Divide-and-Conquer Algorithms

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

March 5, 2020

m Merging (or set union)
m Searching

m Sorting

m Multiplying

m Computing the median

Outline

Merging (Set Union)

Merging (Set Union)

m Input: sequences A = {(a1,0o,...,a,) and B = (b, by, ..., bp)

Output: a sequence X = (X1, X2, ..., Xg) such that

Merging (Set Union)

m Input: sequences A = {(a1,0o,...,a,) and B = (b, by, ..., bp)
Output: a sequence X = (X1, X2, ..., Xg) such that
» every element of A appears once in X

» every element of B appears once in X

» every element of X appearsinAorin Borin both

Merging (Set Union)

m Input: sequences A = {(a1,0o,...,a,) and B = (b, by, ..., bp)
Output: a sequence X = (X1, X2, ..., Xg) such that
» every element of A appears once in X

» every element of B appears once in X

» every element of X appearsinAorin Borin both

m Example:
A=(34,7,11,31,14,51, 8,21, 10)
B =(51,21,14,15,27,31,2)

X =

Merging (Set Union)

m Input: sequences A = {(a1,0o,...,a,) and B = (b, by, ..., bp)
Output: a sequence X = (X1, X2, ..., Xg) such that
» every element of A appears once in X

» every element of B appears once in X

» every element of X appearsinAorin Borin both

m Example:
A=(34,7,11,31,14,51, 8,21, 10)
B =(51,21,14,15,27,31,2)

X =(34,7,11,31,14,51,8,21,10, 15, 27, 2)

A Simple Merge Algorithm

m Algorithm strategy

A Simple Merge Algorithm

m Algorithm strategy
» iterate through every position J, first through A, and then B
» output g; if ajis notin (a1, az,...,0i-1)

» output b; if b; is notin (a1, az,...,0n, b1, ba, ... bi—1)

A Simple Merge Algorithm

m Algorithm strategy

» iterate through every position J, first through A, and then B
» output g; if ajis notin (a1, az,...,0i-1)

» output b; if b; is notin (a1, az,...,0n, b1, ba, ... bi—1)

MERGESIMPLE(A, B)
1 fori = 1 to length(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i— 1], B[i])
6 output BJ[i]

Complexity

MERGESIMPLE(A, B)
1 fori = 1tolength(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i — 1], B[i])
6 output BJ[i]

Complexity

MERGESIMPLE(A, B)
1 fori = 1tolength(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i — 1], B[i])
6 output BJ[i]

let n = length(A) + length(B)
length(A) length(B)

T = > Tewo()+ D (Tewo(i) + Teo(length(4)))

Complexity

MERGESIMPLE(A, B)
1 fori = 1tolength(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i — 1], B[i])
6 output BJ[i]

let n = length(A) + length(B)
length(A) length(B)

T = > Tewo()+ D (Tewo(i) + Teo(length(4)))

T(n) =), Tewo()

Searching

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

Searching

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

FIND(A, key) FIND(A, begin, end, key)

1 fori = 1 tolength(A) 1 fori = begin to end
2 if Ali] == key 2 if Ali] == key

3 return TRUE 3 return TRUE

4 return FALSE 4 return FALSE

Searching

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

FIND(A, key) FIND(A, begin, end, key)

1 fori = 1 tolength(A) 1 fori = begin to end
2 if Ali] == key 2 if Ali] == key

3 return TRUE 3 return TRUE
4 return FALSE 4 return FALSE

m The complexity of FIND is

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

FIND(A, key)

1 fori = 1 tolength(A)

2 if Ali] == key

3 return TRUE

4 return FALSE

m The complexity of FIND is

T(n) = 0(n)

Searching

FIND(A, begin, end, key)

1 fori = begin to end
2 if Ali] == key

3 return TRUE
4 return FALSE

Searching in a List

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

Searching in a List

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

FINDINLIST(A, key)

1 item = first(A)

2 while jitem # last(A)

3 if value(item) == key
4 return TRUE

5 item = next(item)

6 return FALSE

Searching in a List

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

FINDINLIST(A, key)

1 item = first(A)

