Algorithms and Data Structures Course Introduction

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

February 18, 2020

General Information

- On-line course information
 - on iCorsi: INFO.ALGO20
 - and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
 - Iast edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo19s/

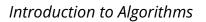
General Information

- On-line course information
 - on iCorsi: INFO.ALGO20
 - and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
 - Iast edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo19s/
- Announcements
 - you are responsible for reading the announcements page or the messages sent through iCorsi

General Information

- On-line course information
 - on iCorsi: INFO.ALGO20
 - and on my web page: http://www.inf.usi.ch/carzaniga/edu/algo/
 - Iast edition also on-line: http://www.inf.usi.ch/carzaniga/edu/algo19s/
- Announcements
 - you are responsible for reading the announcements page or the messages sent through iCorsi
- Office hours
 - Antonio Carzaniga: by appointment
 - Ali Fattaholmanan: *by appointment*
 - Afrouz Jabalameli: *by appointment*
 - Ioannis Mantas: by appointment

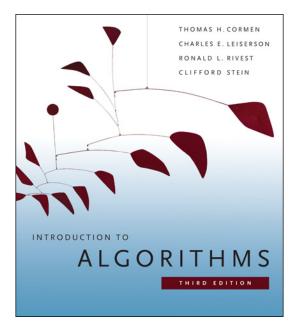
Textbook



Third Edition

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein

The MIT Press



Evaluation

+30% homework

- ► 3–5 assignments
- grades added together, thus resulting in a weighted average
- +30% midterm exam
- +40% final exam
- ±10% instructor's discretionary evaluation
 - participation
 - extra credits
 - trajectory
 - ▶ ...

Evaluation

+30% homework

- 3–5 assignments
- grades added together, thus resulting in a weighted average
- +30% midterm exam
- +40% final exam
- ±10% instructor's discretionary evaluation
 - participation
 - extra credits
 - trajectory
 - ▶ ...
- -100% plagiarism penalties

You should never take someone else's material and present it as your own.

You should never take someone else's material and present it as your own.

- "material" means ideas, words, code, suggestions, corrections on one's work, etc.
- Using someone else's material may be appropriate
 - e.g., software libraries
 - always clearly identify the external material, and acknowledge its source. Failing to do so means committing plagiarism.
 - the work will be evaluated based on its added value

You should never take someone else's material and present it as your own.

- "material" means ideas, words, code, suggestions, corrections on one's work, etc.
- Using someone else's material may be appropriate
 - e.g., software libraries
 - always clearly identify the external material, and acknowledge its source. Failing to do so means committing plagiarism.
 - the work will be evaluated based on its added value
- Plagiarism or cheating on an assignment or an exam may result in
 - failing that assignment or that exam
 - Iosing one or more points in the final note!
- Penalties may be escalated in accordance with the regulations of the Faculty of Informatics

Deadlines are firm.

Deadlines are firm.

- Exceptions may be granted
 - at the instructor's discretion
 - for documented medical conditions or other documented emergencies

Deadlines are firm.

- Exceptions may be granted
 - at the instructor's discretion
 - for documented medical conditions or other documented emergencies
- Each late day will reduce the assignment's grade by one third of the total value of that assignment

Deadlines are firm.

- Exceptions may be granted
 - at the instructor's discretion
 - for documented medical conditions or other documented emergencies
- Each late day will reduce the assignment's grade by one third of the total value of that assignment
 - Corollary 1: The grade of an assignment turned in more than two days late is 0

(The proof of Corollary 1 is left as an exercise)

Now let's move on to the real interesting and fun stuff...

