Algorithms and Data Structures

Course Introduction

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
February 18, 2020

General Information

■ On-line course information

- on iCorsi: INFO.ALGO20
- and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
- last edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo19s/

General Information

■ On-line course information

- on iCorsi: INFO.ALGO2O
- and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
- last edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo19s/

■ Announcements

- you are responsible for reading the announcements page or the messages sent through iCorsi

General Information

■ On-line course information

- on iCorsi: INFO.ALGO20
- and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
- last edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo19s/
- Announcements
- you are responsible for reading the announcements page or the messages sent through iCorsi

■ Office hours

- Antonio Carzaniga: by appointment
- Ali Fattaholmanan: by appointment
- Afrouz Jabalameli: by appointment
- Ioannis Mantas: by appointment

Textbook

Introduction to Algorithms

Third Edition
Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

Evaluation

■ $+30 \%$ homework

- 3-5 assignments
- grades added together, thus resulting in a weighted average

■ $+30 \%$ midterm exam

■ $+40 \%$ final exam
■ $\pm 10 \%$ instructor's discretionary evaluation

- participation
- extra credits
- trajectory
- ...

■ $+30 \%$ homework

- 3-5 assignments
- grades added together, thus resulting in a weighted average

■ $+30 \%$ midterm exam

■ $+40 \%$ final exam
■ $\pm 10 \%$ instructor's discretionary evaluation

- participation
- extra credits
- trajectory
- ...

■ -100% plagiarism penalties

Plagiarism

You should never take someone else's material and present it as your own.

Plagiarism

You should never take someone else's material and present it as your own.

■ "material" means ideas, words, code, suggestions, corrections on one's work, etc.

■ Using someone else's material may be appropriate

- e.g., software libraries
- always clearly identify the external material, and acknowledge its source. Failing to do so means committing plagiarism.
- the work will be evaluated based on its added value

You should never take someone else's material and present it as your own.

■ "material" means ideas, words, code, suggestions, corrections on one's work, etc.

■ Using someone else's material may be appropriate

- e.g., software libraries
- always clearly identify the external material, and acknowledge its source. Failing to do so means committing plagiarism.
- the work will be evaluated based on its added value

■ Plagiarism or cheating on an assignment or an exam may result in

- failing that assignment or that exam
- losing one or more points in the final note!

■ Penalties may be escalated in accordance with the regulations of the Faculty of Informatics

Deadlines

Deadlines
Deadlines are firm.

Deadlines are firm.

- Exceptions may be granted
- at the instructor's discretion
- for documented medical conditions or other documented emergencies

Deadlines are firm.

- Exceptions may be granted
- at the instructor's discretion
- for documented medical conditions or other documented emergencies
- Each late day will reduce the assignment's grade by one third of the total value of that assignment

Deadlines are firm.

- Exceptions may be granted
- at the instructor's discretion
- for documented medical conditions or other documented emergencies

■ Each late day will reduce the assignment's grade by one third of the total value of that assignment

- Corollary 1: The grade of an assignment turned in more than two days late is 0
(The proof of Corollary 1 is left as an exercise)

Now let's move on to the real interesting and fun stuff...

Fundamental Ideas

Fundamental Ideas

Johannes Gutenberg invents movable type and the printing press in Mainz, circa 1450 (already known in China, circa 1200 CE)

Maybe More Fundamental Ideas

■ The decimal numbering system (India, circa 600)

Maybe More Fundamental Ideas

- The decimal numbering system (India, circa 600)
- Persian mathematician Khwārizmī writes a book (Baghdad, circa 830)

Muhammad ibn Musa al-Khwārizmī

Maybe More Fundamental Ideas

- The decimal numbering system (India, circa 600)

■ Persian mathematician Khwārizmī writes a book (Baghdad, circa 830)

- methods for adding, multiplying, and dividing numbers (and more)

Muhammad ibn Musa al-Khwārizmī

Maybe More Fundamental Ideas

■ The decimal numbering system (India, circa 600)
■ Persian mathematician Khwārizmī writes a book (Baghdad, circa 830)

- methods for adding, multiplying, and dividing numbers (and more)
- these procedures were precise, unambiguous, mechanical, efficient, and correct

Muhammad ibn Musa al-Khwārizmī

Maybe More Fundamental Ideas

■ The decimal numbering system (India, circa 600)
■ Persian mathematician Khwārizmī writes a book (Baghdad, circa 830)

- methods for adding, multiplying, and dividing numbers (and more)
- these procedures were precise, unambiguous, mechanical, efficient, and correct
- they were algorithms!

