
How Discover another MobileDispatcher 68
How Discover another MobileDispatcher 69
Dynamic reconfiguration using Mobile Support 73
Dynamic reconfiguration using Mobile Support 74
Seller classes interaction. L. 75
Buyer classes interaction. 76
Seawind Architecture. 7

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1

Interface of SIENA 11
CLDCvs. CDC e 22
Channel coding schemes parameters. 38
GPRS CS-1 simulation parameters 52
GPRS error simulation parameters 52
SIENA behavior in the wireless GPRS network. 53
SIENA behavior in a local-area, wired network. 54
Interface STENA Mobility Support 70

vi

Chapter 1
Introduction

This thesis is concerned with mobile applications that use a publish/subscribe
infrastructure. In particular, this work consists of (1) a case study on the
deployment of a publish/subscribe middleware on top of a wireless commu-
nication service, where mobility is supported at the network level, and (2)
a design and initial implementation of a mobility support service realized
within the publish/subscribe middleware.

The increasing size and performance of computer networks is generating
a new phenomenon: networks are being pervasive and ubiquitous. While per-
vasive means that network connectivity is going to be a basic feature of any
computing facility, ubiquitous refers to the ability of utilizing network con-
nectivity independently of the physical location of the user. In this context
(usually referred to as a wide-area network), applications are characterized
by the fact that they are loosely coupled, asynchronous, and heterogeneous.
This promotes a class of software system based on the abstract design called
event interaction which in turn is supported by an emerging infrastructure
called Event notification service [6].

Development in wireless technology are freeing application hosts from a
constrained, fixed physical location in the network and enables the practical
realization of the idea of mobile computing. In fact, portable computers (such
as laptops and PDAs) are growing in popularity while they are shrinking in

size. This process of miniaturization, combined with the emergence of high-

Contribution of This Thesis Introduction

speed wireless communications, allows users to use portable device with on-
demand connections. In this scenario, mobile users can move together with
their hosts across different physical locations, while remaining connected to
the network through wireless links.

In addition to the mobility of hosts, new techniques based on code mi-
gration [10] have been developed to allow applications to move from host to
host. These mobile applications, often referred to as “mobile agents”, aim to
optimize information retrieval and other similar tasks by moving close to the
data stores of interest, where they can execute their queries with low latency
and network usage.

With the work described in COMETA (Component Mobility using the
Event no Tification Architecture), we intend to combine the benefits of mo-
bile applications (moving along with their host, or migrating from host
to host) with the communication services offered by an advanced pub-

lish/subscribe service.

1.1 Contribution of This Thesis

In integrating publish/subscribe technology with mobile applications, we
have two general choices of architecture: In one case we could simply attach
the publish/subscribe system on top of a network that offers native support
for mobility. In the opposite case, we could have the publish/subscribe sys-
tem handle mobility without any direct support from the underlying network
layers. In this latter case, the publish/subscribe service would implement an
additional set of services designed to support mobile applications. These two
alternative methods, detailed below, characterize the contribution of this

thesis.

SIENA over a wireless network We studied the integration of an event-
based middleware on top of a wireless network, in a situation in which the
mobility of clients is transparently managed at the network level. In particu-
lar, we focused on the STENA distributed event-notification system [5], hosted
over a General Packet Radio Service (GPRS) network.

Contribution of This Thesis Introduction

In order to evaluate the behavior of STENA and its demands over the com-
munication resources of the wireless network, we developed a test application
(a distributed auction system) that we used in several simulated scenarios.
Developing such an application required us to port the SIENA client-side
library to the Java™ 2 Micro Edition, a platform specifically targeted at
mobile devices such as cell phones and PDAs. The resulting application and
library allowed us to run experiments on a simulated PDA, in combination
with a highly configurable GPRS network emulator.

The primary goal of our experiments was to evaluate the impact of deploy-
ing SIENA onto the wireless GPRS network. We did this from two different
perspectives. The first was to gather data characterizing the performance of
the three different low-level transport mechanisms (UDP, TCP, and “keep-
alive” TCP that attempts to reuse TCP connection) on the wireless network.
The second was to compare these results with baseline data collected on a
local-area, wired network. The results of the experiments gave us an initial
indication of whether a seamless integration of wired and wireless communi-

cation is feasible for a publish/subscribe communication service.

Mobility support in SIENA We studied how to support mobile appli-
cations that use the SIENA publish/subscribe system implemented over a
wired-line network. We consider mobile applications that either move along
with their host (e.g., because they execute on a laptop or a PDA) or move
from host to host using mobile code technology. Regardless of the technology
supporting mobility, we assume that application can detach from one SIENA
access point, travel to another network location, and reconnect to another
SIENA access point.

To support such applications, we designed and implemented a mobility
service within the STENA publish/subscribe system. This service allows ap-
plications to receive notifications published while they are traveling to a new
destination, and to restore the flow of notifications and their subscriptions
when and where they reconnect to the SIENA network at their destination.

As a basis for the mobility service, we implemented a persistent storage of

notifications. We then implemented two additional functions, called move-

Structure of This Thesis Introduction

OutMaster and moveInMaster, that allow clients to switch from their
current, access point over to a new one, re-establishing their subscriptions as
well as their flow of notifications. We implemented the movelnMaster facil-
ity in such a way that it can provide different levels of consistency for the

switch-over function.

1.2 Structure of This Thesis

Section 2 introduces our starting-points and background. It presents in de-
tails the concepts of mobility and explains what SIENA is and how it works.

Chapter 3 describes how we put SIENA middleware on top of the GPRS
Network and how we combined the concept of Host Mobility with the event-
based architecture. It also explains the experimentation we made, in order
to understand SIENA performances in a mobile environment, and presents
our results.

Section 4 talks about our research in Client Mobility exploring the prob-
lems that it implies and describes how we allowed SIENA to support the
mobility of its clients. This section also presents the algorithms we have
been designing to solve the problems explained.

Finally in Section 5 we draw some conclusions summarizing our experi-

ence and discussing future developments.

Chapter 2
Background

In this chapter we would make an overview about our starting points: we
briefly introduce the theory about mobility, illustrating different approaches
and possible scenarios, and we give an high level presentation of the SIENA
middleware and its principal characteristics. These concepts should be useful
to understand the work explained through the next Sections in which we will

examine how we put in touch the concepts of mobility and SIENA.

2.1 Mobility

Mobility breaks all bindings between hosts and software; the network struc-
ture may be mutable, nodes may come and go, processes may move between
nodes, and programs may evolve and change structure. As some authors
describe it, mobility is a “total meltdown” of the stability assumed by dis-
tributed systems [31]. From the software engineering perspective, mobility
is defined as the study of systems in which computational components may
change location, in a voluntary or involuntary manner, and move across a
space that may be defined to be either logical or physical. This distinction is

necessary to distinguish the different level in which mobility is handled.

Mobility Background

2.1.1 Host Mobility

Host mobility (some authors refer to it as either physical mobility [31] or mo-
bile computing [2]) entails the movement of mobile hosts (of all sorts and size)
in the real world. It is assumed to be the next evolutionary step in the devel-
opment of the worldwide communication infrastructure and the extension of
wire-line networks. In fact, one can imagine a traditional static network, in
which fixed hosts with static addresses exchange messages via the standard
Internet infrastructure, with at the end-points some wireless-networks, made
by an aggregation of base stations, that control message traffic from and to
mobile devices (as showed in Figure 2.1). Mobile devices, even if physically
detached from the fixed infrastructure, may interact with each other and

with the fixed hosts, throughout wireless link. Sending data to and from

Figure 2.1: Host Mobility: hosts move in the real world.

a mobile unit requires the ability to find the current location of the device
and to maintain the data flow as the unit moves from one place to another.
This kind of mobility is managed at the network-layer and, therefore, the
movement of the host is completely transparent at the application-layer. For
example cellular phone system accomplish this through a combination of

broadcast signals and hand-off protocols.

Mobility Background

2.1.2 Code Mobility

Code mobility (or either logical mobility [31] or mobile computation [2]) in-
stead, involves the movement of code (in all its forms) among hosts. At a
level above the physical, there is a logical layer, called Code Mobility, that
removes static bindings between the software components and the network
hosts where they are executing. This allows components to be relocated to

achieve flexibility and increase reconfiguration capability. In this scenario,

s """'. g At 253; -'-'- - Q

Figure 2.2: Code Mobility: code moves through hosts.

components are logical units that may move, together with their code frag-
ments, from host to host across both wire-line and wireless network (see
Figure 2.2). A system may be composed of several units some of which may
be mobile. The overall architecture of the system can be considered to be
independent of the location of each individual component.

Code mobility can be distinguished in two main categories depending on
how the state of the execution of a mobile component is affected by the
migration of that component from one host to the other. In particular, two

types of mobility have been identified in the literature [4]:

weak mobility Weak mobility refers to the cases in which the code fragment
is relocated by creating a fresh copy at the destination point or prior

to start of its execution.

strong mobility By contrast, strong mobility refers to the movement of
code that maintains the state of execution. The execution state is
relocated along with the code thus allowing it to continue running even

after the move.

The STENA Middleware Background

Code mobility is viewed as offering designers a new set of conceptual and
programming tools that seek to exploit the opportunities made available by
the distributed computing infrastructure. An example of such technologies
is a new family of programming languages, usually referred to as mobile
code languages (MCL) [9], such as Java™ by Sun Microsystem [35] and

tTM

Telescript™ by General Magic [18], that support mobility at various degree

of sophistication.

An important aspect of mobility that is common to both host mobility and
code mobility is the relation between a mobile component and other mobile
or fixed components. These relations, that may obviously change during the
lifetime of the component, are captured by the notion of contert. Depend-
ing on the nature of the mobile system and on the nature of the mobility
support, some context relations may be maintained through the migration,
other may have to be temporary suspended and others may be discarded
or changed after a migration. The first option is most common in settings
involving physical mobility while the third is implemented when logical mo-
bility takes place across connected sites, as in the case of Internet. This brief
introduction to the mobility will result useful to understand problems, and

proposed solutions, discussed in Sections 3 and 4.

2.2 The SIENA Middleware

A common approach to achieving loose coupling is a event-based design style.
In a event-based system, component interaction are modeled as asynchronous
occurrences of, and responses to, events. To inform other components about
the occurrences of internal events, components emit notifications containing
information about the events (i.e. to communicate a state changes). Upon re-
ceiving notifications, other components can react by performing action that,
in turn, may result in the occurrence of other events and the generation of ad-
ditional notifications. In general, the asynchrony, heterogeneity, and inherent
high degree of loose coupling that characterize applications for wide-area net-

works suggest event interaction as a natural design abstraction for a growing

The STENA Middleware Background

publisher subscriber

Servers access point

event service '

Figure 2.3: SIENA: Distributed Event Notification Service.

class of distributed systems.

SIENA (Scalable Internet Event Notification Architecture) is an Internet-
scale event notification service that is representative of capabilities for scal-
able event notification middleware. SIENA is implemented as distributed
network of servers (as show in Figure 2.3) that provide clients with access
points offering an extended publish/subscribe interface. The clients are of
two kinds: Object of interest, which are the generators of notifications, and
interested parties, which are the consumers of notifications; of course, a client
can act as both of them. Clients use the access point of their local servers to
advertise the information about notifications that they generate and publish
the advertised notifications. Clients also use the access points to subscribe
for individual notifications of interest. SIENA is responsible for selecting the
notifications that are of interest to clients and then delivering those notifica-
tions to the clients via the access points.

SIENA is a best effort service in that it does not attempt to prevent race
conditions included by network latency. This is a pragmatic concession to the
realities of Internet-scale services, but it means that clients of SIENA must
be resilient to such race conditions. For instance, clients must allow for the

possibility of receiving a notification for a cancelled subscription.

The STENA Middleware Background

2.2.1 A Brief Overview on SIENA API and Semantics

At a minimum, an event notification service has to export two functions that
together define what is usually referred to as the publish/subscribe protocol.
Interested parties specify the events in which they are interested by means of
the function subscribe. Objects of interest publish notifications via the func-
tion publish. Figure 2.4 shows a filter on the top and a notification matching

the filter on the bottom. SIENA extends the publish/subscribe protocol with

string dest = MXP
int price < 500

string carrier = UA
string dest = MXP
it price =400
bool upgradeable = true

Figure 2.4: A Siena Filter and a Siena Notification

an additional interface function called advertise, which an object of interest
uses to advertise the notifications it publishes. SIENA also adds the functions
unsubscribe and unadvertise. Subscription can matched repeatedly until they
are cancelled by a call to unsubscribe. Advertisement remain in effect until
they are cancelled by a call to unadvertise.

Table 2.2.1 shows the interface function of STENA. The expression given to
subscribe and unsubscribe is a pattern, while the expression given to advertise
and unadvertise is a filter. The parameter identity specifies the identity of
the object of interest or interested party. The only requirement that SIENA

imposes on identifiers is that they be unique.

Notification

An event notification is a set of typed attributes. Each individual attribute
has a type, aname, and a wvalue, but the notification as a whole is purely
a structural value derived from its attributes. Attribute names are simply

character strings. The attribute types belong to a predefined set of primi-

10

The STENA Middleware Background

publish(notification n)

subscribe(string identity, pattern expression)
unsubscribe(string identity, pattern exzpression)

advertise(string identity, filter expression)
unadvertise(string identity, filter expression)

Table 2.1: Interface of SIENA

tive types commonly found in programming languages and database query

languages, and for which a fixed set of operators is defined.

Filters

An event filter (or simply a filter) selects event notification by specifying
a set, of attributes and constraints on the values of those attributes. Each
attribute constraint is a tuple specifying a type, a name, a binary predicate
operator (i.e. =, #, <, >, etc) and a value for an attribute.

When a filter is used in a subscription, multiple constraints for the same
attribute are interpreted as a conjunction (all such constraint must be match-
ing): a notification n matches a filter f or equivalently that f covers n. Notice
that the notification may contain other attributes that have no correspon-
dents in the filter.

Patterns

While a filter is matched against a single notification based on the notifica-
tion’s attribute value, a pattern is matched against one or more notifications
based on both their attribute values and on the combination they form. At
its most generic, a pattern might correlate events according to any relation.

SIENA does not provide a complete pattern language, but a pattern is

defined as a sequence of filters:

fo-fooee fa

11

The STENA Middleware Background

This is matched by a temporally ordered sequence of notifications, each one

matching the corresponding filter.

Advertisements

The motivation for advertisements is to inform the event notification service
about which kind of notifications will be generated by which object of inter-
ests, so that it can best direct the propagation of subscriptions. The idea
is, that while a subscription defines the set of interesting notifications for an
interested party, an advertisement defines the set of notifications potentially
generated by an object of interest. Therefore, the advertisement is relevant
to the subscription only if these two set of notifications have a nonempty

intersection.

Unsubscriptions and Unadvertisements

Unsubscriptions and unadvertisements serve to cancel previous subscriptions
and advertisements, respectively. Given a simple unsubscription unsub-
scribe(X, f), where X is the identity of an interested party and f is a
filter, the event notification service cancels all simple subscriptions sub-
scribe(X, g) submitted by the same interested party X with a subscription
filter g covered by f. In analogous way, unadvertisements cancel previous
advertisements. Note that an unsubscription (unadvertisement) either can-
cels previous subscriptions (advertisements) or else has no effect. It cannot
impose further constraints onto existing subscriptions. For example, sub-
scribing with a filter [price>100] and than unsubscribing with [price>200]
does not result in creation of a reduced subscription [price>100, price>200].
Rather, the unsubscription simply has no effect, since it does not cover the
subscription. Note also that all subscription covered by an unsubscription

are cancelled by that unsubscription.

Timing issues

The semantics of SIENA depends on the order in which STENA receives

and process requests (subscriptions, notification, etc.). For instance, in the

12

The STENA Middleware Background

subscription-based semantics, a subscription s is effective after it is processed
and until an unsubscription u that cancels s is processed.

In the most general case, a service request R, say a subscription, is gen-
erated at time IR, received at time R,, and completely processed at time
R, (with R, < R, < R,). SIENA guarantees the correct interpretation of R
immediately after I?,. Notice that the external delay R, — R, is caused by ex-
ternal communication mechanisms and is by no means controllable by SIENA.
The processing delay R, — R, is instead directly caused by computations and

possibly by other communication delay internal to STENA.

2.2.2 Architecture of STENA

As show in Figure 2.3, the implementation of SIENA comprises a number of
interconnected servers, each serving some subset of the clients of the service.
In effect STENA is a wide-area network of pattern matches and routers over-
laid atop some other wide-area communication facility, such as the Internet.
One reasonable allocation of such servers might be to place a server at each
administrative domain within the low-level, wide-area communication net-
work. A pair or interconnected servers use a server/server communication
protocol that determines what kinds of information they can exchange, and
in which direction. An interconnection topology and a protocol together de-
fine what we refer to as an architecture for SIENA. There are three basic
architectures for SIENA: Hierarchical client/server, acyclic peer-to-peer, and

general peer-to-peer.