2 while jitem # last(A)

3 if value(item) == key
4 return TRUE

5 item = next(item)

6 return FALSE

m The complexity of FINDINLIST is

Searching in a List

m Input: a sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

FINDINLIST(A, key)

1 item = first(A)

2 while jitem # last(A)

3 if value(item) == key
4 return TRUE

5 item = next(item)

6 return FALSE

m The complexity of FINDINLIST is

T(n) = 0(n)

Complexity of MERGESIMPLE

MERGESIMPLE(A, B)
1 fori = 1 to length(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i— 1], B[i])
6 output BJ[i]

Complexity of MERGESIMPLE

MERGESIMPLE(A, B)
1 fori = 1 to length(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i— 1], B[i])
6 output BJ[i]

T(n) =), Tewo(D)
i=1

Complexity of MERGESIMPLE

MERGESIMPLE(A, B)
1 fori = 1 to length(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i— 1], B[i])
6 output BJ[i]

T(n) =), Tewo(D)
i=1

T(n) = Z 0(i) =
i=1

Complexity of MERGESIMPLE

MERGESIMPLE(A, B)
1 fori = 1 to length(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i— 1], B[i])
6 output BJ[i]

7 = 2 Tewold)

T(o) = Zoo— ") -

Complexity of MERGESIMPLE

MERGESIMPLE(A, B)
1 fori = 1 to length(A)

2 if not FIND(A[1..i—1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not FIND(A, B[i]) and not FIND(B[1..i— 1], B[i])
6 output BJ[i]

7 = 2 Tewold)

() = ZOO— (”(””)) o(r?)

Searching (2)

m Input: a sorted sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

Searching (2)

m Input: a sorted sequence A and a value key
Output: TRUE if A contains key, or FALSE otherwise

BINARYSEARCH(A, key)
first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A{middle] > key
10 last = middle — 1
11 else first = middle + 1
12 return FALSE

OLoNoOOUuTph,WN =

Binary Search

BINARYSEARCH (A, key)
first =1

2 last = length(A)

3 whilefirst < last

4 middle = [(first + last)/2]
5 if Almiddle] == key
6
7
8

—_

return TRUE
elseif first = last
return FALSE

9 elseif A[middle] > key
10 last = middle — 1
11 else first = middle + 1

12 return FALSE

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return FALSE

—
_NWhuUuioOoON0OOO

key

Binary Search

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return FALSE

—
_NWhuUuioOoON0OOO

key

Binary Search

Binary Search

BINARYSEARCH (A, key) _

1 first =1 12
2 last = length(A) 13
3 while first < last 12
4 middle = [(first + last)/2] 11
5 if A[middle] == key 10 fkey
9
6 return TRUE
7 elseif first = last § EI
8 return FALSE 6
9 elseif A{[middle] > key 5
10 last = middle — 1 g
11 else first = middle + 1 >
12 return FALSE 1

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = midle + 1|
return FALSE

_NWhUuiOON 0O

key

Binary Search

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return FALSE

—
_NWhuUuioOoON0OOO

key

Binary Search

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return FALSE

—
_NWhuUuioOoON0OOO

key

Binary Search

Binary Search

BINARYSEARCH (A, key) -

1 first =1 12
last = length(A) 13

while first < last 12| I
middle = [(first + last)/2] 11

2
3
4
5 if Almiddle] == key
6
7
8

key

return TRUE
elseif first = last
return FALSE

9 elseif A[middle] > key
10 last = middle — 1
11 else first = middle + 1

—
_NWhuUuioOoON0OOO

12 return FALSE

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif Al[middle] > key
\last = middle — 1 \
else first = middle + 1
return FALSE

_NWhUuiOON 0O

key

Binary Search

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return FALSE

—
_NWhuUuioOoON0OOO

key

Binary Search

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return FALSE

—
_NWhuUuioOoON0OOO

key

Binary Search

Binary Search

BINARYSEARCH (A, key) -

1 first =1 12
2 last = length(A) 13
3 while first < last 12
4 middle = [(first + last)/2] 11
5 if A[middle] == key 10[key] }
9
6 return TRUE 8 -
7 elseif first = last 7
8 return FALSE 6
9 elseif A{[middle] > key 5
10 last = middle — 1 g
11 else first = middle + 1 >
12 return FALSE 1