Muhammad ibn Musa al-Khwārizmī

Algorithms are

the essence

of computer programs

Algorithms are

the essence

of computer programs

Algorithms are

the essence

of computer programs

Algorithms are

the essence

of computer programs

Algorithms are

the essence

> of computer programs

Example

- A sequence of numbers

$$
0,1,1,2,3,5,8,13,21,34, \ldots
$$

- A sequence of numbers

$$
0,1,1,2,3,5,8,13,21,34, \ldots
$$

- The well-known Fibonacci sequence

Leonardo da Pisa (ca. 1170-ca. 1250) son of Guglielmo "Bonaccio"
a.k.a. Leonardo Fibonacci

The Fibonacci Sequence

- Mathematical definition: $F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}$
- Mathematical definition: $F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}$

■ Implementation on a computer:

Racket

```
(define (F n)
    (cond
        ((= n 0) 0)
        ((= n 1) 1)
        (else (+ (F (- n 1)) (F (- n 2))))))
```

- Mathematical definition: $F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}$

■ Implementation on a computer:

```
Java
public class Fibonacci {
    public static int F(int n) {
        if (n == 0) {
            return 0;
            } else if (n == 1) {
            return 1;
            } else {
            return F(n-1) + F(n-2);
        } }
}
```

- Mathematical definition: $F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}$

■ Implementation on a computer:

```
C or C++
int F(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    } else {
        return F(n-1) + F(n-2);
    }
}
```

- Mathematical definition: $F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}$

■ Implementation on a computer:

```
Ruby
def F(n)
    case n
            when 0
            return 0
            when 1
            return 1
            else
            return F(n-1) + F(n-2)
        end
    end
```

- Mathematical definition: $F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}$

■ Implementation on a computer:

Python

```
def F(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return F(n-1) + F(n-2)
```

- Mathematical definition: $F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}$

■ Implementation on a computer:

very concise C/C++ (or Java)

```
int F(int n) { return (n<2)?n:F(n-1)+F(n-2); }
```

■ Mathematical definition: $F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}$
■ Implementation on a computer:

"pseudo-code"

```
Fibonacci(n)
1 if n== 0
return 0
elseif n== 1
4 return 1
5 else return FIBONACCI}(n-1)+\operatorname{FIBONACCI}(n-2
```


Questions on Our First Algorithm

```
Fibonacci(n)
1 if \(n==0\)
2 return 0
3 elseif \(n==1\)
4 return 1
5 else return \(\operatorname{FibonACcI}(n-1)+\operatorname{FibonACcI}(n-2)\)
```


Questions on Our First Algorithm

```
Fibonacci( \(n\) )
1 if \(n==0\)
2 return 0
3 elseif \(n==1\)
4 return 1
5 else return \(\operatorname{FibonACcI}(n-1)+\operatorname{FibonACcI}(n-2)\)
```

1. Is the algorithm correct?

- for every valid input, does it terminate?
- if so, does it do the right thing?

Questions on Our First Algorithm

```
Fibonacci(n)
1 if \(n==0\)
        return 0
    elseif \(n==1\)
        return 1
    else return \(\operatorname{FIBONACCI}(n-1)+\operatorname{FIBONACCI}(n-2)\)
```

1. Is the algorithm correct?

- for every valid input, does it terminate?
- if so, does it do the right thing?

2. How much time does it take to complete?

Questions on Our First Algorithm

```
Fibonacci( \(n\) )
1 if \(n==0\)
        return 0
    elseif \(n==1\)
        return 1
    else return \(\operatorname{FIBONACCI}(n-1)+\operatorname{FIBONACCI}(n-2)\)
```

1. Is the algorithm correct?

- for every valid input, does it terminate?
- if so, does it do the right thing?

2. How much time does it take to complete?
3. Can we do better?
```
FibonACCl(n)
1 if }n==
        return 0
    elseif n== 1
        return 1
5 \text { else return FIBONACCI(n-1) + FibonACCI(n - 2)}
```

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}
$$

```
FibonACCl(n)
1 if }n==
        return 0
        elseif }n==
        return 1
5 \text { else return FIBONACCI( n-1) + FIBONACCI(n-2)}
```

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n>1\end{cases}
$$

■ The algorithm is clearly correct

- assuming $n \geq 0$

Performance

- How long does it take?