Hierarchical client/server

In the hierarchical client/server architecture (see Figure 2.5), the servers form
a hierarchical topology, with each server (except the root server) behaving
like a STENA client of the server one level up the hierarchy. The main problems
exhibited by this architecture are the potential overloading of servers high in

the hierarchy and the fact that each server is a single point of failure.

13

The STENA Middleware Background

e)
o

J

client/server | A .
Protocol ' :

A A

Figure 2.5: Hierarchical client/server architecture.

Acyclic peer-to-peer

In this architecture, servers communicate with each other symmetrically as
peers in an acyclic undirected graph (as showed in Figure 2.6), adopting a
protocol that allow a bi-directional flow of subscriptions and notifications.

The configuration of the topology forms an acyclic undirected graph.

client/server
Protocol
S |

Figure 2.6: Acyclic peer-to-peer server architecture.

General peer-to-peer

Removing the constraint of acyclicity from the acyclic peer-to-peer architec-
ture, SIENA network may be configured as a general peer-to-peer architec-

ture. As depicted in Figure 2.7, a general peer-to-peer architecture can have

14

The STENA Middleware Background

multiple paths of bi-directional communication between servers. Allowing
redundant connections makes it more robust respect to failures of a single

servers. These three basic architectures can be combined to form hybrid ar-

client/server
Protocol

Figure 2.7: General peer-to-peer server architecture.

chitectures, such as an acyclic peer-to-peer topology of subnets, each subnet
being hierarchy. Once topology of servers is defined, they must establish ap-
propriate routing paths to ensure that notifications published by an object
of interest are correctly delivered to all the interested parties that subscribed
for them. In general, notifications must “meet” subscriptions somewhere in
the network so that the notifications can be selected according to the sub-

scriptions and then dispatched to the subscribers.

2.2.3 Processing Strategies

Once a topology of servers is defined, the servers must establish appropriate
routing paths to ensure that notifications published by an object of interest
are correctly delivered to all the interested parties that subscribed for them.
In general, notifications must “meet” subscriptions somewhere in the network
so that the notifications can be selected according to the subscriptions and

then dispatched to the subscribers.

15

The STENA Middleware Background

Routing strategies in SIENA hierarchical architecture

The main idea behind the routing strategy of SIENA is to send a notification
only toward event servers that have clients that are interested in that noti-
fication, possibly using the shortest path. There are two simple principles

that become requirements for the STENA routing algorithms:

downstream replication: A notification should be routed in one copy as
far as possible and should be replicated only downstream, that is, as close as

possible to the parties that are interested in it.

upstream replication: Filters are applied, and patterns are assembled
upstream, that is, as close as possible to the sources of (patterns of) notifi-
cations.

These principles are implemented by two classes of routing algorithms,
the first of which involves broadcasting subscriptions and the second of which

involves broadcasting advertisements:

subscription forwarding: In an implementation that does not use adver-
tisements, the routing paths for notifications are set by subscriptions, which
are propagated throughout the network so as to form a tree that connects
the subscribers to all the servers in the network. When an object publishes a
notification that matches that subscription, the notification is routed toward

the subscriber following the reverse path put in place by the subscription.

advertisement forwarding: In an implementation that uses advertise-
ments, it is safe to send a subscription only toward those object of interest
that intend to generate notifications that are relevant to that subscription.
Thus, advertisements set the paths for subscription, which in turn set the
paths for notifications. Every advertisement is propagated throughout the
network, thereby forming a tree that reaches every server. When a server re-
ceives a subscription, it propagates the subscription in reverse, along the path

to all advertisers that submitted relevant advertisements, thereby activating

16

The STENA Middleware Background

those paths. Notification are then forwarded only through the activated
paths.

Subscription-forwarding algorithms realize a subscription-based seman-
tics, while advertisement-forwarding algorithms realize an advertisement-

based semantics.

17

Chapter 3

Evaluating SIENA in a Wireless
Network

As we explained in the previous sections, our interest is to study the integra-
tion of the benefits of mobile applications (moving along with their host or
migrating from host to host) with the communication service offered by an
advanced publish/subscribe middleware.

We defined the host mobility as the ability of devices (together with their
application) to move around the real world. These physical components are
generally referred to as mobile hosts and they come in different sizes from a
laptop to a cellular phone or other wearable devices. It is reasonable to imag-
ine some software-components running on them with the necessity to send
(receive) messages to (from) other remote hosts, mobile or fixed. Of course,
in order to allow the information exchange between components, the mobile
hosts in which they are running need some form of wireless communication
link.

In this chapter we will focus on the integration of host mobility with
SIENA. We assume that a component is running on a mobile device (such
as a PDA) and it uses a SIENA client in order to exchange messages with
the external world. As we described in Section 2.2, a SIENA client that
publishes or receives events must be connected to a SIENA server (access

point). In particular we adopt a server running on a fixed Internet host.

18

Evaluating SIENA in a Wireless Network

This means that the wireless link acts as a “bridge” between the mobile

Figure 3.1: GPRS network makes a “bridge” between Client and Server.

client and the fixed server, handling mobility of the client in a way that is
completely transparent to the server and the whole STENA middleware.

In this scenario (depicted in Figure 3.1), we want to study SIENA’s perfor-
mance in combination with to different network protocols (TCP and UDP).
In order to evaluate the behavior of STENA and its demands over the commu-
nication resources of the wireless network, we developed a distributed test
application called auction system (see Section 3.3) that we used in several
simulated scenarios. Developing such an application required us to port the
SIENA client-side library to the Java™ 2 Micro Edition (discussed in Sec-
tion 3.1), a platform specifically targeted at mobile devices such as cell phones
and PDAs. We have also studied how to set up the graphic user interface,
using the J2ME™ Wireless Toolkit [37], in order to make the application
user-friendly. We then used the resulting application to run experiments on
a simulated PDA.

In the situation described above, a client may change its status quickly
and often. Thus, it could connect (or disconnect) to the network in every
moment. This may be a problem when using a publish/subscribe middle-

ware like STENA. In fact, since SIENA does not provide a mechanism for

19

Java 2 Platform, Micro Edition Evaluating STENA in a Wireless Network

messages persistence, a mobile client could lose some notifications while it
is disconnecting. We studied a simple solution (described in Section 3.2) for
this problem, and we used it in the development of the auction System.
Finally, to establish wireless links, we choose a GPRS network (refer to
Section 3.4) because it allows us to use IP-based protocols and because it
represents the last step in path to UMTS Network.
In the following Sections we will introduce the tools we used for our ex-

periments, we will discuss the experiment set up and the results we obtained.

3.1 Java 2 Platform, Micro Edition

J2ME [19, 36|, a version of the Java™ 2 Standard Edition (J2SE™) [38],
is aimed at the consumer and embedded devices market. It specifically ad-
dresses the rapidly growing consumer space that covers commodities such as
cellular telephones, pagers, palm organizers, set-top boxes, and others. J2ME
provides a complete set of solutions for creating state-of-the-art networked
applications for consumer and embedded devices. It enables device manu-
facturers, service providers, and application developers to deploy compelling

applications and services to their customers. J2ME defines the following set

4 N\
Profiles
N /
4 A
Configurations
N 4
4 N
Java Virtual Machines

Figure 3.2: High-level view of J2ME.

of tools that can be used with consumer devices:

e A Java virtual machine

20

Java 2 Platform, Micro Edition Evaluating STENA in a Wireless Network

e Libraries and APIs that are suitable for consumer devices (configura-

tions and profiles)
e Tools for deployment and device configuration

The first two components make up the J2ME runtime environment. Fig-
ure 3.2 shows how the different high-level layers of J2ME fit together.

3.1.1 Configurations

Cellular telephones, pagers, organizers, and so on, are diverse in form, func-
tionality, and feature. For these reasons, J2ME supports minimal configu-
rations of the JVM and APIs that capture the essential capabilities of each
kind of device. At the implementation level, a J2ME configuration defines a
set of horizontal APIs for a family of products that have similar requirements

on memory budget and processing power. A configuration specifies:

e Java programming language features supported

e JVM features supported

e Java libraries and APIs supported
Currently there are two standard configurations: The Connected Limited De-
vice Configuration (CLDC), and the Connected Device Configuration (CDC).
CLDC

The Connected Limited Device Configuration (CLDC) is intended for cellular
phones, two-way pagers, and organizers. It targets devices with between 160
and 512 KB of memory. A reference implementation of the CLDC is available.
A configuration, such as the CLDC or CDC, is more useful when used along

with a profile.

CDC

The Connected Device Configuration (CDC) is intended for set-top boxes,

Internet TVs, and in-car entertainment systems. The CDC targets devices

21

Java 2 Platform, Micro Edition Evaluating STENA in a Wireless Network

CLDC CDC

Implements a subset of Java | A full Java implementation
features and APIs
The Java virtual machine is | The Java virtual machine is

KVM CVM

For limited devices For more powerful devices
Processor: 16 or 32-bit Processor: 32-bit

Targets devices with 160 - 512 | Targets devices with at least 2
KB of memory MB of memory

Table 3.1: CLDC vs. CDC

that have at least 2 MB of memory, and can support a complete imple-
mentation of the standard JVM, and Java programming language. A brief
comparison of CLDC and CDC is shown in Table 3.1.1.

3.1.2 Virtual Machines

The CLDC and CDC configurations each define the set of Java and virtual
machine features supported. Therefore, each configuration will have its own
JVM. Clearly, the CLDC virtual machine will be smaller than the virtual
machine required by the CDC since it supports less features. The virtual
machine for the CLDC is the Kilo Virtual Machine (KVM), and the one for
the CDC is the CVM.

KVM

The Kilo Virtual Machine (KVM) is a complete Java runtime environment
for small devices. It is a true Java virtual machine as defined by the JVM
Specification except for some specific deviations that are necessary for proper
functioning on small devices. It is specifically designed from the ground up
for small, resource-constrained devices with a few hundred kilobytes of total
mMemory.

The KVM is derived from a research project called Spotless at Sun Mi-
crosystems Laboratories. The aim of the project was to implement a Java

system for the Palm Connected Organizer.

22

Java 2 Platform, Micro Edition Evaluating STENA in a Wireless Network

CVM

Initially, the CVM used to stand for ”Compact Virtual Machine”. Sun En-
gineers however, realized that it might be confused with the KVM. So the C
does not stand for anything now. It is just the C Virtual Machine or CVM. It
is designed for consumer and embedded devices, and it supports all Java™ 2
Platform, version 1.3, VM features and libraries for security, weak references,

JINT, RMT, and JVMDIL.

3.1.3 Profiles

J2ME makes it possible to define Java platforms for vertical markets by intro-
ducing profiles. At the implementation level, a profile is a set of vertical APIs
that reside on top of a configuration to provide domain-specific capabilities,

such as user interfaces.

RMI Personal

MIDP PDA Foundation Profile
CLDC CDC
KVM CVM

Figure 3.3: J2ME architecture.

Currently, reference implementations exist for two profiles: The Mobile
Information Device Profile (MIDP), and the Foundation Profile (FP). MIDP
is to be used with the CLDC and FP is to be used with the CDC. Other
profiles in the works include: The PDA profile, RMI profile, and Personal
Profile. The structure of the various J2ME configurations and profiles is

depicted in Figure 3.3.

23

Java 2 Platform, Micro Edition Evaluating STENA in a Wireless Network

The MID Profile (MIDP)

The Mobile Information Device Profile (MIDP) extends the CLDC to provide
domain specific APIs for user interfaces, networking, databases, and timers.
MIDP is meant to target wireless phones and two-way pagers. A reference

implementation is available, and an easy-to-use development environment
(Wireless Toolkit [37]) is also available.

The PDA Profile

The Personal Digital Assistant (PDA) profile is based on the CLDC and will
provide user interface APIs (which are expected to be a subset of the AWT)
and data storage APIs for handheld devices. The PDA profile is still in the

works and no reference implementation is available yet.

The Foundation Profile (FP)

The Foundation Profile extends the APIs provided by the CDC, but it does
not provide any user interface APIs. As the name ”foundation” implies, the
Foundation Profile is meant to serve as a foundation for other profiles, such
as the Personal Profile and the RMI profile.

The Personal Profile (PP)

The Personal profile extends the Foundation profile to provide GUIs capable
of running Java Web applets. Since PersonalJava™ is being redefined as
the Personal profile, it will be backward-compatible with PersonalJava 1.1.
and 1.2 applications. No reference implementation for the Personal Profile

is available yet.

The RMI Profile

The RMI profile extends the Foundation profile to provide Remote Method
Invocation (RMI) for devices. It is meant to be used with the CDC/Founda-
tion and not the CLDC/MIDP.

24

Service Discovery Evaluating SIENA in a Wireless Network

The RMI profile will be compatible with J2SE RMI API 1.2.x or higher.

However, no reference implementation is available yet.

3.2 Service Discovery

In traditional client/server computing, a client that needs a particular ser-
vice must known the address of the Service Provider. For example, a client
that intend to use a Time-Synchronization service must know the address of
a time server. Service Discovery is the process by a client finds out about

one or more service providers for a specific service. The publish/subscribe

Alice Bob

_subscribe

publish

G

‘\.

\
‘ notification will be catched and
> system will send it to the client

Figure 3.4: Alice subscribes before Bob advises for a ticket.

architecture seem to offer a natural solution to the problem of service dis-
covery. In fact, in this approach a user (the Service Client) subscribes for a
service and, when it is available, he will receive a notification (see Figure 3.4).
This simple protocol introduces new problems that we will describe in the
following sections.

In the scenario depicted in Figure 3.4, Alice catches the notification pub-
lished by Bob, which allows Alice to contact Bob. Unfortunately, the same
protocol would fail in case Bob announced the availability of his service before
Alice submitted her subscription, as show in Figure 3.5.

There are two possible solutions for this problem. One is to insert an
additional component, a Repeater, to provide caching functions, in the system
architecture. The other one is using a pair <request, offer>. We will describe

the second one in the following. This solution is application-level in the

25

Service Discovery Evaluating SIENA in a Wireless Network

Alice Bob
publish
o

|__subscribe

\
Figure 3.5: Bob advises for a ticket availability before Alice subscribes

sense that it does not change the publish/subscribe architecture, but instead

combines its own features to put client and server in touch.

3.2.1 A Request-Offer Combination

The basic idea is to use a combination of a subscription and a notification. As
explained before, the main problem is when a client subscribes for a service

after the provider published an announcement for that service. The following

client

provider
- ,._,Qf_fer—sub
equest—pub
\IJ\ request-sub ..
o offer—pub

G

\

Figure 3.6: Both users send a pair <request, offer>.
actions explain how a pair <request, offer> works (see also Figure 3.6):
e provider-pair:

step pl: subscribe for “I need service S” Request Subscription

step p2: publish “Service S” Offer Publication

26

Service Discovery Evaluating SIENA in a Wireless Network

e client-pair:

step cl: subscribe for “Service S” Offer Subscription

step ¢2: publish “I need service S” Request Publication

In the rest of section we will refer to the pair made by the service provider as
provider-pair and we will refer to the pair made by the client as client-pair.

Note that these are not atomic actions but there is a little time between
the subscriptions and the notifications. Moreover, we assume that the pub-
lish/subscribe service is unreliable and messages could be delayed through
the network. So, different cases are possible and we will describe these in the
following subsections. We will show how the couple <provider-pair, client-

pair> works in every one of these.

client providel
..a
A
\ p1)
e
/

T
v ¢

Figure 3.7: The client-pair is sent before the provider-pair.

case 1 We suppose that client subscribed for service before the provider
publish its announcement. As depicted in Figure 3.7, the Alice’s notification

will be lost, but her offer-subscription will catch the Bob’s offer-publication.

case 2 This case, in which we suppose that Alice (the client) subscribes for
service after Bob (the provider) sends his notification (see Figure 3.5), repre-
sents the main problem. Since now we are using the pair <request, offer> (as
depicted in Figure 3.8), Bob has been subscribing for interested party (action
pl). This request-subscription will catch Alice’s request-publication (action

c2) and now Bob knows that a user needs his service. Therefore Bob can

27

Service Discovery Evaluating SIENA in a Wireless Network

publish again his notification. This allows Bob to contact Alice and offers

her the service.

client provide:

pl.
LT p2
e

cl
[

D— |

' '

Figure 3.8: The client-pair is sent after the provider-pair.

A

case 3 Since the Publish/Subscribe architecture is unreliable, messages
could be delayed through the network. Therefore we could have another
possible scenario (such as depicted in Figure 3.9). In this case publications
will intersect and both users, provider and client, will receive each other’s
publication. We suppose that the provider always publishes another notifi-
cation. This will cause that the client will receive the same notification for
two times. Anyway, we are sure that they will be able to establish a session

and we can conclude the pair <request, offer> also works in this case.

client provider
1
. . ‘gz'

publish
publish)

‘/>é<9
D |

<

'

Figure 3.9: The client-pair and provider-pair are sent at the same time.