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return FALSE

—
_NWhuUuioOoON0OOO

key

Binary Search

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last
middle = [(first + last)/2]
if Almiddle] == key
return TRUE
elseif first = last
return FALSE
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return FALSE

—
_NWhuUuioOoON0OOO

key

NIS

Binary Search

BINARYSEARCH (A, key)

—_

2
3
4
5
6
7
8

9
10
11
12

first =1
last = length(A)
while first < last

middle = [(first + last)/2]

if A{middle]
return

== key

TRUE

elseif first = last

return

FALSE

elseif A[middle] > key
last = middle — 1
else first = middle + 1

return FALSE

T(n) = O(log n)

—
_NWhuUuioOoON0OOO

key

NIS

Binary Search

Merging Sorted Sequences

m Aslightly different problem:

Input: two sorted sequences A = {(a,,0z,...,0,) and B = (b1, by, ..., bpy),
whereagy <a, < ... <apand by < b, <...< by

Output: a sequence X = (X1, X2, ..., Xg) such that
» every element of A appears once in X

» every element of B appears once in X

» every element of X appearsinAorin Borin both

A Better Merge Algorithm

MERGESIMPLE2(A, B)
1 fori = 1 to length(A)

2 if not BINARYSEARCH(A[1..i— 1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not BINARYSEARCH (A, B[/])

6 and not BINARYSEARCH(B[1..i— 1], B[i])
7 output B[/]

A Better Merge Algorithm

MERGESIMPLE2(A, B)
1 fori = 1 to length(A)

2 if not BINARYSEARCH(A[1..i— 1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not BINARYSEARCH (A, B[/])

6 and not BINARYSEARCH(B[1..i— 1], B[i])
7 output B[/]

T(n) = Zn: O(logi) =
i=1

A Better Merge Algorithm

MERGESIMPLE2(A, B)
1 fori = 1 to length(A)

2 if not BINARYSEARCH(A[1..i— 1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not BINARYSEARCH (A, B[/])

6 and not BINARYSEARCH(B[1..i— 1], B[i])
7 output B[/]

T(n) = Zn: O(logi) = O(nlogn)
i=1

A Better Merge Algorithm

MERGESIMPLE2(A, B)
1 fori = 1 to length(A)

2 if not BINARYSEARCH(A[1..i— 1],A[i])

3 output A[/]

4 fori = 1tolength(B)

5 if not BINARYSEARCH (A, B[/])

6 and not BINARYSEARCH(B[1..i— 1], B[i])
7 output B[/]

T(n) = Zn: O(logi) = O(nlogn)
i=1

Better than O(n?), but can we do even better than O(n log n)?

An Even Better Merge Algorithm

m /ntuition: A and B are sorted
e.g.
A=(3,7,12,13,34,37,70, 75, 80)
B ={1,5,6,7,34,35,40, 41, 43)

An Even Better Merge Algorithm

m /ntuition: A and B are sorted
e.g.
A=(3,7,12,13,34,37,70, 75, 80)
B ={1,5,6,7,34,35,40, 41, 43)

so just like in BINARYSEARCH | can avoid looking for an element x if the first
element|seeisy > x

An Even Better Merge Algorithm

m /ntuition: A and B are sorted
e.g.
A=(3,7,12,13,34,37,70, 75, 80)
B ={1,5,6,7,34,35,40, 41, 43)

so just like in BINARYSEARCH | can avoid looking for an element x if the first
element|seeisy > x

m High-level algorithm strategy

» step through every position i of A and every position j of B
» output a; and advance i if a; < b; or if j is beyond the end of B

» output b; and advancejif a; > b; or if i is beyond the end of A

MERGE Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

MERGE Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output:

MERGE Algorithm

12

13

34

37

70

75

80

v}

34

35

40

41

43

—.
Il

Output:

MERGE Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 1

MERGE Algorithm

I:1l

A@ 1213|3437 |70 | 75 | 80
sl 1 6 | 7 |34|35]|40| 41|43
j=2

Output: 1

MERGE Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 13

MERGE Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 13

MERGE Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 135

MERGE Algorithm

i=2

Al 3 12|13 |34 |37 |70 75| 80
B15@73435404143
j=3 f

Output: 135

MERGE Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 1356

MERGE Algorithm

i=2 “

Al 3 @ 12 1 13 |1 34 |37 |70 | 75 | 80
Bl 1 5 6 @34 35 (40 | 41 | 43
j=4 f

Output: 1356

MERGE Algorithm

13

34

37

70

75

80

34

35

40

41

43

Output: 13567

MERGE Algorithm

i=3 “
Al 3 7 @ 13 (34|37 (70|75 | 80
Bl 1 5 6 7 34 [35 | 40 | 41 | 43

Output: 13567

MERGE Algorithm

34

37

70

75

80

34

35

40

41

43

Output: 1356712

MERGE Algorithm

Al 3 7 |12 34 |37 |70 | 75 | 80
Bl 1 5 6 34 | 35| 40 | 41 | 43

Output: 1356712

MERGE Algorithm

Al 3 7 |12 (13|34 |37 |70 |75]| 80
Bl 1 5 6 7 | 34|35 |40 | 41 | 43

Output: 135671213

MERGE Algorithm

Al 3 7 |12 (13|34 |37 |70 |75]| 80
Bl 1 5 6 7 | 34|35 |40 | 41 | 43

Output: 135671213...

MERGE Algorithm (2)

MERGE(A, B)
1 Q=1
2 X=0
3 while i < length(A) or j < length(B)
4 if i > length(A)
5 X = X o BJj] / appends B[j] to X
6 j=j+1
7 elseif j > length(B)
8 X = XoA[f]
9 i=i+1
10 elseif A[/] < B[]
11 X = X oAlil
12 i=i+1
13 else X = X o B[]
14 j=j+1

15 return X

MERGE Algorithm (2)

MERGE(A, B)
1 Q=1
2 X=0
3 while i < length(A) or j < length(B)
4 if i > length(A)
5 X = X o BJj] / appends B[j] to X
6 j=j+1
7 elseif j > length(B)
8 X = XoA[f]
9 i=i+1
10 elseif A[/] < B[]
11 X = X oAlil
12 i=i+1
13 else X = X o B[]
14 j=j+1
15 return X

m This algorithm is incorrect! (Exercise: fix it)

Complexity of MERGE

MERGE(A, B)
ij =1
X=0
while i < length(A) or j < length(B)
if i < length(A) and (j > length(B) or A[i] < Blj])
X = XoAli]
i=i+1
else X = X o B]j]
J=j+1
return X

Loo~NOOULE WN =

Complexity of MERGE

MERGE(A, B)
ij =1
X=0
while i < length(A) or j < length(B)
if i < length(A) and (j > length(B) or A[i] < Blj])
X = XoAli]
i=i+1
else X = X o B]j]
J=j+1
return X

Loo~NOOULE WN =

T(n) = ©(n)

Complexity of MERGE

MERGE(A, B)
1 ij=1
2 X=0
3 whilej < length(A) orj < length(B)
4 if i < length(A) and (j > length(B) or A[i] < Blj])
5 X = X o A[i]
6 i=i+1
7 else X = X o B]j]
8 j=j+1
9 returnX
T(n) = ©(n)

m Can we do better?

Complexity of MERGE

MERGE(A, B)
1 ij=1
2 X=0
3 whilej < length(A) orj < length(B)
4 if i < length(A) and (j > length(B) or A[i] < Blj])
5 X = X o A[i]
6 i=i+1
7 else X = X o B]j]
8 j=j+1
9 returnX
T(n) = ©(n)

m Can we do better? No!