Fundamental Ideas

Fundamental Ideas

Johannes Gutenberg invents movable type and the printing press in Mainz, circa 1450 (already known in China, circa 1200 CE)

The decimal numbering system (India, circa 600)

- The decimal numbering system (India, circa 600)
- Persian mathematician Khwārizmī writes a book (Baghdad, circa 830)

- The decimal numbering system (India, circa 600)
- Persian mathematician Khwārizmī writes a book (Baghdad, circa 830)
 - methods for adding, multiplying, and dividing numbers (and more)

- The decimal numbering system (India, circa 600)
- Persian mathematician Khwārizmī writes a book (Baghdad, circa 830)
 - methods for adding, multiplying, and dividing numbers (and more)
 - these procedures were *precise*, *unambiguous*, *mechanical*, *efficient*, and *correct*

- The decimal numbering system (India, circa 600)
- Persian mathematician Khwārizmī writes a book (Baghdad, circa 830)
 - methods for adding, multiplying, and dividing numbers (and more)
 - these procedures were *precise*, *unambiguous*, *mechanical*, *efficient*, and *correct*
 - they were algorithms!

the essence

Example

A sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Example

A sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

The well-known Fibonacci sequence

Leonardo da Pisa (ca. 1170–ca. 1250) son of Guglielmo "Bonaccio" a.k.a. *Leonardo Fibonacci*

Mathematical definition: F_n =

$$\begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{if } n > 1
\end{cases}$$

Mathematical definition:
$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Implementation on a computer:

Racket (define (F n) (cond ((= n 0) 0) ((= n 1) 1) (else (+ (F (- n 1)) (F (- n 2)))))

Mathematical definition:
$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Implementation on a computer:

Java

```
public class Fibonacci {
   public static int F(int n) {
      if (n == 0) {
         return 0;
      } else if (n == 1) {
         return 1;
      } else {
         return F(n-1) + F(n-2);
      } }
}
```

Mathematical definition:
$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Implementation on a computer:

```
C or C++
int F(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    } else {
        return F(n-1) + F(n-2);
    }
}
```

Mathematical definition:
$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Implementation on a computer:

Ruby def F(n) case n when 0 return 0 when 1 return 1 else return F(n-1) + F(n-2) end end

Mathematical definition:
$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Implementation on a computer:

Python

```
def F(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return F(n-1) + F(n-2)
```

Mathematical definition:
$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Implementation on a computer:

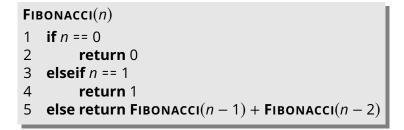
very concise C/C++ (or Java)

int F(int n) { return (n<2)?n:F(n-1)+F(n-2); }

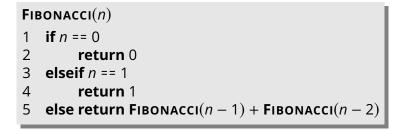
Mathematical definition:
$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Implementation on a computer:

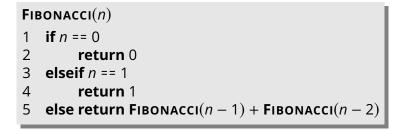
```
"pseudo-code"
FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n - 1) + FIBONACCI(n - 2)
```

- 1. Is the algorithm *correct?*
 - for every valid input, does it terminate?
 - if so, does it do the right thing?



- 1. Is the algorithm *correct*?
 - for every valid input, does it terminate?
 - if so, does it do the right thing?
- 2. How much time does it take to complete?



- 1. Is the algorithm *correct*?
 - for every valid input, does it terminate?
 - if so, does it do the right thing?
- 2. How much *time* does it take to complete?
- 3. Can we do better?

Correctness

FIBONACCI(*n*)

- 1 **if** *n* == 0
- 2 **return** 0
- 3 **elseif** *n* == 1
- 4 return 1
- 5 else return FIBONACCI(n-1) + FIBONACCI(n-2)

$$F_n = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Correctness

FIBONACCI(n) 1 if n == 02 return 0 3 elseif n == 14 return 1 5 else return FIBONACCI(n - 1) + FIBONACCI(n - 2)

$$F_n = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

- The algorithm is clearly correct
 - assuming $n \ge 0$

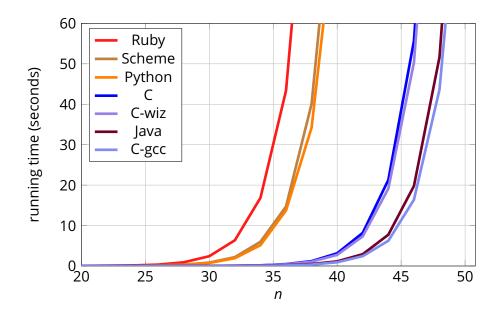
Performance

How long does it take?