28

Service Discovery Evaluating SIENA in a Wireless Network

3.2.2 Observations

It is important to note that the final communication, between provider and
client, should be established and conducted according to the specific service
protocol (as depicted in Figure 3.10). For example, if the offered service is a
printing service, the communication must be established using the appropri-
ate printing protocol (e.g. using IPP [20]).

user user

]

client provider

user

Figure 3.10: Client/server communication between client and provider.

We described how the pair <request, offer> works in different cases but,
it is also important to note that this solution may not works if messages are
lost through the network. In fact, if a notification does not reach the node
(see Figure 3.11) where subscriber is connected, the client can not receive
the message associated to the event.

client provider

subscribe

publish
lm——

T notification will be lost_
| —--—+-—---—|> and system can not send it
to the service client

\

Figure 3.11: Publish/Subscribe is unreliable architecture.

Finally, it is important to note that pair must be issued in the ex-

act sequence, that is with the notify message following the subscribe mes-

29

Auction System Evaluating SIENA in a Wireless Network

sage. In fact there are cases in which the pairs formatted as <notification,
subscription> does not work. As depicted in Figure 3.12 the pair sent by

the client could not intersect the provider ones and none of them will know

client

provider
request—pub offer—pub

.. offer—sub >< request—sub .

\

Figure 3.12: The pair formatted as <notification, subscription> does not
work.

about the other.

As we explained above, this solution is application-level and it does not
change the down-level architecture. This means that some problems such as
the unreliability of the protocol cannot be fixed using the couple < client-pair,
provider-pair>. Moreover if a number of clients and providers are using the
pair <request, offer>, it could cause a traffic overload through the network

and thus a denial of service could be happen.

3.3 Auction System

We decide to develop an auction system because it is a simple system but
with high number of message exchange and real-time constraints. Thus, it
allows us to study the SIENA performances in the presence of low bandwidth
and high error probability network such as a wireless network.

What we want is to develop a peer-to-peer application that allows clients
to sell and buy items. Buyers and sellers, could be viewed as independent
components of the system that use the event-based middleware to commu-
nicate with each other. The high level architecture of the system is showed

in Figure 3.13. In particular, if a client is interested in buying a ticket

30

Auction System Evaluating SIENA in a Wireless Network

(buyer), he will subscribe for events that advertise the availability of tickets.
Conversely, a client that wants to sell a ticket (seller) emits an event to com-
municate the availability of tickets. When the buyer receive this notification,
he can publish a bid for the ticket.

Figure 3.13: The Auction System’s architecture

3.3.1 Auction characteristics

In this section, we define the rules that determine the behavior of the auction

system and the properties of the system.

Type of available auctions

We want to develop a system that allows users to choices different kinds of

auctions. These can be:

close: A user can send the amount of his bid, but he can not check the

Auction status.

open: A user can send the amount of his bid and he will be informed whether
he is not currently the higher bidder. In this latter case, he can raise
his bit.

31

Auction System Evaluating SIENA in a Wireless Network

Selling

Before advertising an item for sale, a seller must set up the following infor-

mation:

kind of auction: An Open or Closed auction.

title/item Name: Brief description of the item he is selling.
category: Category in which the items will be listed.

description: A complete description of his item.

duration: The period of time during which the item can be auctioned.

starting price: If seller wants the bidding to start at a certain price, he
needs to put it in there. This will set the starting bid at the price he
specify.

reserve price: Setting a price, gives seller the option of not selling the item

if the bids do not reach his reserve price.

bid increment: The amount seller wants the auction to increase after each
bid is placed.

payment method: One or multiple methods of payment.

shipping: Seller must choose whether he will ship nationally only or inter-
nationally. He must also select who pays for shipping:
e seller
e buyer

o fifty-fifty

Buying

When user has found an item he would like to bid on, he can send the amount
of his bid applying the bid increment established by the seller. After receiving

a bid from a buyer, the system may notify the buyer of following events:

32

Auction System Evaluating SIENA in a Wireless Network

out-bidding: While bidder is waiting for the open auction finish, he will
receive a notification informing him whether he has been out-bid by
another bidder. Only in this case, the bidder can raise his bid. Instead,
During a closed auction, the bidder will not receive any notification and

therefor will not be able to raise his bid.

winning: If a user is the highest bidder when the open/closed auction ends,
he will receive a notification, containing the personal information of
the seller, that he can use in order to contact the seller. In the closed
auction, a notification will also be sent to all users, that bid for that
item, to inform them that the auction has been closed and to tell them

who the winner is.

3.3.2 Quality of Service

The following quality of service apply to the auction system:

real-time delivery: It is important that every message is delivered in real
time. In fact, high network latency may cause undesired effects such

as bids switching and advertisement losing.
guaranteed delivery: Delivery of every message should be guaranteed.

message confidentiality: Only the interested parties may read the mes-

sages.

message integrity: Nobody can modify the messages.

3.3.3 Implementation

As explained above, we have developed this system using Java™ 2 Platform,
Micro Edition and we designed it to run on limited resource devices. The
application is composed of two distinguished sub-components: Sell and Buy.
Each one of these, has one specific GUI as well as a shared GUI called

Connect.

33

Auction System Evaluating SIENA in a Wireless Network

normal size 7Z0oom

Figure 3.14: The Connect GUI.

Connect The Connect form implements is the first step to take part in
the auction. It allows users to connect to a specified SIENA server located on
a internet host. The user has to fill in the form (as show in Figure 3.14) in
which he must write his personal data and the Internet address of the server.
This information is used allow the buyer to get in touch with the seller.
This procedure simply stores user information in a data structure. The
procedure also uses the ThinClient(String uri) class of the SIENA API to
establish the connection with the STENA master referred by uri (uri must

have the <schema>://hostname:port_-number format).

Sell This allows a seller to advertise an article available for sell, and starts
a new auction for it. The procedure Sell is composed of two sub-procedures:
Edit Auction and Incoming Bids.The first one allows the user to publish
information about the auctioned item. The procedure gets the information
from the GUI (see Figure 3.15.a) and creates a notification with them. This
information are also used to create a unique identifier for this article. After
the publication of this event, a subscription will be made, using the item
tdentifier as filter. The purpose of this subscription is to catch the incoming
bids related to this item. The Incoming Bids GUI (Figure 3.15.b), displays
the received bid about the running Auction.

Internally (see Appendix A.1) a STENA ThinClient, previously created by

Connect, is used to send advertisements for new items, and to receive bids.

34

Auction System Evaluating SIENA in a Wireless Network

a) b)

Figure 3.15: The Sell GUI.

When the object Bid_Update receives an event representing a bid, it will
update the appropriate data structure and the new bid will be displayed on

the Incoming Bids form.

Buy After a connection has been established, in order to take part in an
auction, the Buyer needs to know the identifier of a particular item. The
Item Search form (see Figure 3.16.a) works like a search engine and enables
the user to set filter constraints, and to creates the subscription corresponding
to the given search criteria. When somebody publishes an event matched
by the Buyer filter, this will be caught and stored in the appropriate data

structure.

a) b) c)

Figure 3.16: The Buy GUI.

35

General Packet Radio Service Evaluating SIENA in a Wireless Network

After an advertisement is stored, the buyer may use the Search Results
form (Figure 3.16.b) to navigate through the data structure and choose the
item he is interested. When an item has been selected, GUI Qutgoing bids
form will appear (refer to Figure 3.16.c) allowing the buyer to submit his bid
for this article.

If during the Auction the user has been out-bid by another bidder, he
will receive a notification and an Alert pop-up will appear. After receiving
an out-bid alert, the buyer may open the Outgoing bids form and raise his
bid.

Internally (refer to Appendix A.2) a siena.ThinClient() is used to submit
bids and create search filters. Search results will be caught by the object
Search_Update and stored in Search_Results object.

Observations

Since an advertise could be generated before the buyer has set up his filters
or a bid could be submitted while the seller is momentary disconnected,
advertisements, bids and searches are constructed with the pair <request,
offer> paradigm explained in Section 3.2. As we showed in Section 3.2,
the pair <request, offer> gives us an additional level of reliability using the

functionalities of SIENA.

3.4 General Packet Radio Service

The General Packet Radio Service (GPRS) is a new standard for wireless
data that will be implemented in GSM and other mobile communication
systems. The new technology provides effective utilization of the scarce radio
resources and is therefore ideally suited for bursty packet transmissions. It
enables instant and constant wireless access to IP based networks such as
the public Internet and Local Area Networks (LAN).

GPRS facilitates new applications in wireless communication that have

not been available previously, due to the limitations in GSM Circuit Switched
Data (CSD) [28]. Through its packet switched (PS) nature, GPRS opens up

36

General Packet Radio Service Evaluating SIENA in a Wireless Network

for direct connectivity to the Internet with all its inherent user value. Exam-
ples of possible applications are Internet services such as Wireless Application
Protocol (WAP), e-mail, web-browsing.

Increased capacity for data transmissions compared to GSM CSD is the
obvious advantage that applies to the GPRS-system. Even so, much of the
user-value lies in the possibility of obtaining immediate and constant connec-
tivity to external networks such as Internet and Intranet, without repeatedly
having to carry out a time-consuming setup procedure. Furthermore, the
GPRS-system will incorporate new billing concepts, which includes paying for
the volume of transmitted data, rather than the time of the data-connection
as it is done today. This means that the user can stay connected and online
to the networks even when nothing is transmitted, without paying excessive

amounts for the duration of the data-connection.

3.4.1 Network Features of GPRS

GPRS as an overlay to the existing GSM-network may pose several paradigm-
shifts to the and-users. In order to understand the inherent capacity issues

of GPRS, some network features must be examined.

Packet switching

Most wireless data connections require the mobile user to go through a cum-
bersome setup procedure, resulting in a constant allocation of one timeslot
during the entire length of the session. GPRS introduces fast access to net-
works through packed data technology. Rather than sending and receiving
in a continuous stream as in the circuit switched (CS) world, data travels
through routers for fast packet data transmission to and from the mobile
subscribers. Packet switching means that GPRS radio resources are used
only when are actually sending or receiving data [1]. Rather than dedicating
a radio channel (timeslot) to a mobile data user for a fixed period time, the
bursty nature of packet switched data allows the available radio channels for

GPRS to be concurrently shared between several connection.

37

General Packet Radio Service Evaluating SIENA in a Wireless Network

Coding Data bits in I?ata rate per | Max d.ata rate
. time slot kb/s | per8 timeslots
Scheme radio block .
on radio layer kb/s
CSs-1 181 9.05 72.4
CS-2 268 13.4 107.2
CSs-3 312 15.6 128.8
CS-4 428 21.4 171.2

Table 3.2: Channel coding schemes parameters.

Channel coding schemes

Four different channel coding schemes are defined in the GPRS specifica-
tions [13]. Each coding scheme incorporates a different level of data in-
tegrity checks (error correction overhead) to data transmitted over the radio-
interface. They are commonly labelled CS-1 to CS-4. Given fixed-channel
capacity constraints, there is an inverse relation between the amount of actual
data that can be transmitted and the amount of data integrity assurance.
Basically, the channel can either be used to transfer data itself or error checks
on the respective data. The different error coding procedure form varying
size of the radio blocks, which produces four progressive data rates as listed
in Table 3.2. It must be clear that these data rates are only valid for the
radio-layer, and the data rates on the application layer will be somewhat less
due to packet-overhead.

The higher the data rates, the higher the required signal to noise ratio
(SNR). In good channel conditions with high SNR, any of the four schemes
could be used. In this case the channel coding schemes with the least channel
protection (CS-4) will yield the highest throughput. When interference is
high on the other hand, the coding scheme with the highest amount of channel
protection will achieve the highest throughput (CS-1), due to its extensive

error coding which causes fewer retransmissions.

Technical limitation to the theoretical capacity

Although the system is awaited with high expectations from manufacturers

and operators, the actual take-up of GPRS usage among subscribers is still

38

General Packet Radio Service Evaluating SIENA in a Wireless Network

an open issue. As explained in the previous section, the maximum theoretical
data rate of 171.2kbps require an optimal coding scheme (CS-4). As such,
the maximum speeds must be checked against the actual constraints in the
network and terminals. The reality is that mobile networks are always likely
to have lower transmissions speeds than fixed networks.

The increased data rates of GPRS are as result of two major aspects
of the GPRS-system: improved coding schemes and the support of multiple
timeslots. However, three main aspects prevent a user from ever achieving the
maximum theoretical speed, namely the allocation of timeslots, restrictions

in the terminals, as well as the actual availability of coding schemes.

Allocation of timeslots Because GPRS and GSM use the same radio
resources, it is unlikely that a network operator would ever assign all eight
timeslots to GPRS-traffic, since voice still will be a dominant service. In
fact, how to allocate the timeslots to GPRS and GSM is supposedly an
open issue among the operators. It seems clear, however, that GSM-traffic
will have precedence over GPRS-traffic. Since GSM-traffic has precedence,
GPRS-traffic will be offered a varying amount of capacity. The available
timeslots will in turn be divided between all GPRS-users an the carrier at
the given time. It should also be noted that among the carriers of one base
station there will always be at least one signalling channel (mapped to the
same amount of timeslots). The number of signalling channels depend on

the number of carriers as well as the particular network environment.

Restrictions in terminals To take advantage of higher data transmission
speed the GPRS-terminals will have to support several multiple timeslots
simultaneously. In fact, in able to send and receive the theoretical maxi-
mum of 171.2 kbps the terminal must incorporate transmission and reception
of timeslots (in both the downlink and uplink). This requires considerable
amounts of processing and transceiver power in the terminal, adding great
complexity to such a small device.

In reality, terminal manufactures are indicating that they will support

a limited number of multislot classes, at least in the first stage of GPRS-

39

General Packet Radio Service Evaluating SIENA in a Wireless Network

terminal evolution. According to the representatives from the manufacturers,
the terminals will initially support 1 timeslot uplink and 3 timeslots down-
links. Whether the evolution continues to improve further is not clear, but
it is supposedly difficult to produce terminals that incorporate more than 4

timeslots in either direction.

3.4.2 GPRS System Architecture

As mentioned previously, the GPRS-system is built upon the existing GSM-
infrastructure. So to enable GPRS, mobile network operators merely need to
upgrade their GSM-infrastructure by introducing three new GPRS-elements,
as well as updating a few of the existing GSM-nodes. Most importantly, this
upgrade includes the GPRS Service Nodes (GSN), specifically the Serving
GSN (SGSN) and the Gateway GSN (GGSN), but the upgrade also includes
a new Border Gateway (BG) that provides access to other GPRS networks
through a firewall. All new elements in GPRS system-architecture are illus-
trated in Figure 3.17.

service area

service area network

network N

external
packet-data
network
(Internet)

service area
network

service area
network

IP backbone

Figure 3.17: GPRS system architecture

40

General Packet Radio Service Evaluating SIENA in a Wireless Network

Mobile Station (MS)

The Mobile Station (MS) is a combination of the Mobile Terminal (MT) and
the Terminal Equipment (TE). It is important to be aware of that the MT
and TE could be in the same device (such as a smartphone) or in separate
devices like a regular GPRS-phone connected to a handheld computer or a

laptop.

e The Terminal Equipment is the computer terminal that sends and re-

ceives end-user packet data.

e The Mobile Terminal communicates with the TE through cable or wire-
less technologies such as IrDA or Bluetooth. Over the air-link the M'T
communicates with the BTS. In order to be GPRS-capable, the MT
must be equipped with specific software and hardware for the GPRS-

system.

Mobile Stations developed for the GPRS-system will be differentiated in
terms of their specific MS- and Multislot-class. The purpose of this definition
is to enable the different needs of the various markets to be satisfied by a

number of different MS types with distinct capabilities.

GPRS MS Class A Supports simultaneous attach, simultaneous acti-
vation, simultaneous monitoring, simultaneous invocation and simultaneous
traffic. This means that the mobile user can simultaneously receive and
transmit calls on the GPRS PS system and the GSM CS system. In order
for GPRS and GSM to take advantage of the transceiver capacity at the
same time, a minimum of one timeslot must be available to both services

when required.

GPRS MS Class B Supports both GPRS and GSM connectivity, but
the class B mobile cannot transmit and receive in GSM and GPRS mode
simultaneously. However, signalling such “attach” and “activation” can be
simultaneous. This means that a GPRS connection shall not be cleared
down (deactivated), due to invocation of GSM traffic. The selection of the

41

General Packet Radio Service Evaluating SIENA in a Wireless Network

appropriate service is performed automatically (i.e. an active GPRS virtual
connection is put on hold, if the user accepts an incoming CS call or estab-
lishes an outgoing CS call.It is worth noticing that precaution is needed when
interrupting applications running over the GPRS-network. For instance, if
the user establishes a CS session during an ongoing and time-consuming file

transfer, the GPRS connection may abort due to a timeout.

GPRS MS Class C Supports both GPRS and GSM connectivity, but can
only transmit and receive in one service at time. Furthermore, no simulta-
neous “attach” and “activation” is possible. The status of non-active service
is always “detached” and the desired type of service is selected manually by

the user.