Complexity of MERGE

MERGE(A, B)
ij =1
X=0
while i < length(A) or j < length(B)
if i < length(A) and (j > length(B) or A[i] < Blj])
X = XoAli]
else X = X o Bj]
return X

LooNOOULE WN =

T(n) = ©(n)

m Can we do better? No!
» we have to output n = length(A) + length(B) elements

Using MERGE

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

Using MERGE

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

Using MERGE

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

m ldea

» use a variant of MERGE that outputs all elements of its input sequences

> i.e., without removing duplicates

» assume that two parts, A; o Ap = A, and that A; and Ag are sorted

Using MERGE

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

m ldea

» use a variant of MERGE that outputs all elements of its input sequences

> i.e., without removing duplicates

» assume that two parts, A; o Ap = A, and that A; and Ag are sorted

» use MERGE to combine A; and Ag into a sorted sequence

Using MERGE

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

m ldea

» use a variant of MERGE that outputs all elements of its input sequences

> i.e., without removing duplicates

» assume that two parts, A; o Ap = A, and that A; and Ag are sorted
» use MERGE to combine A; and Ag into a sorted sequence

» this suggests a recursive algorithm

Merge Sort

MERGESORT(A)

1 if length(A) ==

2 return A

3 m = |length(A)/2]

4 A, = MERGESORT(A[1..m])

5 Agp = MERGESORT(A[m + 1..length(A)])
6 return MERGE(A;, Ag)

Merge Sort

Merge Sort

MERGESORT(A)

1 if length(A) ==

2 return A

3 m = |length(A)/2]

4 A, = MERGESORT(A[1..m])

5 Agp = MERGESORT(A[m + 1..length(A)])
6 return MERGE(A;, Ag)

m The complexity of MERGESORT is

Merge Sort

MERGESORT(A)

1 if length(A) ==

2 return A

3 m = |length(A)/2]

4 A, = MERGESORT(A[1..m])

5 Agp = MERGESORT(A[m + 1..length(A)])
6 return MERGE(A;, Ag)

m The complexity of MERGESORT is

T(n) = 2T(n/2) + O(n)

Merge Sort

MERGESORT(A)

1 if length(A) ==

2 return A

3 m = |length(A)/2]

4 A, = MERGESORT(A[1..m])

5 Agp = MERGESORT(A[m + 1..length(A)])
6 return MERGE(A;, Ag)

m The complexity of MERGESORT is

T(n) = 2T(n/2) + O(n)

T(n) = O(nlogn)

Divide and Conquer

m MERGESORT exemplifies the divide and conquer strategy

Divide and Conquer

m MERGESORT exemplifies the divide and conquer strategy

m General strategy: given a problem P on input data A
» divide the input A into parts Aq, Ay, ..., A with |A]| < |A| =n
» solve problem P for the individual k parts

» combine the partial solutions to obtain the solution for A

Divide and Conquer

m MERGESORT exemplifies the divide and conquer strategy

m General strategy: given a problem P on input data A
» divide the input A into parts Aq, Ay, ..., A with |A]| < |A| =n
» solve problem P for the individual k parts

» combine the partial solutions to obtain the solution for A

m Complexity analysis

k
T(I’)) = Tdivide + Z T(lAiD + Tcombine

i=1

we will analyze this formula another time...

A Divide-and-Conquer Merge

MERGER(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 ifA[1] < B[1]
6 return A[1] o MERGER(A|[2 . . length(A)], B)
7 else return B[1] o MERGER(A, B[2 . . length(B)])

A Divide-and-Conquer Merge

MERGER(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 ifA[1] < B[1]
6 return A[1] o MERGER(A|[2 . . length(A)], B)
7 else return B[1] o MERGER(A, B[2 . . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

A Divide-and-Conquer Merge

MERGER(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 ifA[1] < B[1]
6 return A[1] o MERGER(A|[2 . . length(A)], B)
7 else return B[1] o MERGER(A, B[2 . . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MERGER is

A Divide-and-Conquer Merge

MERGER(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 ifA[1] < B[1]
6 return A[1] o MERGER(A|[2 . . length(A)], B)
7 else return B[1] o MERGER(A, B[2 . . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MERGER is

TnN)=C +T(n-1)

A Divide-and-Conquer Merge

MERGER(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 ifA[1] < B[1]
6 return A[1] o MERGER(A|[2 . . length(A)], B)
7 else return B[1] o MERGER(A, B[2 . . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MERGER is

Tn)=C+T(n—-1)=Cn

A Divide-and-Conquer Merge

MERGER(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 ifA[1] < B[1]
6 return A[1] o MERGER(A|[2 . . length(A)], B)
7 else return B[1] o MERGER(A, B[2 . . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MERGER is
T(n)=C, +T(n—1)=Cn=0(n)

m Can we do better?