Performance

- How long does it take?
 - Let's try it out...

Results



- Different implementations perform differently
 - it is better to let the compiler do the optimization
 - simple language tricks don't seem to pay off

- Different implementations perform differently
 - it is better to let the compiler do the optimization
 - simple language tricks don't seem to pay off
- However, the differences are not substantial
 - all implementations sooner or later seem to hit a wall...

- Different implementations perform differently
 - it is better to let the compiler do the optimization
 - simple language tricks don't seem to pay off
- However, the differences are not substantial
 - all implementations sooner or later seem to hit a wall...
- Conclusion: *the problem is with the algorithm*

• We need a mathematical characterization of the performance of the algorithm

We'll call it the algorithm's computational complexity

• We need a mathematical characterization of the performance of the algorithm

We'll call it the algorithm's computational complexity

• Let T(n) be the number of **basic steps** needed to compute **FIBONACCI**(n)

We need a mathematical characterization of the performance of the algorithm

We'll call it the algorithm's computational complexity

■ Let *T*(*n*) be the number of *basic steps* needed to compute **FIBONACCI**(*n*)

```
FIBONACCI(n)

1 if n == 0

2 return 0

3 elseif n == 1

4 return 1
```

```
5 else return Fibonacci(n-1) + Fibonacci(n-2)
```

We need a mathematical characterization of the performance of the algorithm

We'll call it the algorithm's computational complexity

■ Let *T*(*n*) be the number of *basic steps* needed to compute **FIBONACCI**(*n*)

```
FIBONACCI(n)

1 if n == 0

2 return 0

3 elseif n == 1

4 return 1
```

```
5 else return Fibonacci(n-1) + Fibonacci(n-2)
```

T(0) = 2; T(1) = 3

We need a mathematical characterization of the performance of the algorithm

We'll call it the algorithm's computational complexity

■ Let *T*(*n*) be the number of *basic steps* needed to compute **FIBONACCI**(*n*)

```
FIBONACCI(n)

1 if n == 0

2 return 0

3 elseif n == 1

4 return 1
```

```
5 else return Fibonacci(n-1) + Fibonacci(n-2)
```

T(0) = 2; T(1) = 3T(n) = T(n-1) + T(n-2) + 3

We need a mathematical characterization of the performance of the algorithm

We'll call it the algorithm's computational complexity

■ Let *T*(*n*) be the number of *basic steps* needed to compute **FIBONACCI**(*n*)

```
FIBONACCI(n)

1 if n == 0

2 return 0

3 elseif n == 1
```

```
4 return 1
```

5 else return Fibonacci(n-1) + Fibonacci(n-2)

T(0) = 2; T(1) = 3 $T(n) = T(n-1) + T(n-2) + 3 \implies T(n) \ge F_n$

So, let's try to understand how F_n grows with n

 $T(n) \geq F_n = F_{n-1} + F_{n-2}$

So, let's try to understand how F_n grows with n

$$T(n) \ge F_n = F_{n-1} + F_{n-2}$$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

 $F_n \geq 2F_{n-2}$

So, let's try to understand how F_n grows with n

$$T(n) \ge F_n = F_{n-1} + F_{n-2}$$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

$$F_n \geq 2F_{n-2} \geq 2(2F_{n-4})$$

So, let's try to understand how F_n grows with n

 $T(n) \geq F_n = F_{n-1} + F_{n-2}$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

 $F_n \ge 2F_{n-2} \ge 2(2F_{n-4}) \ge 2(2(2F_{n-6}))$

So, let's try to understand how F_n grows with n

 $T(n) \ge F_n = F_{n-1} + F_{n-2}$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

$$F_n \ge 2F_{n-2} \ge 2(2F_{n-4}) \ge 2(2(2F_{n-6})) \ge \dots$$

So, let's try to understand how F_n grows with n

 $T(n) \ge F_n = F_{n-1} + F_{n-2}$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