Base Station Subsystem (BSS)

The Base Station Subsystem (BSS) consist of Base Station Controller (BSC)
and Base Transceiver Station (BTS). All radio signals are transmitted and
received by BSS, making it a shared resource between the CS GSM system
and GPRS system. Specifically, a BSS upgraded for GPRS systems is pro-
vided with functionality adapted to a packet data. This includes packet data
handling, GPRS information broadcast, resource administration, as well as

new interfacing to the SSGN node.

Base Transceiver Station It is basically the receiving and transmitting
facilities, including antennas and all the signalling related to the radio in-
terface. 'When radio signals are received, the BTS separates GSM circuit
switched data/voice from GPRS packet data and forwards both categories
to the Base Station Controller (BSC) using standard GSM protocols for com-
patibility.

Base Station Controller Generically, the BSC has functionality to set
up, supervise and disconnect CS and PS connections. These connections go
to and from the BTSs on the radio side, as well as to and from one SGSN on

the core network side. To manage this the BSC consists of a high capacity

42

General Packet Radio Service Evaluating SIENA in a Wireless Network

switch that provides functions such as hand-over cell configuration data and

channel assignment.

Serving GPRS Support Nodes (SGSN)

The SGSN forwards incoming and outgoing IP packets addressed to and for a
mobile station. It serves all GPRS-subscribers that are located and attached
within the geographical SGSN service area. A subscriber may be served by
any SGSN in the GPRS-network depending on location. The traffic is routed
from the SGSN to BSC, via the BTS to the mobile station.

Gateway GPRS Support Nodes (SGSN)

Most importantly, the GGSN provides the interface towards the external TP
packet networks. Actually, from the external IP network’s point of view, the
GGSN acts as a router for the TP-addresses of all subscribers served by the
GPRS-network. To make this possible the GGSN exchanges routing infor-
mation with the external networks and sets up connection towards external
networks. Similar to the SGSN, the GGSN deals with session management,
specifically the connection towards the external networks. Also, as many
SGSN can connect to one GGSN, it has associate subscribers to the right
SGSN.

3.4.3 GPRS Protocol Stack

The GPRS data communication architecture is based on the physical-layer
of GSM [13]. Tt will continue to support the well-known principle of protocol
layering according to the Open System Interconnection (OSI) communica-
tion architecture. The GPRS-system distinguishes between two protocols

planes [1]:

e The transmission plane covers the protocols for the transmission of user
information and the associated control procedures like flow control and

error handling.

43

General Packet Radio Service Evaluating SIENA in a Wireless Network

e The signalling plane consist of protocols that control and support the
user transmission. GPRS-relevant functions in the signalling plane are

connection control, routing and mobility management.

Transmission plane

The Transmission Plane, as show in Figure 3.18, illustrates the protocol layers
of GPRS as well as the Internet data network.

B e
- GPRS
LT others

2 2

5] 5]

Mobile Base Station Serving GPRS Gateway GPRS External
Station Subsystem Support Node Support Node Network

Figure 3.18: GPRS protocol stack

Application Layer The application layer is very broad in the sense that
it incorporates several sublayers of functionality. It contains the logic needed
to support various user applications. For each type of application, different
protocols are needed that specifically manage the application sessions as well
as the presentation of user data. These protocols are specific to the software

and have no connection to the GPRS-architecture.

TCP/UDP The transport layer includes mechanisms for the exchange of
user data on the end-to-end connection, which are essentially independent to
the nature of the application. There exist two vastly different transport pro-
tocols, namely Transmission Control Protocol (TCP) and User Data Protocol
(UDP) [8]:

e TCP providing a reliable data flow between two hosts.

44

General Packet Radio Service Evaluating SIENA in a Wireless Network

e UDP instead provides a simple service to the application layer without

reliability.

IP/X.25 The transport-layer may be carried on the network level by two
types of Packet Data Protocols (PDPs), the Internet Protocol (IP) or the
X.25-protocol.

[P user-addresses are located by (or via) the GGSN, but the pool of ad-
dresses are not necessary located there. It could be an external network
such as an Internet Service Provider (ISP) or a corporate Local Area Net-
work (LAN) that actually hand out the IP-addresses. Each external network
has its own, unique, access point in the GGSN, containing functionality for

handling network access and IP-address assignment.

SNDCP The Subnetwork Dependent Convergence Protocol (SNDCP)
maps network-level characteristics onto the underlying radio-layers. This
enables both IP and X.25 to be carried on top of the SNDCP-layer.

LLC The Logical Link Control (LLC) layer provides a highly reliable logical
link. LLC shall be independent of the underlying radio interface protocols
in order to allow introduction of alternative radio solution with minimum

changes to the GPRS internal network.

RLC and MAC The Radio Link Control (RLC) and the Medium Access
Control (MAC) are considered to be part of same layer. The RLC deals with
segmentation of LLC data-packets into RLC data blocks. This RLC data
block is given a MAC header and a Block Check Sequence (BCS) to form a
radio block.

The Physical Radio-Interface The physical radio interface includes pro-
cedures for GPRS when it comes to channel coding, cell re-selection proce-
dures and power regulation [13]. This layer also deals with frequency hopping
and signal-modulation, improving the signal to noise ratio (SNR) through in-

terface and frequency diversity.

45

General Packet Radio Service Evaluating SIENA in a Wireless Network

BSSGP and Frame Relay On the reliable interface between the BSC
and SGSN;, the Base Station Subsystem GPRS Protocol (BSSGP) transmits
packets and routing-information. To make the interface open it is stan-
dardized through Frame Relay (FR) [14]. The frame relay communications
standard enables high data rate.

GSN interconnection Between the GSNs, the GPRS Tunnel Protocol
(GTP) tunnels the PDUs through the GPRS backbone network by adding
routing information [15]. Below the GTP, the usual TCP/UDP and IP/X.25
are used as transport and network layer protocols. The latter combination of
protocols will be most common on reliable and over-dimensioned connection
of the GPRS-backbone network. Ethernet, Integrated Service Digital Net-
work (ISDN) and Asynchronous Transfer Mode (ATM) base protocols may

be used below IP depending on the operators network architecture [1].

3.4.4 Signalling Plane

The signalling plane of the GPRS-system consists of protocols for control

and support of the transmission plane functions [12]. This includes:

e controlling the GPRS network access connections, such as attaching to
add detaching from GPRS network;

e controlling the attributes of an established network access connection,
such as activation of a Packet Data Protocol (PDP) address;

e controlling the routing path of a network connection, in order to sup-

port user mobility

e controlling the assignment of network resources.

3.4.5 Survey of GPRS Tools

In this section we briefly survey several GPRS tools. The tools range from

those for doing network planning to those for doing performance evaluations.

46

General Packet Radio Service Evaluating SIENA in a Wireless Network

They also range from those developed by commercial vendors of GPRS tech-
nology to those developed by research institutions. While this survey is
almost certainly not complete, the tools are all those for which we were able

to obtain some amount of documentation.

Nokia NetAct™ Planner

Nokia’s NetAct Planner [30] is an integrated set of tools for planning radio-
based voice and data networks, including those based on GPRS technology.
The tools allow one to “plan” in the sense of designing how the network will
be deployed to satisfy usage and physical constraints. For example, there is
a tool called the Rollout Planner that supports the process of site acquisi-
tion and project tracking. Another tool is the Transmission Planner, which
supports the planning of the transmission and datacom network, including
dimensioning and network architecture comparisons. A third tool supports

an analysis of the placement and strength of microwave links.

Motorola GPRS Emulator

Motorola’s GPRS emulator [27] is designed to help developers understand
how their applications can be expected to behave over a typical GPRS con-
nection. The emulator runs on a standalone Linux computer, with applica-
tion clients and servers connected to that computer over a normal IP link.
In essence, the standalone computer acts as a monolithic GPRS network.
The emulator provides communication effects that reflect the performance
of client/server interaction over the GPRS network under a variety of con-
ditions, including normal loads, heavy (“busy hour”) loads, and both short

and long interruptions in signals.

Ericsson GATE II

Ericsson’s GATE II [11] is another Linux-based emulator of a GPRS net-
work. It emulates typical properties of a GPRS network, including varying

bandwidths, loads, latencies, and radio conditions. The emulator is made

47

General Packet Radio Service Evaluating SIENA in a Wireless Network

available in a rather unusual way: Rather than being available for instal-
lation and use in the evaluator’s environment, it is provided as a service
to which one brings an application for evaluation. The evaluation itself is

carried out by trained personnel at designated service centers.

University of Helsinki Seawind

In cooperation with Nokia Mobile Phone and Sonera Corporation, the Uni-
versity of Helsinki has developed Seawind [24], a Linux-based emulator of
wireless networks. The emulator can be used to study network flow and con-
gestion control, as well as other properties of an application communicating
over a GPRS network. Like the Motorola GPRS emulator, it based on the
use of a normal wireline local-area network. Link characteristics are emu-
lated by delaying, dropping, and modifying the flow of packets according to

a set of simulation parameters.

Network Simulator

NS-2 (Network Simulator) [16] is a general-purpose discrete event simulator
for networks. The architecture of the simulator is designed to allow the
specifics of a given network to be provided as a pluggable module. Recently,
a module for simulating a GPRS network has become available [23], but we
have not yet had an opportunity to fully study its capabilities. What we do
understand at this point is that it is more suited to studying the internal
behavior of the GPRS network than it is to studying the interaction of an

application with the network.

Selecting a tool

In order to carry out our evaluation, we needed to select from among the
available GPRS tools. In a sense, our choice was easy. The Nokia NetAct
Planner is targeted at network planning, not performance evaluation. The
Motorola emulator, while it appears extremely well suited for our evaluation,

is simply not yet available. The Ericsson GATE IT emulator might also be

48

Experimentation Evaluating SIENA in a Wireless Network

suitable, but the fact that it is available only as a second-hand service makes
it very inconvenient to iteratively develop experiments.

We selected Seawind because of its combination of reasonable functional-
ity and immediate availability. Nevertheless, as we detail in the next section,
Seawind is limiting in the kind of information that we can gather, specifically
in regard to the effect of deploying and operating STENA servers in the GPRS
network. NS-2 might well be an alternative worth exploring in the future,
but it too has its limitations. In fact, Seawind and NS-2 appear to be com-
plementary, since Seawind concentrates on the interaction of an application
with the (monolithic) network, while NS-2 combined with the GPRS module

concentrates on the performance of the network itself.

3.5 Experimentation

In this section, we will explain our experimentation and the results we ob-
tained. We imagined a scenario in which users engage an auction using
wireless devices (as explained in previous sections). This means that buy-
ers and sellers are using an Auction System application installed on mobile
devices and a GPRS Network as wireless link to connect their clients to an
Internet host.

Since the impossibility to use a real GPRS network, and thus real mobile
devices, we simulated this scenario using the Wireless Network Emulator
SEAWIND [24] and a J2ME Wireless Toolkit [37].

Seawind emulates a point-to-point communication channel extending over
a GPRS network. One end of the channel represents the mobile station,
while the other endpoint represents the remote host. The mobile station
and the remote host act as workload generators for the GPRS network. A
network protocol adapter binds a workload generator at each endpoint of the
emulated channel. The traffic produced by one workload generator is fed into
the Seawind emulation process through one adapter. It is then processed by
Seawind and passed on to the workload generator at the other end through
the corresponding adapter. In processing through-traffic, Seawind emulates

the behavior of a GPRS network according to its configuration parameters,

49

Experimentation Evaluating SIENA in a Wireless Network

thereby introducing characteristic delays, errors, and packet loss.

The current version of Seawind comes with a protocol adapter for the
point-to-point protocol [32] that can be used to redirect IP traffic though
Seawind. In practice, running Seawind amounts to running the main Seawind
emulation process connected with two PPP adapters (running as separate
processes). Each adapter creates a PPP interface configured with a given IP
address, and with a “peer” address corresponding to the IP address of the
other adapter. A workload generator is implemented by an ordinary network
application, appropriately configured to direct some of its traffic to the IP
address of one of the PPP adapters bound to Seawind. Seawind produces a

traffic trace in tepdump format [22] that can be analyzed by a variety tools [7].

Mobile dide Kemote dide

10.0.0.80 @ 10.0.0.81

canto leone

> He=

siena.StartServer —port 12345 ‘

I_p = ThinClient(senp://10.0.0.81:12345); ‘
tepr = TCPPacketReceiver(10.0.0.80, 5555);

sub.setReceiver(tcpr) serl

‘ pub = ThinClient(senp:/leone:12345); ‘

Figure 3.19: A SIENA mapping onto Seawind

Seawind has two significant limitations for the studies that we would like
to perform. First, it models the GPRS network as a simple tunnel, capable
only of moving data between a mobile station and the external packet-data
network. In particular, Seawind does not model workload generators de-
ployed within the GPRS network, which for us means that it cannot be used
to study the performance of multiple, distributed SIENA routers. Second,

Seawind focuses on a single pair of workload generators, not taking into

50

Experimentation Evaluating SIENA in a Wireless Network

account the interactions among multiple mobile stations sharing the same
pool of radio links and base-station resources. While Seawind does in fact
model the effect of other applications in the same cell, it does so by simu-
lating generic, static “background” traffic. Such an approach captures some
conflicts in resource allocation, but it does not reveal potential destructive
dynamics resulting from the combination of interrelated applications.

Despite these two shortcomings, we can still extract some useful data
using Seawind. For our experiments, we used a SIENA subscriber and a
SIENA server as workload generators. The experiment setup is depicted in
Figure 3.19. The subscriber plays the role of the mobile station. The server
plays the role of the remote host. Notifications are produced by a publisher
connected to the server directly on the remote host. Each experiment is
defined by the sequence of subscriptions and notifications exchanged between
subscriber and server, by the configuration of the connections between the
subscriber and the server, and by the configuration of the GPRS network.

The workload that we used in our experiments consists of one subscription
posted by the subscriber, followed by a number of matching notifications sent
from the server to the subscriber.

SIENA uses a generic message-based communication mechanism that is
realized in the current implementation by three specialized connectors. The
configuration of the server-subscriber connection is obtained by selecting a
specific connector. In particular, the choices include a UDP connector, a ba-
sic TCP connector, and what we refer to as a “keep-alive” TCP connector. A
UDP connector sends messages through UDP packets, a basic TCP connec-
tor uses one TCP connection per message, and a keep-alive TCP connector
attempts to use the same TCP connection for multiple messages.

For the configuration of the GPRS network, we experimented with a
subset of the rich set of parameters offered by Seawind. In particular, in
accordance with the GPRS CS-1 specification, we emulated a mobile station
capable of using one uplink channel and up to three downlink channels. This
setting is shown in the parameters of Table 3.3.

The ms_maz_rate parameter defines the capabilities of the mobile station.

A value of 3 selects the most advanced class of mobile stations, capable of

51

Experimentation Evaluating SIENA in a Wireless Network

Parameter | Uplink | Downlink
ms_max_rate 3 3
available_rate 0-1 0-3
rate_base 9050 bps | 9050 bps

Table 3.3: GPRS CS-1 simulation parameters

handling data communications (GPRS) and normal calls (GSM) at the same
time. The rate_base is the bandwidth of an individual channel. available_rate
determines the range of channels available to the mobile station. The actual
number of channels allotted to the mobile station at any time depends on
the presence of other GPRS or GSM users in the same cell.

In addition to the parameters of Table 3.3, which serve to characterize
the connectivity of the mobile station to its base station, we must set other
parameters that determine the quality of the communication channel. These

parameters are listed in Table 3.4.

Parameter Value
error_rate_type BIT
- static 1073
error_probability static 104
DELAY_ITERATE
error_handling FORWARD
DROP
error_delay_function | uniform distribution 40-50ms
delay_drop_threshold static 10s

Table 3.4: GPRS error simulation parameters

The effect of noise is to introduce transmission errors or delays. Errors oc-
cur with a probability determined by the error_rate_type and error_probability
parameters. In our experiments, errors are set to occur at the level of indi-
vidual bits with a probability of 1072 and 10~%.

The error_handling parameter determines how the GPRS network han-
dles transmission errors. With “DELAY_ITERATE” the network provides

a reliable delivery service by simply forcing retransmission, which in turn

52

Sample Results Evaluating SIENA in a Wireless Network

introduces a delay for end-to-end communications. Alternative modes are
“FORWARD?”, in which errors are simply ignored and passed on to higher
levels in the communication stack, and “DROP”, which causes the network
to drop packets that contain errors. In the case of “DELAY_ITERATE”,
error_delay_function determines the interval before retransmission and de-
lay_drop_thresholds defines an upper bound for the total retransmission delay,

after which a packet is simply dropped.

