Step-by-Step Example of a List Class in C++

Antonio Carzaniga

We walk through various implementations of a linked list that illustrate various features of C++. We start
by implementing a list of int objects (numbers) with a very simple abstract interface:

Add =z adds element z to the list
Size = returns the number of elements contained in the list

We implement this structure with a singly-linked list. Each "link" in the list is represented by a 1ist_node
object, and the list itself is represented by a 1ist object as follows:

#include <iostream>

struct list_node {
int v;
list_node * next;

s

class list {
list_node * head; // head of the linked list
unsigned int n; // number of elements in the list

};

Notice that we define 1ist_node as a struct and list as a class. However, there is almost no difference
between the two. A struct is exactly like a class, except that the members of a struct are public, whereas
the members of a class are by default private.

We then add the basic operations as member functions (methods), including the constructors and, for
list, also a destructor. The destructor is necessary because we need to deallocate the memory used by
the linked list.

struct list_node {
int v;
list_node * next;

list_node(int k, list_node * n) : v(k), next(n) {}
};

class list {
list_node * head;
unsigned int n;

public:
list() : head(nullptr), n(0) {}
“list O {

while (head) {



list_node * tmp = head;
head = head->next;
delete(tmp);

}

}

unsigned int size() const {
return n;

}

void add(int i) {
head = new list_node(i, head);
n += 1;

}
};

Notice that we include all the method definitions within the class definition. An often preferable alter-
native is to separate the method declarations, within the class definitions, from their definitions, which
could well be in a separate file and in any case outside the class definition. This is what we do from now
on.

struct list_node {
int v;
list_node * next;

list_node(int k, list_node * n);

};

class list {
list_node * head;
unsigned int n;

public:
list();
"1listQ;

unsigned int size() const;
void add(int i);
s

list_node::list_node(int k, list_node * n)
: v(k), next(n) {3

list::1list()
: head(nullptr), n(0) {3}

list::"1list() {

while (head) {
list_node * tmp = head;
head = head->next;
delete(tmp);

}



}

unsigned int list::size() const {
return n;

}

void list::add(int i) {
head = new list_node(i, head);
n += 1;

}
Now that we have a minimally functional implementation, we can also add a test program (main).

#include <iostream>
#include <cassert>

struct list_node {
int v;
list_node * next;

list_node(int k, list_node * n);

};

class list {
list_node * head;
unsigned int n;

public:
list(Q);
“1listQ;

unsigned int size() const;
void add(int i);
};

list_node::list_node(int k, list_node * n)
: v(k), next(n) {}

list::1list()
: head(nullptr), n(0) {3}

list::"1list() {

while (head) {
list_node * tmp = head;
head = head->next;
delete(tmp);

}
}

unsigned int list::size() const {
return n;

}



void list::add(int i) {
head = new list_node(i, head);
n += 1;

e e
)
Q.
Q.
~
o
A2

.add(5);
assert(l.size() == 9);
std::cout << "PASS" << std::endl;
}

Of course, a list that only allows one to add elements and then get the number of elements added is not
very useful. At a minimum, the data structure should also support an iteration. The way we do that is
through the classic iteration pattern used extensively in the C++ standard library, namely through iterator
objects.

An iterator is analogous to a pointer. Consider the following code:

int Af10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int main() {
for (int * itr = A; itr '= A + 10; ++itr)
*xitr = 0;

}

Here the data structure is a simple array and the application uses a pointer (itr) to iterate over the array.
We could then modularize the array inside a specific data structure that would still allow the application
to iterate over the array in the same way:

#include <iostream>

class A {
int datal[10];

public:
int * begin() { return data; }
int * end() { return data + 10; }

};
int main() {
A a;
int i = 0;
for (int * itr = a.begin(); itr != a.end(); ++itr)

*xitr = ++i;



for (int * itr = a.begin(); itr != a.end(); ++itr)
std::cout << *itr << std::endl;

}

We want to do the same now for out 1ist data structure. In order to do that, we need to have a sort of
pointer, meaning something that would allow the application to iterate through the elements (++itr) and
to access the elements (xitr). This is the role of an iterator. In addition to that, the way an application
uses iterators a requires proper initialization and also a comparison for iterators. We therefore define a
specific iterator class for our linked list. In this case, the iterator class, which we implement as an inner
class within 1ist, is essentially a pointer to a wrapper for a pointer to a 1ist_node object.

#include <iostream>
#include <cassert>

struct list_node {
int v;
list_node * next;

list_node(int k, list_node * n);

};

class list {
list_node * head;
unsigned int n;

public:
list(Q);
"1listQ;

unsigned int size() const;
void add(int i);

class iterator;

iterator begin() const;
iterator end() const;

};

list_node::list_node(int k, list_node * n)
: v(k), next(n) {}

list::1list()
: head(nullptr), n(0) {}

list::"1list() {

while (head) {
list_node * tmp = head;
head = head->next;
delete(tmp) ;

}
}



unsigned int list::size() comst {
return n;

}

void list::add(int i) {
head = new list_node(i, head);
n += 1;

}

class list::iterator {
list_node * p;
public:
iterator(list_node *x) : p(x) {};
iterator(const iterator & other) : p(other.p) {};

int & operator * () const;
bool operator != (const iterator & other) const;
iterator & operator ++ ();

};

int & list::iterator::operator * () const {
return p->v;

}

bool list::iterator::operator != (const iterator & other) const {
return p != other.p;

}

list::iterator & list::iterator::operator ++ () {
P = p->next;
return *this;

}

list::iterator list::begin() const {
return iterator(head);

}

list::iterator list::end() comnst {
return iterator(nullptr);

}

int main() {
list 1;
.add(3);
.add(1);
.add(4);
.add(1);
.add(5);
.add(9);
.add(2);

e e e e



1.add(6);
1.add(5);
assert(l.size() == 9);

for (list::iterator itr = l.begin(); itr != l.end(); ++itr)
std::cout << *itr << std::endl;

}

Notice the definition of the various operators applied to iterator objects. We define the increment op-
erator (unary prefix ++) to move to the next element. We then define the dereference operator (unary *)
to access an element. In this case, notice that the dereference operator returns a reference to the element,
meaning a reference to the int object pointed to by the iterator. This is necessary to be able not only to
read the values of the elements in the list, but also to assign their values (e.g., *itr = 7). Notice also that
this definition of the dereference operator is consistent with the derefenrence of a normal pointer value.
For example, if we have an object int * p, then *p is an l-value, meaning it refers to an object that can
therefore be used as the target in an assignment.