A Divide-and-Conquer Merge

MERGER(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 ifA[1] < B[1]
6 return A[1] o MERGER(A|[2 . . length(A)], B)
7 else return B[1] o MERGER(A, B[2 . . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MERGER is

T(n)=C, +T(n—1)=Cn=0(n)

m Can we do better? No! (We knew that already)

Divide-and-Conquer Multiplication

Divide-and-Conquer Multiplication

m Going back to multiplication...

Divide-and-Conquer Multiplication

m Going back to multiplication...

[X K] and y=[][¥]

Divide-and-Conquer Multiplication

m Going back to multiplication...

[X K] and y=[][¥]

which means x = 2¢/2x, + xg and y = 2¢/2y, + y, so...

xy = (242x, + xg) 2%y, + yg)
= ZexLyL + 2€/2(XLyR + XgYL) + XRYR

we reduced the problem of multiplying two numbers of € bits into the problem
of multiplying four numbers of £/2 bits...

Divide-and-Conquer Multiplication

m Going back to multiplication...

[X K] and y=[][¥]

which means x = 2¢/2x, + xg and y = 2¢/2y, + y, so...

xy = (242x, + xg) 2%y, + yg)
= ZexLyL + 2€/2(XLyR + XgYL) + XRYR

we reduced the problem of multiplying two numbers of € bits into the problem
of multiplying four numbers of £/2 bits...

T(€) =4T(€/2) + O(¢)

Divide-and-Conquer Multiplication

m Going back to multiplication...

[X K] and y=[][¥]

which means x = 2¢/2x, + xg and y = 2¢/2y, + y, so...

xy = (242x, + xg) 2%y, + yg)
= ZexLyL + 2€/2(XLyR + XgYL) + XRYR

we reduced the problem of multiplying two numbers of € bits into the problem
of multiplying four numbers of £/2 bits...

T(€) =4T(€/2) + O(¢)

T(6) = ©(£%)

Divide-and-Conquer Multiplication (2)

Divide-and-Conquer Multiplication (2)

m Again, we have

Xy = (28/2XL + XR)(2€/2YL +YRr)
= 2%y + 2% (xuyr + XrYL) + XeYR

Divide-and-Conquer Multiplication (2)

m Again, we have
xy = (2% + xp) (2%, + yg)
= 2%y, + 292 (xuyr + XryL) + XrYR

but notice that x.yg + Xgy: = (X, + Xg)(Vr + V1) — X.YL — XRYR, SO

Divide-and-Conquer Multiplication (2)

m Again, we have

Xy = (28/2XL + XR)(2€/2YL +YRr)
= 2%y + 2% (xuyr + XrYL) + XeYR

but notice that x.yg + Xgy: = (X, + Xg)(Vr + V1) — X.YL — XRYR, SO

Xy = 2€xLyL + 25/2((XL + Xg)(YR + Y1) — X1YL — XRYR) + XRYR

Divide-and-Conquer Multiplication (2)

m Again, we have
xy = (2172x + xp)(2°7%y1 + yr)
= 2%xy1 + 281 (ayr + Xey1) + Xayr
but notice that x.yg + Xgy: = (X, + Xg)(Vr + V1) — X.YL — XRYR, SO
xy = 25y + 282(0a + xp) (VR + Y1) = X1 — XeYR) + Xe

Only 3 multiplications: x.y;, (x, + Xr)(yr + y1), and xgyr

Divide-and-Conquer Multiplication (2)

m Again, we have
xy = (2% + xR) 2%y + yr)
= 2%y + 282 (xuyr + xeyl) + xeyr
but notice that x.yg + Xgy: = (X, + Xg)(Vr + V1) — X.YL — XRYR, SO
xy = 25xy1 + 292((x + Xp)(VR + Y1) — X — XeYR) + XeVe
Only 3 multiplications: x.y;, (x, + Xr)(yr + y1), and xgyr