3.6 Sample Results

This section presents some sample results that we were able to obtain using
Seawind to evaluate the configuration described in the previous section. The
primary goal of these experiments was to evaluate the impact of deploying
SIENA onto the wireless GPRS network. We did this from two different
perspectives. The first was to gather data characterizing the performance of
the three different low-level connectors (UDP, TCP, and keep-alive TCP) on
the wireless network. The second was to compare these results with baseline
data collected on a local-area, wired network. By doing this we should get
an initial indication of whether a seamless integration of wired and wireless

communication is feasible for a publish/subscribe communication service.

error_probability = 1073
DELAY_ITERATE FORWARD DROP
notif. | IP packets | notif. | IP packets | notif. | IP packets
Keep Alive 79 875 17 350 8 285
TCP 100 1173 64 1205 62 1571
UDP 79 82 73 78 66 97
error_probability = 10~4
DELAY_ITERATE FORWARD DROP
notif. | IP packets | notif. | IP packets | notif. | IP packets
Keep Alive | 82 855 72 458 70 443
TCP 100 1153 100 1156 99 1152
UDP 100 106 84 95 76 91

Table 3.5: SIENA behavior in the wireless GPRS network.

53

Sample Results Evaluating SIENA in a Wireless Network

Table 3.5 shows the network usage corresponding to the three low-level
connectors under two different error probabilities. In essence, this table cap-
tures data on the cross product of the parameter values of Table 3.4. We
collected counts of application-level notifications received by the subscriber
and the resulting counts of IP packets. The counts shown in each cell are
the average taken from five runs of the simulation. In all cases, there were
100 notifications published. The data give an indication of the circumstances
that lead to different notification loss rates. For example, as we would ex-
pect, the highest loss rate occurs at an error probability of 1072 under the
DROP error-handling mode. We can also see that the keep-alive connec-
tor is the most sensitive to increasing error rates and decreasing quality of

error-handling service.

notif. | IP packets
Keep Alive | 100 437
TCP 100 828
UDP 100 102

Table 3.6: SIENA behavior in a local-area, wired network.

Table 3.6 shows the baseline behavior obtained by running the application
on a local-area, wired network. The data characterize the relative overhead
of each of the low-level connector protocols. For instance, UDP encounters
no overhead (The two extra packets are used to carry the subscription and
unsubscription messages). On the other hand, approximately eight packets,
on average, are required by TCP to deliver a single notification. We can
compare the baseline overhead to that experienced in the wireless network.
The overhead of TCP in the wireless case is approximately twelve packets

per notification, considerably higher than in the local-area, wired case.

54

Chapter 4
Mobility Support in SIENA

As we explained in Section 2.1 while host mobility is concerned with the
physical movement of hosts, Code Mobility is the ability to transfer data
and/or code from one host to another by using a network. Data mobility is a
very common mechanism and is often used to exchange or spread information
among different hosts distributed on a network. At a level above this, code

mobility allows the migration of executable code. Data mobility can be

o)
=

Local Host

Figure 4.1: A code fragment moves from host to host and changes its server
master after the motion.

achieved with simple transport protocols, or with higher-lever protocols such

as RPC by passing parameters to a remote procedure. A simple example of

%)

Mobility Support in SIENA

code mobility consist in a WEB browsers loading an applet from a remote
site. For instance, data e code mobility in Java are supported through object
serialization and class loading. The status of objects can be serialized and
transfered from one host to another while the class loading strategies can vary,
depending on the application. The class of the moved object can migrate onto
the new host or it can be fetched from a remote server.

Two more sophisticated mobile code paradigms are classified as remote
evaluation and mobile agents [17]. Remote evaluation allows the proactive
shipping of code to a remote host to be executed [33]. Mobile agents [39] are
autonomous objects carrying their state and code that actively move across
the network. Agent mobility requires the migration of both code and state
of the agent at the same time and they can move actively performing tasks
on be half of users. In this scenario, it is reasonable to think about mobile
agents that use a publish/subscribe system to communicate with each other

and with other non-mobile components.

Event Service l

Figure 4.2: Code moves together with its host and changes its server after
the motion.

This introduces some problems that must be solved. In fact, in a pub-
lish/subscribe system such as SIENA the state of a mobile agent is non com-
pletely stored within the agent, but it is partially maintained by the event-

service. Specifically subscriptions are maintained by STENA-servers, and pos-

56

Mobility Support in SIENA

sibly spread across the network (refer to Section 2.2.3). Therefore, an agent
that moves to a new location must inform SIENA about its movement, to
allows an appropriate re-routing of notifications of interest. In this chapter
we will describe the solutions we propose to manage the problem arising with
the mobility of clients in STENA.

We suppose to have scenarios (depicted in Figures 4.1, and 4.2) in which
a client wants to switch, after its migration, from a local master server to
a remote master server. Notice that from the point of view of SIENA, the
way in which a client performs the movement is completely transparent. In
fact, whether the client moves together with its host or it migrates using
some mobile code technology, the problems related to its disconnection, and
reconnection remain the same.

Since in a publish/subscribe architecture part of the client’s status is
stored in its access-point (such as its subscriptions or its location) we need
some new operations to manage the switching. In fact, during the switching,
a client could lose some events or get duplicates.

To avoid these problems we propose two solutions that differ from each
other in the quality of service they offer. The first solution favors speed over
quality of service, while the second one offers better service guarantees at

the cost of a slower, and more complex process. In next Sections we will

Figure 4.3: Access-points switching actions.

describe which solutions we developed, and how they work. As first instance

we examine the simple case in which a fixed client wants to switch from a

57

Mobile Dispatcher Mobility Support in SIENA

local master server to a remote master server (see Figure 4.3). Then we will
extend this particular case in order to manage the more general case in which

a client changes its master server at the end of the motion.
4.1 Mobile Dispatcher

MobileDispatcher
HierarchicalDispatcher
—
—

client/server ||
Protocol '
—

Figure 4.4: HierarchicalDispatcher and MobileDispatcher work together.

We created a new kind of dispatcher, called Mobile Dispatcher with the
ability to manage client mobility. This dispatcher is based on the Hierar-
chicalDispatcher class provided by SIENA, and adds new features oriented to
mobility management. It is possible to use MobileDispatcher in combination
with old dispatchers in order to create hybrid networks. Of course we may
have networks made by only MobileDispatchers in which fixed clients still
can use the old services. In this case every server is able to achieve clients

mobility.

4.2 Notification Persistence Service

The first feature we added in MobileDispatcher is the persistence of notifica-
tions. This enables a client to be disconnected for a while, and to receive all
events it is interested in when it will reconnect (see Figure 4.5). In order to
do this, we developed two new actions. The first one, called moveOutMas-

ter(), puts the client in a suspended mode, and asks the master server to store

58

Notification Persistence Service Mobility Support in SIENA

event event

— — ()

C.moveOutMaster() C.movelnMaster()

a) b))

Figure 4.5: Notification persistence service.

all events that match its filters. After the disconnected period, the client will
use the dual operation of moveOutMaster() (called moveInMaster()) to
reconnect. This operation allows the server to put the client back in active
mode, and to dispatch all stored events to it. This feature results useful if
client leaves, and returns to the same master server. Of course, the client
could change its position during the movement, but its master server will
remain the same. To communicate this change of position to the server, the
client can use the setReceiver(new_coord) method provided by SIENA. We
extend this action, by creating a new one called moveInMaster (new_coord)

that sets up new position, and then acts as moveInMaster().

4.2.1 Implementation

The implementation of moveOutMaster() is really simple: when a remote
client invokes the moveOutMaster(), a SENP.MVL massage, formatted in
according to STENA protocol ! [3], will be sent to the master server to inform
it about the Client request. Then, the server will search the client’s id into
its “contacts” switching it to a movingON mode (see Figure 4.5.a). Since
this moment, every notification addressed to this client, will be stored in a

private queue (see Figure 4.5.b).

LA SIENA server uses a number of codes to identify requests from clients or other
servers. Those requests are defined by the SIENA Event Notification Protocol (SENP). For
example a publication is defined by the SENP.PUB code.

59

Event Re-routing Mobility Support in STENA

To return active, the client has to call the function moveInMaster().
This will send a SENP.MVI message to the master server that puts the
client in movingOFF mode, and delivers every stored message to it (see
Figure 4.5.¢). If client position is changed during the disconnection periods
(client could be moved to another host), but it would still use the same
server, client may invoke moveInMaster(new_coord) where new_coord is
a PacketReceiver class (for more information refer to the SiENA APIT [3]).
movelnMaster(new_coord) will set up the new position in the server, by
sending a SENP.MAP request, and the it will act as the moveInMaster ().

For more implementation details refer to Appendix C.1, and C.2.

4.3 Event Re-routing

It is reasonable to assume that a mobile client wants to move from an actual
master server to another one. In fact, during the motion, it may decide to
switch to a new access-point considered better than the old. In this scenario,
the notification persistence service represent only the first step of a new set
of possible solutions. As we explained above, since part of the client state
is stored inside the event service, if a client moved from a master server
to another, it must inform the event service in order to modify its state,
and configuration. These include events routing path, client’s position, and
subscriptions. In fact, if a client changed a server without inform the event
service, the latter will still send the notification at the old address.

In the current implementation of SIENA [3] there is an available action,
called setMaster(new_master), that allows a client to change its master

server. The single operations which it performs are:
1. Unsubscribe all filters from old_master
2. Disconnect from old_master

3. Connect to new_master

4. Subscribe all filters

60

Event Downloading Mobility Support in STENA

But, since setMaster(new_-master) is not an atomic action, some problems
may occur. In fact, some events of interest for the client may be generated
while the client is still disconnected, or before it re-subscribes its filters. This
means that the client will lose some notifications.

In order to solve these problems, our idea is to store the client’s notifica-
tions, and subscriptions on the old master server throughout the switching
procedure. During this time the status of the client should be suspended,
so that the notification persistence service is active, on both old and new
master server. This prevents lost events, but may create redundancy. In fact
the same events could be stored in both master servers. Moreover, after the
motion the client should also be able to receive all notifications stored on the

old master server. In the following Section we detail our solution.

4.4 Event Downloading

One obvious solution is to download the events stored on the old master
server (called H) from the new one (called T), and then send them to the
client (called C'). To do this, we add a new action, called moveInMas-
ter(dest), which connects the client to the new server, subscribes all client’s
filter, downloads stored events from the old master server, and finally it dis-
connects the client from the server H (refer to Figure 4.6). Of course, this
procedure requires some synchronization between master servers to avoid
losing or replicating events.

In order to solve these problems, we implemented the moveInMaster(T')
procedure with the following sequence of operations. Notice that the pro-
cedure requires that the client calls the moveOutMaster() method before

leaving the old server H:
1. Connect(T);
2. Store(T);

3. Subscribe(filters, id);

61

Event Downloading Mobility Support in STENA

4. Download(H, T');
MergeEvents();

5. Disconnect(H);

where filters are filters subscribed by the client, and id is the identity of
the client. After downloading the events (4), T has two queues of stored

. Store(H);

: Connect(T);

. Store(T);

: Subscribe(filters, id);

: Download(H,T);
P2 MergeEvents();

6: Disconnect(H);

=
4
¢

Figure 4.6: T Downloads the events stored in H

events, many of which could be replications of the same notification. In order
to remove duplicated events, T" will merge the two queues, and sends the
resulting queue to the client. The merge operation uses a simple comparison

function based on the exact match of all attributes and values.

4.4.1 Implementation

We assume the client has invoked the moveOutMaster() method before
it starts to move. When the client decides to return to an active status,
thereby changes its master server, the client may call the moveInMas-
ter(uri) (where uri is the address of the new server). This function will

perform the following actions:

1. The client C sends a connection request (SENP.WHO) to the new
master server T referred to by the uri parameter. T receives the request

and creates a new MobileSubscriber in its contacts.

62

Event Downloading Mobility Support in STENA

2. C sends a MoveOutMaster request (SENP.MVL) to the new master 7.

T receives it and puts C' in movingON mode.
3. C re-subscribes all its filters to the new master server T'.

4. C sends an Event-download request (SENP.DWL) to T. T receives
it and sends an upload request (SENP.UPL) to H. H receives it and
sends all events it has stored (using SENP.PRV messages) to the new
master server 7. When the download is completed, the server T" sends
a disconnect request (SENP.BYE using the C’s id) to H in order to
cancel all of C' subscriptions from the contacts of H. Thus, the new
master server 7" merges the downloaded events with the locally stored
events and sends the result to the client C'. Finally, T put the C' in the
movingOFF mode.

If also the position of the client C' is changed during the disconnection
period (it could be moved to another host), C' may invoke moveInMas-
ter(new_coord, uri) where new_coord is a PacketReceiver object (see the
SIENA APT [3]). This operation will set up the new position of C in the
master T sending a SENP.MAP request, and then it will act as the moveln-

Master(uri). For more implementation details refer to Appendix C.2.

4.4.2 Observations

This solution seems solve every problem, but since SIENA delivers all fil-
ters subscribed by C' throughout the master server’s hierarchy (refer to Sec-
tion 2.2.3), there is a time gap between the filters subscription and the filters
activation. This time gap may be long and, if during this time 7" downloads
the client’s events stored in H (and thus disconnects C' from H), there is a
high probability to lose events. In fact some notifications could be generated
before the filters activate but after the events download. During this interval,
the notifications cannot reach 7. Furthermore, in H the events persistence
service is no longer active and this implies that these notifications will be lost.
The duration of the activation time may depend on a number of factors, such

as network congestion, SIENA workload, and others out of our control.

63

Event Downloading With Path Test Mobility Support in STENA

4.5 Event Downloading With Path Test

In order to solve problems explained in the previous section, we need to
synchronize the event downloading (and then the client’s disconnection from
the old master server) with the filters activation.

The main idea is to send a ping message (from the new master server T'
to the old server H) throughout the SIENA network and wait for a ping_ack
reply. When T’ catches the ping_ack message, T' can download the events and
disconnect the client C' from H (the actions sequence is showed in Figure 4.7).

The only way to send a message through the STENA master server’s hier-
archy is to build the ping message as a notification. Of course H must be

subscribed for the ping and T must subscribe a filter for the ping_ack.

1: Store(H);

2: Subscribe(ping(id), H);
3: Connect(T);

4: Store(T);

5: Subscribe(filters, id);
6: Subscribe(pong(id), T);
7: Publish(ping(id));

8: Publish(ping_ack(id));
” RaRsetoy

10: Disconnect(H);

4-5-6

Figure 4.7: Download events stored on the old server with synchronization.

We implemented a new version of the moveInMaster(T") procedure with

the following sequence of operations:

1. Connect(T);
2. Store(T);

3. Subscribe(filters, id);

64

Event Downloading With Path Test Mobility Support in STENA

4. Subscribe(ping_ack(id), T');
5. Publish(ping(id));

6. Download(H, T);
MergeEvents();

7. Disconnect(H);

Also in this case the procedure requires that the client C calls the move-
OutMaster() method before leaving the old master server H. Notice that
in this case, the moveOutMaster() method must be modified in order to

enable H to catch the ping message and reply to it with:

1. Store(H);

2. Subscribe(ping(id), H);
3. Wait(ping(id));

4. Publish(ping_ack(id));

This solution, based on “ping-pong” synchronization, seems to secure us
from losing packets. Of course, since we are talking about a scalable network
(such as the Internet), we have to use the expression “highly probable” in-
stead of “secure”. In fact, SIENA is not reliable, and thus some packets could
be lost along the path between two consecutive SIENA master servers.

The main idea behind this implementation of the event downloading is
the following: In order to receive the ping-acknowledgement, T must be sub-
scribed for the ping_ack event and the related filter must be active through
the STENA network. The idea is that T subscribes the filter for the ping_ack,
then C' re-subscribed all its filters. When 7" receives the ping_ack message,
the others filters are also probably active. If this is true, 7" is able to catch
all events in which C' is interested and store them in the appropriate queue.
Thus, T can download the events stored in H and can merge them with the
events locally stored. Only at this point T' can disconnect the client C' from
the old master server H and make C' active. The synchronization time-steps

performed by the download procedure are shown in Figure 4.8.

65

Event Downloading With Path Test Mobility Support in STENA

Client

Client .
(old position) old_master new_master (new position)

Connect(new_master)

MoveOutMaster()|

ping(id)_____-----"
-~~~ pong(id)

download_req0___ -

download()

deliver(events)

disconnect(id)
__ disconnectlid) |
I —

'

Figure 4.8: Events downloading: time-steps synchronization

4.5.1 Implementation

We assume the client has invoked the moveOutMaster(true) before it
starts to move. The new parameter true forces the master server T' to use
the Hierarchical-path test before it downloads the events. When the client
calls the moveOutMaster(true) function, the server H creates a listener
that waits for a ping message.

When the client C' decides to return to an active status, it may call the
moveQutMaster(uri, true) (where uri is the address of the new master
server and true means that the C' wants to use the Hierarchical-path test).

The moveOutMaster (uri, true) function will perform the following action:

1. Client C sends a connection request (SENP.WHO) to the new master
server T referred to by the uri parameter. T receives it and creates a

new MobileSubscriber in its contacts.

2. C sends a MoveOutMaster request (SENP.MVL) to T. The master

server 1" receives it and puts C' in movingON mode.