 $F_n \ge 2F_{n-2} \ge 2(2F_{n-4}) \ge 2(2(2F_{n-6})) \ge \ldots \ge 2^{\frac{n}{2}}$

So, let's try to understand how F_n grows with n

 $T(n) \ge F_n = F_{n-1} + F_{n-2}$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

$$F_n \ge 2F_{n-2} \ge 2(2F_{n-4}) \ge 2(2(2F_{n-6})) \ge \dots \ge 2^{\frac{n}{2}}$$

This means that

 $T(n) \ge (\sqrt{2})^n \approx (1.4)^n$

So, let's try to understand how F_n grows with n

$$T(n) \ge F_n = F_{n-1} + F_{n-2}$$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

$$F_n \ge 2F_{n-2} \ge 2(2F_{n-4}) \ge 2(2(2F_{n-6})) \ge \ldots \ge 2^{\frac{n}{2}}$$

This means that

$$T(n) \ge (\sqrt{2})^n \approx (1.4)^n$$

T(n) **grows exponentially** with *n*

So, let's try to understand how F_n grows with n

$$T(n) \ge F_n = F_{n-1} + F_{n-2}$$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

$$F_n \ge 2F_{n-2} \ge 2(2F_{n-4}) \ge 2(2(2F_{n-6})) \ge \ldots \ge 2^{\frac{n}{2}}$$

This means that

$$T(n) \ge (\sqrt{2})^n \approx (1.4)^n$$

T(n) **grows exponentially** with *n*

Can we do better?

A Better Algorithm

■ Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

A Better Algorithm

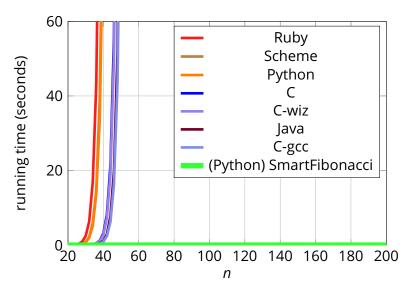
- Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .
- **Idea:** we can build *F_n* from the ground up!

A Better Algorithm

- Again, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .
- **Idea:** we can build *F_n* from the ground up!

```
SMARTFIBONACCI(n)
    if n == 0
 2
         return 0
 3
   elseif n == 1
 4
         return 1
 5
    else pprev = 0
 6
         prev = 1
 7
         for i = 2 to n
 8
             f = prev + pprev
 9
              pprev = prev
10
              prev = f
11
    return f
```

Results



SMARTFIBONACCI(*n*)

if *n* == 0 1 2 return 0 3 **elseif** *n* == 1 4 return 1 5 else prev = 06 pprev = 17 **for** *i* = 2 **to** *n* 8 f = prev + pprev9 pprev = prev10 prev = f11 return f

SMARTFIBONACCI(*n*)

if *n* == 0 1 2 return 0 3 **elseif** *n* == 1 4 return 1 5 else prev = 06 pprev = 17 for i = 2 to n8 f = prev + pprev9 pprev = prev10 prev = f11 return f

T(n) =

SMARTFIBONACCI(*n*)

if *n* == 0 1 2 return 0 3 **elseif** *n* == 1 4 return 1 5 else prev = 06 pprev = 17 for i = 2 to n8 f = prev + pprev9 pprev = prev10 prev = f11 return f

T(n) = 6 + 6(n - 1)

SMARTFIBONACCI(*n*)

if *n* == 0 1 2 return 0 3 **elseif** *n* == 1 4 return 1 5 else prev = 06 pprev = 17 for i = 2 to n8 f = prev + pprev9 pprev = prev10 prev = f11 return f

T(n) = 6 + 6(n - 1) = 6n

SMARTFIBONACCI(*n*)

if *n* == 0 1 2 return 0 3 **elseif** *n* == 1 4 return 1 5 else prev = 06 pprev = 17 **for** *i* = 2 **to** *n* 8 f = prev + pprev9 pprev = prev10 prev = f11 return f

T(n) = 6 + 6(n - 1) = 6n

The *complexity* of **SMARTFIBONACCI**(*n*) is *linear* in *n*