Performance

■ How long does it take?
Let's try it out...

Comments

- Different implementations perform differently
- it is better to let the compiler do the optimization
- simple language tricks don't seem to pay off
- Different implementations perform differently
- it is better to let the compiler do the optimization
- simple language tricks don't seem to pay off
- However, the differences are not substantial
- all implementations sooner or later seem to hit a wall...
- Different implementations perform differently
- it is better to let the compiler do the optimization
- simple language tricks don't seem to pay off
- However, the differences are not substantial
- all implementations sooner or later seem to hit a wall...
- Conclusion: the problem is with the algorithm

■ We need a mathematical characterization of the performance of the algorithm
We'll call it the algorithm's computational complexity

Complexity of Our First Algorithm

■ We need a mathematical characterization of the performance of the algorithm We'll call it the algorithm's computational complexity

■ Let $T(n)$ be the number of basic steps needed to compute Fibonacci(n)

■ We need a mathematical characterization of the performance of the algorithm We'll call it the algorithm's computational complexity

■ Let $T(n)$ be the number of basic steps needed to compute Fibonacci(n)

```
FibonAcci(n)
1 if }n==
        return 0
    elseif }n==
        return 1
    else return FibonACCI(n-1) + FibonACCI(n - 2)
```

■ We need a mathematical characterization of the performance of the algorithm We'll call it the algorithm's computational complexity

■ Let $T(n)$ be the number of basic steps needed to compute Fibonacci(n)

```
FibonACCl(n)
1 if }n==
2 return 0
elseif }n==
4 return 1
5 \text { else return FIBONACCI} ( n - 1 ) ~ + ~ F I B O N A C C I ( n - 2 )
```

$T(0)=2 ; T(1)=3$

■ We need a mathematical characterization of the performance of the algorithm We'll call it the algorithm's computational complexity

■ Let $T(n)$ be the number of basic steps needed to compute Fibonacci(n)

```
FibonAcci(n)
1 if }n==
return 0
elseif n== 1
4 return 1
5 \text { else return FIBONACCI} ( n - 1 ) ~ + ~ F I B O N A C C I ( n - 2 )
```

$T(0)=2 ; T(1)=3$
$T(n)=T(n-1)+T(n-2)+3$

■ We need a mathematical characterization of the performance of the algorithm We'll call it the algorithm's computational complexity

■ Let $T(n)$ be the number of basic steps needed to compute Fibonacci(n)

```
FibonAcci(n)
1 if }n==
2 return 0
elseif n== 1
4 return 1
5 \text { else return FIBONACCI} ( n - 1 ) ~ + ~ F I B O N A C C I ( n - 2 )
```

$T(0)=2 ; T(1)=3$
$T(n)=T(n-1)+T(n-2)+3 \Rightarrow T(n) \geq F_{n}$

Complexity of Our First Algorithm (2)

- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

Now, since $F_{n} \geq F_{n-1} \geq F_{n-2} \geq F_{n-3} \geq \ldots$

$$
F_{n} \geq 2 F_{n-2}
$$

- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

Now, since $F_{n} \geq F_{n-1} \geq F_{n-2} \geq F_{n-3} \geq \ldots$

$$
F_{n} \geq 2 F_{n-2} \geq 2\left(2 F_{n-4}\right)
$$

- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

Now, since $F_{n} \geq F_{n-1} \geq F_{n-2} \geq F_{n-3} \geq \ldots$

$$
F_{n} \geq 2 F_{n-2} \geq 2\left(2 F_{n-4}\right) \geq 2\left(2\left(2 F_{n-6}\right)\right)
$$

- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

Now, since $F_{n} \geq F_{n-1} \geq F_{n-2} \geq F_{n-3} \geq \ldots$

$$
F_{n} \geq 2 F_{n-2} \geq 2\left(2 F_{n-4}\right) \geq 2\left(2\left(2 F_{n-6}\right)\right) \geq \ldots
$$

- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

Now, since $F_{n} \geq F_{n-1} \geq F_{n-2} \geq F_{n-3} \geq \ldots$

$$
F_{n} \geq 2 F_{n-2} \geq 2\left(2 F_{n-4}\right) \geq 2\left(2\left(2 F_{n-6}\right)\right) \geq \ldots \geq 2^{\frac{n}{2}}
$$

- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

Now, since $F_{n} \geq F_{n-1} \geq F_{n-2} \geq F_{n-3} \geq \ldots$

$$
F_{n} \geq 2 F_{n-2} \geq 2\left(2 F_{n-4}\right) \geq 2\left(2\left(2 F_{n-6}\right)\right) \geq \ldots \geq 2^{\frac{n}{2}}
$$

This means that

$$
T(n) \geq(\sqrt{2})^{n} \approx(1.4)^{n}
$$

- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

Now, since $F_{n} \geq F_{n-1} \geq F_{n-2} \geq F_{n-3} \geq \ldots$

$$
F_{n} \geq 2 F_{n-2} \geq 2\left(2 F_{n-4}\right) \geq 2\left(2\left(2 F_{n-6}\right)\right) \geq \ldots \geq 2^{\frac{n}{2}}
$$

This means that

$$
T(n) \geq(\sqrt{2})^{n} \approx(1.4)^{n}
$$

- $T(n)$ grows exponentially with n
- So, let's try to understand how F_{n} grows with n

$$
T(n) \geq F_{n}=F_{n-1}+F_{n-2}
$$

Now, since $F_{n} \geq F_{n-1} \geq F_{n-2} \geq F_{n-3} \geq \ldots$

$$
F_{n} \geq 2 F_{n-2} \geq 2\left(2 F_{n-4}\right) \geq 2\left(2\left(2 F_{n-6}\right)\right) \geq \ldots \geq 2^{\frac{n}{2}}
$$

This means that

$$
T(n) \geq(\sqrt{2})^{n} \approx(1.4)^{n}
$$

- $T(n)$ grows exponentially with n
- Can we do better?

A Better Algorithm

- Again, the sequence is $0,1,1,2,3,5,8,13,21,34, \ldots$

■ Again, the sequence is $0,1,1,2,3,5,8,13,21,34, \ldots$
■ Idea: we can build F_{n} from the ground up!

■ Again, the sequence is $0,1,1,2,3,5,8,13,21,34, \ldots$
■ Idea: we can build F_{n} from the ground up!

SmARTFibonacci (n)	
1	if $n==0$
2	return 0
3	elseif $n==1$
4	return 1
5	else pprev $=0$
6	prev $=1$
7	for $i=2$ to n
8	$f=$ prev + pprev
9	pprev $=$ prev
10	prev $=f$
11	return f

SMARTFIBONACCI (n)	
1	if $n==0$
2	return 0
3	elseif $n==1$
4	return 1
5	else prev $=0$
6	pprev $=1$
7	for $i=2$ to n
8	$f=$ prev + pprev
9	pprev $=$ prev
10	prev $=f$
11	return f

SMARTFIBONACCI (n)	
1	if $n==0$
2	return 0
3	elseif $n==1$
4	return 1
5	else prev $=0$
6	pprev $=1$
7	for $i=2$ to n
8	$f=$ prev + pprev
9	pprev $=$ prev
10	prev $=f$
11	return f

$T(n)=$

SMARTFIBONACCI (n)	
1	if $n==0$
2	return 0
3	elseif $n==1$
4	return 1
5	else prev $=0$
6	pprev $=1$
7	for $i=2$ to n
8	$f=$ prev + pprev
9	pprev $=$ prev
10	prev $=f$
11	return f

$$
T(n)=6+6(n-1)
$$

SMARTFIBONACCI (n)	
1	if $n==0$
2	return 0
3	elseif $n==1$
4	return 1
5	else prev $=0$
6	pprev $=1$
7	for $i=2$ to n
8	$f=$ prev + pprev
9	pprev $=$ prev
10	prev $=f$
11	return f

$$
T(n)=6+6(n-1)=6 n
$$

SMARTFIBONACCI (n)	
1	if $n==0$
2	return 0
3	elseif $n==1$
4	return 1
5	else prev $=0$
6	pprev $=1$
7	for $i=2$ to n
8	$f=$ prev + pprev
9	pprev $=$ prev
10	prev $=f$
11	return f

$T(n)=6+6(n-1)=6 n$
The complexity of SmartFibonacci(n) is linear in n