3. C re-subscribes all its filters to the new master server.

66

Mobile Server Discovery Mobility Support in STENA

4. C sends an Event-download request (SENP.DWH) to the new mas-
ter server 1. T receives it, subscribes for the ping_ack, sends a ping
message through the STENA dispatcher hierarchy, and waits for a reply.
When the server H catches the ping, H will reply with the ping_ack
message. After T' catches the ping_ack it will send an upload request
(SENP.UPL) to the master server H. H receives it and will send
all events it has stored (using SENP.PRV messages) to the master
server 1. When the download is finished, T sends a disconnect re-
quest (SENP.BYE using the C’s id) to H in order to cancel all of the
(s subscriptions from the contacts of H. Thus, 7' merges the down-
loaded events with the locally stored events and sends the result to the

client C'. Finally, the master server T" puts C' in the movingOFF mode.

In order to manage both a change of location and master server switching,
we also added the function moveInMaster(new_coord, uri, true) where
new_coord is a PacketReceiver class (refer to the SIENA APT [3]). This oper-
ation will set up the new position in the master server, sending a SENP.MAP
request, and then it will act as the moveInMaster(uri, true). For more

implementation details refer to Appendix C.2.

4.6 Mobile Server Discovery

A usual problem to be solved in mobility management is how discover service
servers during the motion. For instance, in wireless networks each server has a
physical dedicated channel (typically a radio frequency) used for continually
sending the server identifier and location. When a Mobile Station (MS)
enters the zone served by a specific server, the M S catches this signal and
MS' can perform the server switching using information it has read. In the
Internet environment, this solution is not applicable (see Figure 4.9) because
a disconnected Mobile Agent does not have the possibility to receive any kind
of message.

A simple solution we deployed is to offer a server discovery service to

the client. The idea is that, before its disconnection, the client can ask

67

Implementation Mobility Support in SIENA

Hierarchical Dispatcher

Mobile Dispatcher

Figure 4.9: How Discover another MobileDispatcher

the STENA network for a list of available hosts which are able to manage
the client’s mobility. This new functionality, invoked by addMobileDis-
patcherFinder(Notifiable n), sends a public message from the actual client’s
server through the network, and every MobileDispatcher will reply to it with
their own location and information. Every reply packet, caught by the source
master server, will be delivered to the interested client (refer to Figure 4.10).

Of course, the server discovery service may be stopped at any moment
by the client by invoking the removeMobileDispatcherFinder(Notifiable
n). After this operation, the mobile client has a list of available MobileDis-

patchers and it can choose one of them to reconnect itself after the motion.

4.7 Implementation

This service is implemented using the standard features offered by SIENA.
In fact, when a SIENA mobile server is started, it simply creates a Notifiable
object subscribed for the filter

fs @ service__ = Mobile_Server_Request

68

Implementation Mobility Support in SIENA

=

® @ ¢ © @
® ® $ ® ©

- .
A A

C.addMobileDispatcherFinder(n); M TM2" M3 M4

Figure 4.10: How Discover another MobileDispatcher

. This filter remains active during the life cycle of this master server.

When a client wants to know where the servers that offer the mobil-
ity service are located, it may invoke addMobileDispatcherFinder(rec),
where rec is the the object that will receive the notifications. This function

subscribes rec for
fr : service__ = Mobile_Server_Reply
and publishes the
es : service__ = Mobile_Server_Request

event. the event e, will match with f; and, at this point, the master servers

that caught this event will reply to it by generating the event
e, : service__ = Mobile_Server_Reply,uri__ = localuri,info__ = localin fo

where localuri is the address of the replyer’s master server, and localinfo

could represent some useful information about this server. This information

4

may be specified when the server is starting up by setting the “-info string”

option in the siena.StartMobile command. For more information refer to the

69

Observations Mobility Support in SIENA

moveOutMaster()
moveOutMaster(boolean QoS

movelnMaster()

movelnMaster(PacketReceiver pr)

movelnMaster(string uri)

moveInMaster(string uri, boolean QoS)
moveInMaster(PacketReceiver pr, string uri)
moveInMaster(PacketReceiver pr, string uri, boolean QoS')

addMobileDispatcherFinder(Notifiable rec)
removeMobileDispatcherFinder(Notifiable rec)

Table 4.1: Interface STENA Mobility Support

SIENA implementation [3].

After that, a client may stop the search by calling the removeMo-
bileDispatcherFinder(rec) method. This method will simply unsubscribe
the rec object for the filter f,.

4.8 Observations

In Table 4.8 there are listed the APIs we added to SIENA in order to support
the client’s mobility. Note that the parameter QoS represent the Quality
of Service guaranteed by the referred functions. The default value of QoS
is false. This means that the default kind of download does not test the
hierarchical-path. If a client wants to use this specific downloading mode, it
must invoke the relevant function with “QoS=true”. Obviously, the client
has to choose the same QoS for the moveOutMaster and moveInMaster.
For example, if it called moveOutMaster(false) at the old site, it must

invoke moveInMaster (pr, uri, false) from the new location.

70

Chapter 5
Conclusions

In Section 3.6 we have described our attempt at performance evaluations of a
distributed application deployed over a wireless network. The application is
characterized by the interaction of multiple clients residing at the periphery
of the network, as well as by the need to deploy elements of the application
deep into the network.

We evaluated the impact of deploying STENA onto the wireless GPRS
network from two different perspectives. The first was to gather data char-
acterizing the performance of the three different low-level connectors (UDP,
TCP, and keep-alive TCP) on the wireless network. The second was to com-
pare these results with baseline data collected on a local-area, wired network.
The data shown in Table 3.5 gives an indication of the circumstances that
lead to different notification loss rates. For example, as we would expect, the
highest loss rate occurs at an error probability of 1072 under the DROP error-
handling mode. We can also see that the keep-alive connector is the most
sensitive to increasing error rates and decreasing quality of error-handling
service. By comparing these results with the baseline overhead (showed in
Table 3.6) one simple thing we can note is the high overhead of TCP. In
fact in the wireless case it is approximately twelve packets per notification,
considerably higher than in the local-area, wired case.

To our disappointment, we were not able to find tools capable of sup-

porting a full evaluation of this application. We were limited to the narrow

71

Conclusions

evaluation of a single client interacting across the network with a single server.
Nevertheless, our experience should not be taken as a criticism of Seawind,
the tool that we decided to use for our evaluation. In fact, we found Seawind
to be a reasonable and useful tool for its purpose.

Clearly, a need exists for a different kind of tool for wireless-network per-
formance evaluation. Before embarking on the development of such a tool
ourselves, we first plan to study the capabilities of NS-2 and its GPRS mod-
ule, which hold some promise for modeling and evaluating services deployed
deeply into a wireless network. We might in fact be able to extend them to

also allow modeling and evaluation of client interaction over the network.

As we explained in Section 4, our intent was to deploy a mobility support
in the SIENA publish/subscribe middleware. This introduced some problems,
such as messages persistence during the client motion, notification re-routing
after the movement, events downloading from the new client’s destination,
that we have studied and solved. We extended the set of available operations
in SIENA adding new actions specifically oriented to manage the mobility of
the clients. These allow the client to relocate from host to host updating
its information maintained by the event-service. The basic operations we
developed are moveOutMaster and movelnMaster. moveOutMaster
allows a client to declare its intention to move and causes the event-service
to suspend the delivery of notifications to that client. Of course, all events
addressed to this client will be stored by the event-service. When the client
reaches its new location, it can use the moveInMaster operation to recon-
nect to the event-service and retrieve all notification stored while the client
was disconnected (see Section 4.8). Finally, we also added some operations
that allow the client to discover other mobility-service-enabled servers avail-
able throughout the network.

The API extension we presented in Section 4.8 provide specific services
for mobile clients. However we do not consider them as a definitive solution,
but rather as a basis for future works. In fact they allow us to perform
additional case studies. One important aspect that we would like to study

is the level of reliability provided by the new services. In particular, we

72

Conclusions

would like to quantify the probability of losing or duplicated messages, or of
changing the their ordering [26]. As another further development, we would
like to perform additional tests which we believe are very important due the

probabilistic nature of the errors affecting the system.

Trusted Link O
> {
, N
, N
, N

Event download

\

N
Protected LAN "

. C.movelnMaster(T);
Firewall

Figure 5.1: Dynamic reconfiguration using Mobile Support

It is also important to note that this solution could not work in the pres-
ence of network security constraint. In fact, the downloading process could
be restricted in case in which one of two masters involved in the downloading
process is located behind a network firewall (as in the scenario of Figure 5.1).
We would have to study alternative solutions for cases such as this.

Since a component is unreachable during its disconnection, it cannot re-
ceive events and thus it cannot perform any kind of operation in replying to
it. This may be an undesired behavior in presence of real-time constraints in
the system.

Finally, since in SIENA clients and masters are built using the same class
and architecture, a client can also act as server. This allows us to change
master for dynamically reconfiguring the SIENA network (see Figure 5.2).
In fact, even if a master is usually fixed in the network, we may use the
mobile capabilities (such as moveOutMaster() and moveInMaster(uri))
to momentary disconnect the master, reconfigure the STENA network topology
and reconnect it to another master avoiding lost packets.

Next milestones in these directions should be to finish the testing phase

73

Conclusions

ce o To

AR (PN

Figure 5.2: Dynamic reconfiguration using Mobile Support

and evaluate the results. Furthermore, we should understand if reliability
is indeed a critical non-functional requirement in the context of mobility.
After that, we would also like to experiment with mobile agents using the
SIENA mobility support in order to study the impact of the publish /subscribe
architecture in this context. Finally we would like to combine the mobility
support we deployed in SIENA with the host mobility for example using an ad-
hoc network [21]. In fact, since this is completely composed by mobile hosts,
its topology (and then the relations between the masters which composed it)
changes quickly over the time. In a situation like this, we imagine a SIENA
MobileDispatcher running in every mobile hosts and using the mobile features
to manage its relation to the other components (this is usually referred by the
term Context Management [29]). It would be useful to validate our solution

in this scenario and possibly study alternative solutions.

74

Appendix A

Auction Class Diagrams

A.1 Seller Class Diagram

Date
int dd Time
fint mm
1 lint hh
intyy lint mm
Item_Info
int ItemID
String Auction
IString Category
IString Title

IString Description
String Payment
IString Shipping

User_nfo ldouble Reserve
double Startbid -
double Increment Rec_Bids 0.* :;“ I(;Im::[')d
|double mybid louble bi
M [<>——>Istring UFname

oid addBid(Notification n) String ULname

Bid_Info getBid(int Index)

Bid_Update |

starSell

selling

Ipublic void main() < > = < >
Ivoid showOutput() |void connect() lvoid notify(Notification n)

\void readinput() void disconnect()
\void publish_ltem()

ThinClient

oid publish(Notification n)
\void subscribe(filter f, Notifiable n)

Figure A.1: Seller classes interaction.

I6)

Buyer Class Diagram Auction Class Diagrams

A.2 Buyer Class Diagram

Item_Res

String FName
String LName

int ItemID

String Auction
String Category
String Title

String Description
String day

String month
String year
String hour
String minute
String Payment
String Shipping
double Reserve
double Startbid
double Increment

double mybid
0.
User_Info Search_Results
IString FName \Vector ItemList

void addItem(Notification n)
public Item_Res getitem(int i)

<<>>
StartBuy buying Searc_Update
public void main() C vo!d cpnnecto
void showOutput() void disconnect() void notify(Notification n)
void readInput() viod searc()
\void publish_bid()

ThinClient

ivoid publish(Notification n)
void subscribe(filter f, Notifiable n)

Figure A.2: Buyer classes interaction.

76

Appendix B

Seawind v3.0

Seawind enables researchers to emulate the behavior of wireless network using
a common wireline local area network. The emulator allows examination
of data transfer of wireless network like GSM and GPRS. The ability to
emulate a wireless data network gives the possibility to find enhancements

in transport protocol and network parameters.

B.1 Components of Seawind

The emulator acts like a black box that takes information in, handles it, and
sends it out. Seawind produces output which can be investigated graphically.

Figure B.1 present the logical architecture of the system. This configuration

Mobile WLG Emulator Remote WLG

Figure B.1: Seawind Architecture.

77

Components of Seawind Seawind v3.0

sets up two Simulation Psrocess (SP) and they are located in the same net-

work node.

B.1.1 Graphical User Interface (GUI)

The GUI interface interacts directly with the user and consist of a few win-

dows in which the user can control the system.

B.1.2 Seawindd (SWD)

The seawindd is the Seawind daemon and runs in every machine where Sea-
wind components work. It starts other components after getting coherent

messages from the GUI.

B.1.3 Workload Generator (WLG)

The WLG generates the workload used in tests run. Seawind provides for
two types of WLGs: unidirectional and bidirectional ttcp [34]. Other external
WLGs can be used but those need to be controlled outside Seawind.

B.1.4 Network Protocol Adapter (NPA)

If Seawind own WLG is used, the NPA is used to encapsulate the data and
forward it to the SP. Vice versa on the other end the NPA gets data from the
SP and decapsulates the data before forwarding it to the receiving WLG. In
this version of Seawind there is only one type of NPA defined:the type PPP
(Point-to-Point protocol) [32].

B.1.5 Simulation Process (SP)

The simulation Process is the heart of Seawind. It affects the communication
between workload generators by delaying and dropping packets according to
given parameters. In addition, the SP produce output information which

describes the current communication flow.

78

Parameters of Seawind Seawind v3.0

Befor a test can be run the user needs to define the parameters and
thus behavior for all the mentioned components. The SP parameters, like
spped and error distributions, can be defined independently for the Uplink !
and downlink 2. After the test, the user can utilize third party tools (like
tepdump [22] and ethereal [7]) for analyzing the transfer.

B.1.6 Bacground load (BGL)

The background load simulates the real communicationsystem’s problem that
also other users utilize network resources and affect data transmitting of

primary users.

B.2 Parameters of Seawind

Setting up a test with Seawind requires a number of parameters to be set
in the graphical user interface (GUI). The numerous parameters of Seawind
are distributed among the different emulator system components. Every
component has its own parameters.

The user starts the setting up by choosing different replication sets. A
replication set defines the workload to be used, the network setup, and the
number of replications. A test run can include several replication sets, which
are run one after the other. The results of all replication sets are written in
log files.

The network setup defines the location of different Seawind components
and the network subsystem parameters for both directions of the transfer.
The connection between the WLGs and the emulator kernel can either be a
TCP connection or a serial link through the computers communication ports.
PPP can be used to carry the workload from ttcp sender through Seawind to
the ttcp receiver. Also background load parameters are part of SP parameters

set. For more information, refer to the Seawind User Manual [25].

IUplink is the direction from the mobile station to the network server.
2Downlink is the direction from the network server to the mobile station.

79

Appendix C

MobileDispatcher.java

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

This file is part of Siena, a wide-area event
notification system.
See http://www.cs.colorado.edu/serl/siena/

Author: Mauro Caporuscio <caporusc@cs.colorado.edu>
Copyright (C) 1998-2002 University of Colorado

This program is free software; you can redistribute
it and/or modify it under the terms of the GNU
General Public License

as published by the Free Software Foundation;

either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License
for more details.

$Id: MobileDispatcher.java,v 1.00 2002/03/05 18:51:31
based on HierarchicalDispatcher.java, v 1.50

package siena;

import siena.comm.*;

import java.util.Collection;

80

Class MobileSubscriber MobileDispatcher.java

import java.util.Set;

import java.util.HashSet;
import java.util.Map;

import java.util.Map.Entry;
import java.util.HashMap;
import java.util.List;

import java.util.LinkedList;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.Vector;

import java.io.IOException;
import java.io.x*;

import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;

C.1 Class MobileSubscriber

//

// this is the abstraction of the subscriber used by the

// MobileDispatcher. It represents remote as well as local

// notifiable objects. In addition to that, this o

// bject keeps track of failed attempts to contact the notifiable
// object so that MobileDispatcher can periodically clean up

// its subscriber tables.

//

class MobileSubscriber implements PacketNotifiable {
public short failed_attempts = 0O;
public 1long latest_good = 0;
private boolean suspended = false;
private Notifiable localobj = null;
private PacketSender remoteobj = null;
int refcount = 0;
private SENPPacket spkt = new SENPPacket();
private boolean moving = false;
private Vector storedEvents = null;
private Vector dwlEvents = null;

81

Class MobileSubscriber MobileDispatcher.java

private int aspectedSize = -1;
public final bytel[] identity;

public Filter pfilter = null;
public ping_pong pingpong;

public boolean pingack;

synchronized public Vector getStoredEvents(){
return storedEvents;

}

synchronized public void movingON(){
moving = true;

¥

synchronized public void movingOFF(){
if (isLocal())
while(!storedEvents.isEmpty())
{
try {
localobj.notify((Notification)
storedEvents.remove(0));
}
catch (Exception ex) {
handleNotifyError(ex);

return;
}
}
else
while(!storedEvents.isEmpty())
{
try {

SENPPacket pkt = (SENPPacket)
storedEvents.remove (0) ;

remoteobj.send(pkt.buf, pkt.encode());

}

catch (Exception ex) {

handleNotifyError(ex);
return;

}

}

moving = false;

82

Class MobileSubscriber MobileDispatcher.java

synchronized public void movingOFF (Vector stored){
if (isLocal())

{
while(!stored.isEmpty())
{
try {
localobj.notify((Notification)
stored.remove (0));
}
catch (Exception ex) {
handleNotifyError(ex) ;
return;
}
}
}
else
{
while(!stored.isEmpty())
{
try {
SENPPacket pkt = (SENPPacket)
storedEvents.remove (0) ;
remoteobj.send(pkt.buf, pkt.encode());
}
catch (Exception ex) {
handleNotifyError(ex);
return;
}
}
}

moving = false;

synchronized public boolean dwlEvent (SENPPacket pkt){

int pos = pkt.ttl - 10;

if (pkt.event == null)
aspectedSize = pos;

else

{

if (dwlEvents == null) dwlEvents = new Vector();
pkt.method = SENP.PUB;
dwlEvents.add (pkt) ;

83

Class MobileSubscriber MobileDispatcher.java

}
int actualsize = dwlEvents.size();
if (actualsize == aspectedSize)

{

mergeEvents() ;
return true;
¥

else return false;

synchronized public void mergeEvents(){
moving = false;
if ((dwlEvents == null) && (storedEvents.size() == 0))

return;
if (dwlEvents == null)
{
movingOFF () ;
return;
}
if (storedEvents.size() == 0)
{
movingOFF (dwlEvents) ;
return;
}
for(int i = 0; i < dwlEvents.size(); i++)
{

SENPPacket objd = (SENPPacket) dwlEvents.get(i);

for(int j = 0; j < storedEvents.size(); j++)

{
SENPPacket objs = (SENPPacket)
storedEvents.get(j);
String strl = objd.event.toString();
String str2 = objs.event.toString();
if (strl.compareTo(str2) == 0)
storedEvents.remove(j);

}
dwlEvents.addAll(storedEvents);

movingOFF (dwlEvents) ;

synchronized public boolean notify(SENPPacket pkt) {

84

Class MobileSubscriber MobileDispatcher.java

if (suspended) return true;
try {
if (localobj != null) {
if (moving) storedEvents.add(new
Notification(pkt.event));
else localobj.notify(pkt.event);
} else {
if (moving) storedEvents.add(pkt);
else remoteobj.send(pkt.buf, pkt.encode());
}
failed_attempts = 0;
return true;
} catch (Exception ex) {
handleNotifyError(ex);
return false;

synchronized public void notify(Notification n,
byte[] our_id) {
if (suspended) return;
try {
if (localobj != null) {
if (moving) storedEvents.add(n);
else localobj.notify(n);
} else {
spkt.init();
spkt.id = our_id;
spkt.method = SENP.PUB;
spkt.event = n;
spkt.to = identity;

if (moving) storedEvents.add(spkt);
else remoteobj.send(spkt.buf, spkt.encode());
}
} catch (Exception ex) {
handleNotifyError (ex);
}

synchronized public void notify(Notification [] s,
byte[] our_id) {
if (suspended) return;

85

Class MobileDispatcher MobileDispatcher.java

try {
if (localobj != null) {
//
// here I purposely do not duplicate the
// sequence for efficiency reasons.
// Clients should never modify
// objects passed through notify().
//
if (moving)
{
for(int i=0; i < s.length; ++i)
storedEvents.add(s[i]);
}
else localobj.notify(s);
} else {
spkt.init();
spkt.id = our_id;
spkt.method = SENP.PUB;
spkt.events = s;
spkt.to = identity;

if (moving) storedEvents.add(spkt);
else remoteobj.send(spkt.buf, spkt.encode());

¥
} catch (Exception ex) {
handleNotifyError (ex) ;
}

C.2 Class MobileDispatcher

public class MobileDispatcher implements Siena, Runnable {

private MPoset subscriptions = new MPoset();
private Map contacts = new HashMap();
private MSenderManager pqueue = null;
private bytel[] master_id = null;
private byte[] master_handler = null;
private PacketSender master = null;
private PacketReceiver 1listener = null;
private bytel[] my_identity = null;

86

Class MobileDispatcher MobileDispatcher.java

private List matchers = new LinkedList();
private SENPPacket spkt = new SENPPacket();

private byte [] sndbuf = new byte [SENP.MaxPacketLen];
private PacketSenderFactory sender_factory;

static private PacketSenderFactory default_sender_factory
= new GenericSenderFactory();

private void processRequest (SENPPacket req) {
Logging.prlnlog("processRequest: " + req);
if (req == null) {
Logging.prlnerr ("processRequest: null request");
return;

if (req.ttl <= 0) return;
req.ttl--;
try {
switch(req.method) {
case SENP.NOP: break;
case SENP.PUB: publish(req); break;
case SENP.SUB: subscribe(req); break;
case SENP.BYE: req.pattern = null;
req.filter = null;
case SENP.UNS: unsubscribe(req); break;
case SENP.WHO: reply_who(req); break;
case SENP.INF: get_info(req); break;
case SENP.SUS: suspend(req); break;
case SENP.RES: resume(req); break;
case SENP.MAP: map(req); break;
case SENP.CNF: configure(req); break;
case SENP.OFF: shutdown();
//
// BEGIN_UNOFFICIAL_PATCH
try { Thread.sleep(500); }
catch (Exception ex) {};
System.exit(0);
// END_UNOFFICIAL_PATCH
//

break;

//BEGIN_MOBILITY_PATCH

87

Class MobileDispatcher

MobileDispatcher.java

case
case
case
case

case

case
case

SENP.
SENP.
SENP.
SENP.

SENP.

SENP

SENP.

MVL:
MVH:
MVI:
DWL:

DWH:

.UPL:
PRV:

moveoutLOW(req); break;
moveoutHIGH(req) ; break;
movein(req); break;
downloadNotificationLOW(req);
break;
downloadNotificationHIGH(req) ;
break;

uploadNotification(req); break;
req.ttl++; privateEvent (req);
break;

//END_MOBILITY_PATCH

default:
Logging.prlnerr ("processRequest:
unknown method: " + req);
//
// can’t handle this request (yet)
// ...work in progress...
//

¥

} catch (Exception ex) {

Logging.exerr(ex);

//

// log something here ...work in progress...

//

}
}

//
// MOBILITY SUPPORT PATCH
//
ittt

/** suspends the delivery of notification to the

* ¥ X X ¥ ¥ X

given subscriber n and allows the master to store
all notification addressed to this dispatcher .

This causes the master server to stop sending
notification to this subscriber and to store

them in a queue.
The master correctly maintains all the existing

88

Class MobileDispatcher MobileDispatcher.java

subscriptions so that the flow of notification can be
later resumed

(see moveIn(Notifiable n)).

This operation can be used when this

dispatcher, that is this virtual machine, is going to be
temporarily disconnected from the network or somehow
unreachable from its master server.

* ¥ X ¥ X ¥ X *

*% /
synchronized public void moveQOut (Notifiable n)
throws SienaException {
if (n == null) return;
MobileSubscriber s;
s = (MobileSubscriber)contacts.get(n);
if (s != null) s.movingON();

/** resumes the delivery of notification to the given
*subscriber n.

%
* This causes the master server to resume sending
* stored and new notifications to this subscriber.

*

%

* Qsee #moveOut(Notifiable n)

* @see #suspend(Notifiable n)

* Qsee #resume(Notifiable n)

*x /

synchronized public void moveIn(Notifiable n)
throws SienaException {
if (n == null) return;
MobileSubscriber s;
s = (MobileSubscriber)contacts.get(n);
if (s != null) s.movingOFF();

}
R R S
//Remote Requests
R

synchronized private void disconnectMaster(
byte[] omaster_handler, PacketSender omaster, String id) {
if (omaster != null) {
try {
spkt.init () ;

89

Class MobileDispatcher MobileDispatcher.java

spkt.method = SENP.BYE;
spkt.id = id.getBytes();
spkt.to = omaster_handler;
omaster.send(spkt.buf, spkt.encode());

} catch (PacketSenderException ex) {
Logging.prlnerr("error sending packet to "

+ master.toString() + ": " + ex.toString());
//
// well, what would you do in this case?
// ...work in progress...
//

}
//master = null;
//master_handler = null;

synchronized private void moveoutLOW(SENPPacket req) {
if (req.id == null || req.ttl == 0) return;
String id = new String(req.id);
MobileSubscriber s = (MobileSubscriber)
contacts.get(id);
if (s != null) s.movingONQ);

synchronized private void moveoutHIGH(SENPPacket req) {
if (req.id == null || req.ttl == 0) return;
String id = new String(req.id);
//System.out .println(id);
MobileSubscriber s = (MobileSubscriber)
contacts.get(id);
if (s != null)
{
s.movingON() ;
try{
.pingpong = new ping_pong(this, s);
.pfilter = new Filter();
.pfilter.addConstraint ("id__",id);

—_—— b

.pfilter.addConstraint ("type__",

"SYNC_PING") ;
this.subscribe(s.pfilter, s.pingpong);

n n n n

}

catch (SienaException ex)

90

Class MobileDispatcher MobileDispatcher.java

{
Logging.prlnerr("error subscribing ");
Logging.exerr(ex);

}

synchronized private void movein(SENPPacket req) {
if (req.id == null || req.ttl == 0) return;
String id = new String(req.id);
//System.out .println(id);
MobileSubscriber s = (MobileSubscriber)
contacts.get(id);
if (s != null) s.movingOFF();

synchronized private void downloadNotificationLOW(
SENPPacket req){
if (req.id == null || req.ttl == 0) return;
String id = new String(req.id);

MobileSubscriber s = (MobileSubscriber)
contacts.get (id);
if (s != null)
{
//ServerSocket server;
PacketSender oldmaster;
try {
//send the server address to the OLD master
oldmaster =
sender_factory.createPacketSender(
new String(req.to));
spkt.init();
spkt.method = SENP.UPL;
spkt.id = req.id;
spkt.to = oldmaster.toString() .getBytes();
spkt.handler = listener.uri();
oldmaster.send(spkt.buf, spkt.encode())

catch (Exception ex) {
Logging.prlnerr ("error
sending packet to " + master.toString());
Logging.exerr(ex);

91

Class MobileDispatcher MobileDispatcher.java

synchronized private void downloadNotificationHIGH(

SENPPacket req){

if (req.id == null || req.ttl == 0) return;

String id =

new String(req.id);

MobileSubscriber s = (MobileSubscriber)contacts.get(id);
if (s != null)

{
try{

2]

.pingack = false;

.pingpong = new ping_pong(this, s);

.pfilter = new Filter();
.pfilter.addConstraint("id__", id);
.pfilter.addConstraint ("type__", "SYNC_PONG");
this.subscribe(s.pfilter, s.pingpong);

S
S
S
S

Notification n = new Notification();
n.putAttribute("id__",id);
n.putAttribute("type__","SYNC_PING");
this.publish(n);

int tent = 0;
while ((!s.pingack) && (tent < 60)){
try{
Thread.sleep(1000) ;
tent++;
}
catch (java.lang.InterruptedException ex) {
System.out.println("interrupted");

}
}
if (tent == 60)
{
Logging.prlnerr("error dowloading");
return;
}

92

Class MobileDispatcher MobileDispatcher.java

this.unsubscribe(s.pfilter, s.pingpong);

}

catch

{

(SienaException ex)

Logging.prlnerr("error subscribing ");

Logging.exerr(ex);

}

//ServerSocket server;
PacketSender oldmaster;

try {

catch

synchronized pr

//send the server address to the OLD master
oldmaster =
sender_factory.createPacketSender(

new String(req.to));
spkt.init();
spkt.method = SENP.UPL;
spkt.id = req.id;
spkt.to = oldmaster.toString() .getBytes();
spkt.handler = listener.uri();
oldmaster.send(spkt.buf, spkt.encode());

(Exception ex) {

Logging.prlnerr ("error sending packet to " +
master.toString());

Logging.exerr(ex);

ivate void uploadNotification(SENPPacket req){

if (req.id == null || req.ttl == 0) return;

String id =
MobileSubsc

new String(req.id);
riber s = (MobileSubscriber)contacts.get(id);

if (s != null)

{

Packe
try {

tSender soc;

//Connection
soc = sender_factory.createPacketSender (

93

Class MobileDispatcher

MobileDispatcher.java

new String(req.handler));

//Downloading stored Events

Vector storedEvents =
byte pcknum =

s.getStoredEvents() ;
9;

while(!storedEvents.isEmpty())

{

pcknum ++;

SENPPacket prv = (SENPPacket)
storedEvents.remove (0) ;

prv.method = SENP.PRV;
prv.ttl = pcknum;
prv.id = my_identity;
prv.to = id.getBytes();
prv.handler = listener.uri();
soc.send(prv.buf, prv.encode());
}
//Download is finished
pcknum++;
spkt.method = SENP.PRV;
spkt.ttl = pcknum;
spkt.id = my_identity;
spkt.to = id.getBytes();
spkt.handler = listener.uri();
spkt.event = null;

soc.send(spkt.buf, spkt.encode());

catch (Exception ex) {
Logging.prlnerr ("error sending packets to "

+ new String(req.handler)) ;

Logging.exerr(ex);

}

synchronized private void privateEvent (SENPPacket req){
if (req.id == null) return;

94

Class MobileDispatcher MobileDispatcher.java

String id = new String(req.to);
MobileSubscriber s = (MobileSubscriber)contacts.get(id) ;
if (s != null)
if (s.dwlEvent(req))
{
try {
PacketSender old_master =
sender_factory.createPacketSender(
new String(req.handler)) ;
disconnectMaster(req.handler,
old_master, id);
}
catch (Exception ex) {
Logging.prlnerr("error sending packet to "
+ new String(req.handler));
Logging.exerr(ex);

//Public Methods

/** suspends the connection with the master server of
* this dispatcher and allows the master to store all
notification addressed to this dispatcher.

This causes the master server to stop sending
notification to this dispatcher and to store them
in a queue.
The master correctly maintains all the
existing subscriptions so that the flow
of notification can be later resumed
(see moveInMaster()).
This operation can be used when this
dispatcher, that is this virtual machine, is going to be
temporarily disconnected from the network or somehow
unreachable from its master server.

@param QoS is the Quality of Service
if true high reliability
if false low reliability

* O X K X K X X X X X X ¥ X ¥ ¥ *

95

Class MobileDispatcher MobileDispatcher.java

%

* @see #suspendMaster()
* @see #resumeMaster()
* Qsee #moveInMaster()
*% /

synchronized public void moveOutMaster (boolean QoS) {
if (QoS)

try {
spkt.init();
spkt.method = SENP.MVH;
spkt.to = master_handler;
spkt.id = my_identity;
spkt.handler = listener.uri();
master.send(spkt.buf, spkt.encode());

} catch (Exception ex) {
Logging.prlnerr("error sending packet to "

+ master.toString());

Logging.exerr(ex);

//
// of course I should do something here...
// ...work in progress...
//
}
else
try {

spkt.method = SENP.MVL;
spkt.to = master_handler;
spkt.id = my_identity;
spkt.handler = listener.uri();
master.send(spkt.buf, spkt.encode());
} catch (Exception ex) {
Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);

//

// of course I should do something here...
// ...work in progress...

//

/** suspends the connection with the master server of

96

Class MobileDispatcher MobileDispatcher.java

* this dispatcher and allows the master to store all
* notification addressed to this dispatcher.

*

* see movelInMaster(boolean QoS).

*

* (@see #suspendMaster ()

* @see #resumeMaster()

* @see #moveInMaster()

*% /

synchronized public void moveOutMaster() {
moveOutMaster(false);

/** resumes the connection with the master server.

*

* This causes the master server to resume sending
* stored and new notifications to this dispatcher.
*
*

Q@see #moveOutMaster ()
*% /
synchronized public void moveInMaster () {
try {
spkt.init();
spkt.method = SENP.MVI;
spkt.to = master_handler;
spkt.id = my_identity;
spkt.handler = listener.uri();
master.send(spkt.buf, spkt.encode());
} catch (Exception ex) {
Logging.prlnerr("error sending packet to "
+ master.toString());

Logging.exerr(ex);

//

// of course I should do something here...
// ...work in progress...

//

/** resumes the connection with the master server.
*

* This causes the master server to resume sending

97

Class MobileDispatcher

* X X K X X X X ¥ *

*% /

stored and new notifications to this dispatcher.

This also sets the new packet receiver for this server.
This method simply calls setReceiver(PacketReceiver, int)

Oparam pr is the receiver

O@see #moveOutMaster ()
@see #setReceiver (PacketReceiver)

synchronized public void moveInMaster (PacketReceiver pr) {

try {

setReceiver (pr);

spkt.
.method = SENP.MVI;
spkt.
spkt.
.handler =

spkt

spkt

init();
to = master_handler;

id = my_identity;
listener.uri();

master.send(spkt.buf, spkt.encode());
} catch (Exception ex) {
Logging.prlnerr("error sending packet to "

+ master.toString());

Logging.exerr(ex);

//

// of course I should do something here...

//
//

.work in progress...

/** resumes the connection with the master server.

Oparam uri

* ¥ X X X X ¥ X *

This causes the master server to resume sending
stored and new notifications to this dispatcher.

This also sets the new server for this dispatcher.

is the external identifier
of the master dispatcher
(e.g., * senp://host.domain.edu:8765")

98

MobileDispatcher.java

Class MobileDispatcher MobileDispatcher.java

* @param QoS is the Quality of Service
* if true High reliability

* if false low reliability

*

* @see #moveOutMaster()

* (@see #setReceiver(PacketReceiver)

*

*x/

synchronized public void movelInMaster (String uri, boolean QoS)

throws InvalidSenderException, java.io.IOException {

byte[] old_master_handler
PacketSender old_master

null;

null;

//Backup old Master
old_master_handler = master_handler;
old_master = master;

//Create a new Master
PacketSender new_master =
sender_factory.createPacketSender (uri);

boolean new_listener = false;

if (listener == null) {
setReceiver (new TCPPacketReceiver(0));
new_listener = true;

master_handler = uri.getBytes();
master = new_master;
//
// sends a WHO packet to figure out the identity of
// the master server.
// This dispatcher uses the "to" field of the SENP
// packet to tell the master server the handler used
// by this server to reach the master server.
// (see reply_who())
//
try{
spkt.init();
spkt.method = SENP.WHO;
spkt.ttl = 2; // round-trip

99

Class MobileDispatcher MobileDispatcher.java

spkt.to = master_handler;
spkt.id = my_identity;
spkt.handler = listener.uri();
master.send(spkt.buf, spkt.encode());
//
// perhaps I should sit here waiting for the
// INF response
// of the server
//
// ...to be continued...
//
} catch (Exception ex) {
Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);
master = null;
master_handler = null;
if (new_listener) {
try {
listener.shutdown();
} catch (PacketReceiverException pex) {
Logging.exerr (pex) ;

}

}

//

// of course I should do something here...

// ...work in progress...

//
}
//Store the notification at the NEW Master
moveOutMaster();
//
// sends all the top-level subscriptions to the new master
//

for(Iterator i = subscriptions.rootsIterator();
i.hasNext();) {
MSubscription s = (MSubscription)i.next();
try {
spkt.init();
spkt.method = SENP.SUB;
spkt.ttl = SENP.DefaultTtl;

100

Class MobileDispatcher MobileDispatcher.java

spkt.id = my_identity;
spkt.handler = listener.uri();
spkt.filter = s.filter;
master.send(spkt.buf, spkt.encode());
} catch (Exception ex) {
Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);

//
// of course I should do something here...
// ...work in progress...
//
}

}

//Download the events stored at the OLD Master

if (QoS)

try {

spkt.init();

spkt.method = SENP.DWH;

spkt.ttl = 2; // round-trip
spkt.to = old_master_handler;

spkt.id = my_identity;

spkt.handler = listener.uri();
0ld_master.send(spkt.buf, spkt.encode());

catch (Exception ex)

Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);

else
try {
spkt.init();
spkt.method = SENP.DWL;

spkt.ttl = 2; // round-trip
spkt.to = old_master_handler;
spkt.id = my_identity;

spkt.handler = listener.uri();
0old_master.send(spkt.buf, spkt.encode());

catch (Exception ex)

101

Class MobileDispatcher MobileDispatcher.java

{
Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);

¥
}
/**x resumes the connection with the master server.
*
* This causes the master server to resume sending
* stored and new notifications to this dispatcher.
%
* This also sets the new server for this dispatcher.
*
* @Oparam uri is the external identifier
* of the master dispatcher
* (e.g., * senp://host.domain.edu:8765")
*
* @see #moveOutMaster ()
* @see #setReceiver(PacketReceiver)
*
*% /

synchronized public void moveInMaster (String uri)
throws InvalidSenderException, java.io.IOException {

moveInMaster (uri, false);

/** resumes the connection with the master server.

This causes the master server to resume sending
stored and new notifications to this dispatcher.

This also sets the new server and the new
packet receiver for this dispatcher.

This method simply calls setMaster(String)
and setReceiver(PacketReceiver, int)

Oparam pr is the receiver

* X X X X K X X X X ¥ *

Oparam uri is the external identifier

102

Class MobileDispatcher MobileDispatcher.java

of the master dispatcher
(e.g., * senp://host.domain.edu:8765")

@param QoS is the Quality of Service
if true High reliability
if false low reliability

@see #moveOutMaster ()
Osee #setReceiver (PacketReceiver)

* ¥ X X X X ¥ X *

*
*
~

synchronized public void moveInMaster (PacketReceiver pr,
String uri, boolean QoS)
throws InvalidSenderException,
java.io.IOException {

// Change Client Location
try {
setReceiver (pr) ;
} catch (Exception ex) {
Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);

}
byte[] old_master_handler = null;
PacketSender old_master = null;

//Backup old Master
old_master_handler = master_handler;
old_master = master;

//Create a new Master
PacketSender new_master =
sender_factory.createPacketSender (uri);

boolean new_listener = false;

if (listener == null) {
setReceiver (new TCPPacketReceiver(0));
new_listener = true;

103

Class MobileDispatcher MobileDispatcher.java

master_handler = uri.getBytes();
master = new_master;
//
// sends a WHO packet to figure out the identity of the
//master server.
// This dispatcher uses the "to" field of the SENP
// packet to tell the master server the handler used
// by this server to reach the master server.
// (see reply_who())
//
try {
spkt.init();
spkt.method = SENP.WHO;
spkt.ttl = 2; // round-trip
spkt.to = master_handler;
spkt.id = my_identity;
spkt.handler = listener.uri();
master.send(spkt.buf, spkt.encode());
//
// perhaps I should sit here waiting for the
// INF response
// of the server
//
// ...to be continued...
//
} catch (Exception ex) {
Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);
master = null;
master_handler = null;
if (new_listener) {
try {
listener.shutdown();
} catch (PacketReceiverException pex) {
Logging.exerr(pex) ;

}
}
//
// of course I should do something here...
// ...work in progress...
//

104

Class MobileDispatcher

MobileDispatcher.java

//Store the notification at the NEW Master

moveOutMaster

//

OF:

// sends all the top-level subscriptions to the new master

//

for(Iterator

MSubscrip

try {
spk
spk
spk
spk
spk
spk
mas

} catch (
Log

Log
/7
//
/7
//

//Download th
if (QoS)
try {

spkt.

spkt

spkt.

spkt.

spkt.

spkt

i = subscriptions.rootsIterator();
i.hasNext();) {
tion s = (MSubscription)i.next();

t.init();

t.method = SENP.SUB;

t.ttl = SENP.DefaultTtl;

t.id = my_identity;

t.handler = listener.uri();

t.filter = s.filter;

ter.send(spkt.buf, spkt.encode());

Exception ex) {

ging.prlnerr("error sending packet to "
+ master.toString());

ging.exerr(ex);

of course I should do something here...
...work in progress...

e events stored at the OLD Master

init();

.method = SENP.DWH;

ttl = 2; // round-trip
to = old_master_handler;
id = my_identity;

.handler = listener.uri();

0ld_master.send(spkt.buf, spkt.encode());

¥

catch (Exce

ption ex)

105

Class MobileDispatcher MobileDispatcher.java

Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);

}
else
try {
spkt.init();
spkt.method = SENP.DWL;
spkt.ttl = 2; // round-trip
spkt.to = old_master_handler;
spkt.id = my_identity;
spkt.handler = listener.uri();
0ld_master.send(spkt.buf, spkt.encode());
}
catch (Exception ex)
{

Logging.prlnerr("error sending packet to "
+ master.toString());
Logging.exerr(ex);

/** resumes the connection with the master server.

This causes the master server to resume sending
stored and new notifications to this dispatcher.

This also sets the new server and the new
packet receiver for this dispatcher.

This method simply calls setMaster(String)
and setReceiver(PacketReceiver, int)

O@param pr is the receiver
Oparam uri is the external identifier
of the master dispatcher

(e.g., * senp://host.domain.edu:8765")

@see #moveOutMaster ()
Osee #setReceiver (PacketReceiver)

* O X K X K X X X X X X ¥ X ¥ X * X

106

Class MobileDispatcher MobileDispatcher.java

*% /
synchronized public void moveInMaster (PacketReceiver pr,
String uri)
throws InvalidSenderException,

java.io.IOException {

moveInMaster(pr, uri, false);

/** starts the Mobility server search.

* This method simply subscribes the ‘‘Notifiable n’’

* for a special filter.

*

* @param n is the object will receive the search results
*

*% /

synchronized public void addMobileDispatcherFinder(
Notifiable n) throws SienaException {

Filter £ = new Filter();
f.addConstraint("servive__","Mobile_Server_replay__");

subscribe(f,n);

Notification e = new Notification();
e.putAttribute("servive__","Mobile_Server_request__");

publish(e);

/** stop the Mobility server search.

This method simply unsubscribes the ‘‘Notifiable n’’
for a special filter.

@param n is the object receiving the search results

* ¥ ¥ X ¥ *

*x/
synchronized public void removeMobileDispatcherFinder (
Notifiable n) throws SienaException {

107

Class MobileDispatcher MobileDispatcher.java

Filter f = new Filter();
f.addConstraint("servive__","Mobile_Server_replay__");

—_— ’

unsubscribe(f,n);

/** start info sending about this dispatcher.

This method simply subscribes this dispatcher
for a special filter representing a service request.

Oparam s is the information about this dispatcher.

* ¥ X ¥ X *

*
*
~

public void StartAvailability(String s)
throws SienaException {

ServiceReplay sr = new ServiceReplay(this, s);

Filter f = new Filter();
f.addConstraint("servive__","Mobile_Server_request__");

—_—)

subscribe(f, sr);

//

class ping_pong implements Notifiable{

MobileSubscriber ms;
MobileDispatcher md;

public ping_pong(MobileDispatcher d, MobileSubscriber s){
ms = s;
md = d;

public void notify(Notification[] s) throws SienaException {

¥

108

Class MobileDispatcher MobileDispatcher.java

public void notify(Notification n) throws SienaException {
String type = n.getAttribute("type__").toString();

if (type.compareTo(new
AttributeValue ("SYNC_PONG").toString()) == 0)
ms.pingack = true;

if (type.compareTo(new
AttributeValue ("SYNC_PING").toString()) == 0)
{
Notification e = new Notification();
e.putAttribute("id__",new String(ms.identity));
e.putAttribute("type__","SYNC_PONG") ;

md.publish(e);

class ServiceReplay implements Notifiable{

String info;
MobileDispatcher md;

public ServiceReplay(MobileDispatcher m, String s){

md = m;
info = s;

public void notify(Notification[] s) throws SienaException {
}

public void notify(Notification n) throws SienaException {

Notification e = new Notification();

e.putAttribute("servive__","Mobile_Server_replay__");
e.putAttribute ("uri__",new String(md.getReceiver().uri()));
e.putAttribute("info__",info);

md .publish(e);

109

Class MobileDispatcher MobileDispatcher.java

110

Bibliography

[1]

G. Brasche and B. Walke. Concept, services and protocols for the new
GSM Phase 2+ General Packet Radio Service. Technical report, IEEE

Communications Magazine, 1997.

L. Cardelli and A. D. Gordon. Mobile Ambients. Theoretical Computer
Science, 2000.

A. Carzaniga. Siena 1.3.0 Api Documentation.
www.cs.colorado.edu/~carzanig/siena/.
Copyright (©)2000-2002 University of Colorado.

A. Carzaniga, G. Picco, and G. Vigna. Designing Distributed Appli-
cations with Mobile Code Paradigms. In Proceedings of the 19" In-
ternational Conference on Software Engineering, pages 22-32, Boston,
Massachusetts, May 1997.

A. Carzaniga, D. S. Rosenblum, and A. .. Wolf. Achieving Scalability
and Expressiveness in an Internet-Scale Event Notification Service. In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing, pages 219-227, Portland, OR, July 2000.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evalua-
tion of a Wide-Area Event Notification Service. ACM Transactions on
Computer Systems, 19(3):332-383, Aug. 2001.

G. Combs. The Ethereal Network Analyzer. UNIX manual.

Available from www.ethereal.com.

111

Bibliography

[8] D. E. Comer. Internetworking with TCP/IP, volume Volume I - Prin-
ciples, protocols and architecture. Prentice Hall, third edition edition,
1995.

9] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna. Analyzing Mobile
Code Languages. In Mobile Object Systems: Towards the Programmable
Internet, pages 93-110. Springer-Verlag: Heidelberg, Germany, 1997.

[10] E. Durocher and I. Filotti. Native Code Migration over a Heterogeneous
Network - An Efficient Approach to Process Migration.

[11] Ericsson Mobility World. GATE II.

www.ericsson.com/mobilityworld /.

[12] ETSI. GSM 03.60: Digital cellular telecommunications system (Phase
2+); General Packet Radio Service (GPRS); Service Description; Stage
2.

[13] ETSI. GSM 03.64: Digital cellular telecommunications system (Phase
2+); General Packet Radio Service (GPRS); Overall description of the
GPRS radio interface.

[14] ETSI. GSM 08.18: Digital cellular telecommunications system (Phase
2+); General Packet Radio Service (GPRS); Base Station System (BSS)
- Serving GPRS Support Node (SGSN) - BSS GPRS Protocol (BSSGP).

[15] ETSI. GSM 09.60: Digital cellular telecommunications system (Phase
2+); General Packet Radio Service (GPRS); GPRS Tunneling Protocol
(GTP) across the Gn and Gp Interface.

[16] K. Fall and K. Varadhan. The ns Manual. The VINT Project, Novem-
ber 2001. A Collaboration between researchers at UC Berkeley, LBL,
USC/IST and Xerox PARC.

[17] A. Fugetta, G. Picco, and G. Vigna. Understanding Code Mobility.
IEEE Transaction on Software Engineering, 24(5), 1998.

[18] General Magic. Telescript Language Reference, Oct 1995.

112

Bibliography

[19] E. Giguere. Java™ 2 Micro Edition. Professional Developer’s Guide.
John Wisley & Son, release 1.0 edition, 2001.

[20] Internet Engineering Task Force. Internet Printing Protocol (IPP).
www.ietf.org/html.charters/ipp-charter.html.

[21] Internet Engineering Task Force. Mobile Ad-Hoc Networks (MANET)
WG Charter. www.ietf.org/html.charters/manet-charter.html.

[22] V. Jacobson, C. Leres, and S. McCanne. tcpdump - dump traffic on a

network. UNIX manual. Available from www.tcpdump.org.

[23] R. Jain. GPRS Simulations using ns-Network Simulator. PhD thesis,
Department of Electrical Engineering, Indian Institute of Technology -
Bombay, June 2001.

[24] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, and K. Raatikainen. Sea-

wind: a Wireless Network Emulator. University of Helsinki, Finland.

[25] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, and K. Raatikainen. Sea-
wind v3.0 User Manual. University of Helsinki, Finland, September
2001.

[26] L. Lamport. Time, clocks, and the ordering of events in a distributed
system, 1978.

[27] Motorola Wireless Development Centre. The Motorola GPRS Emulator.

developers.motorola.com/developers/wireless/global /uk /emulator.htm.

[28] M. Mouly and M. Pautet. Current Evolution of the GSM Systems.
Technical report, IEEE Pers. Commun., 1995.

[29] A. L. Murphy, G.-C. Roman, and G. P. Picco. Coordination and Mobil-
ity. In A. Omicini and F. Zambonelli and M. Klusch and R. Tolksdorf,
editor, Coordination of Internet Agents: Models, Technologies, and Ap-
plications, pages 254-273. Springer, 2000.

113

Bibliography

[30] Nokia. Nect Act Planner.

www.nokia.com /networks/services/netact /netact_planner/.

[31] G.-C. Roman, G. P. Picco, and A. L. Murphy. Software Engineering for
Mobility: A Roadmap. In A. Finkelstein, editor, The Future of Software
Engineering, pages 241-258. ACM Press, 2000. Invited contribution.

[32] W. Simpson. The Point-to-Point Protocol (PPP). Request for Com-
ments, July 1994. RFC 1661.

[33] J. Stamos and D. Gifford. Remote Evaluation. ACM Trans. on Pro-
gramming Languages and System, pages 537-565, October 1990.

[34] R. Stine. FYT on a network management tool catalog: Tools for mon-
itoring and debugging TCP/IP internets and interconnected devices.
Request for Comments, Apr. 1990. RFC 1147.

[35] Sun Microsystem. The Java Language Specification, Oct 1995.

[36] The Source for Java Technology. Java™ 2 Platform Micro Edition.

Available from java.sun.com/j2me/.

[37] The Source for Java Technology. Java™ 2 Platform Micro Edition,

Wireless Toolkit. Available from java.sun.com/products/j2mewtoolkit/.

[38] The Source for Java Technology. Java™ 2 Platform Standard Edition.

Available from java.sun.com/j2se/.

[39] D. Wong, N.Paciorek, and D. Moore. Java-based Mobile Agents. Com-
munication of the ACM, pages 92—-102, 1999.

114