T(€) =3T(€/2) + O(¢)

Divide-and-Conquer Multiplication (2)

m Again, we have
xy = (2% + xR) 2%y + yr)
= 2%y + 282 (xuyr + xeyl) + xeyr
but notice that x.yg + Xgy: = (X, + Xg)(Vr + V1) — X.YL — XRYR, SO
xy = 25xy1 + 292((x + Xp)(VR + Y1) — X — XeYR) + XeVe
Only 3 multiplications: x.y;, (x, + Xr)(yr + y1), and xgyr

T(€) =3T(€/2) + O(¢)

which, as we will see, leads to a much better complexity

T(g) — O(glogz 3) — O(€1.59)

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36, 5,21, 8,13, 11, 20, 5,4, 1)?

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36, 5,21, 8,13, 11, 20, 5,4, 1)?

m Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

1 X = MERGESORT(A)
2 return X[|/ength(A)/2]]

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36, 5,21, 8,13, 11, 20, 5,4, 1)?

m Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

1 X = MERGESORT(A)
2 return X[|/ength(A)/2]]

m Is it correct?

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36, 5,21, 8,13, 11, 20, 5,4, 1)?

m Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

1 X = MERGESORT(A)
2 return X[|/ength(A)/2]]

m Is it correct? Yes

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36, 5,21, 8,13, 11, 20, 5,4, 1)?

m Idea: first sort, then pick the element in the middle
SIMPLEMEDIAN(A)

1 X = MERGESORT(A)
2 return X[|/ength(A)/2]]

m Is it correct? Yes

m How long does it take?

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36, 5,21, 8,13, 11, 20, 5,4, 1)?

m Idea: first sort, then pick the element in the middle
SIMPLEMEDIAN(A)

1 X = MERGESORT(A)
2 return X[|/ength(A)/2]]

m Is it correct? Yes

m How long does it take? T(n) = Tmereesort(n) = O(nlogn)

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36, 5,21, 8,13, 11, 20, 5,4, 1)?

m Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

1 X = MERGESORT(A)
2 return X[|/ength(A)/2]]

m Is it correct? Yes
m How long does it take? T(n) = Tmereesort(n) = O(nlogn)

m Can we do better?

Computing the Median

m The median of a sequence A is a value m € A such that half the valuesin A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36, 5,21, 8,13, 11, 20, 5,4, 1)?

m Idea: first sort, then pick the element in the middle

SIMPLEMEDIAN(A)

1 X = MERGESORT(A)
2 return X[|/ength(A)/2]]

m Is it correct? Yes
m How long does it take? T(n) = Tmereesort(n) = O(nlogn)

m Can we do better? Let's try divide-and-conquer...

Computing the Median (2)

m The median of a sequence A is a value m € A such that half the valuesin A are
less than or equal to m

Computing the Median (2)

m The median of a sequence A is a value m € A such that half the valuesin A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence A is a value v € A such
that exactly k elements of A are less than or equal to v

Computing the Median (2)

m The median of a sequence A is a value m € A such that half the valuesin A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence A is a value v € A such
that exactly k elements of A are less than or equal to v

E.g.

» for k = 1, the minimum of A

Computing the Median (2)

m The median of a sequence A is a value m € A such that half the valuesin A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence A is a value v € A such
that exactly k elements of A are less than or equal to v

E.g.
» for k = 1, the minimum of A
» for k = | |A|/2], the median of A

Computing the Median (2)

m The median of a sequence A is a value m € A such that half the valuesin A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence A is a value v € A such
that exactly k elements of A are less than or equal to v

E.g.
» for k = 1, the minimum of A
» for k = | |A|/2], the median of A
» what is the 6th smallest element of A = (2, 36,5, 21, 8,13, 11, 20, 5,4, 1)?

Computing the Median (2)

m The median of a sequence A is a value m € A such that half the valuesin A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence A is a value v € A such
that exactly k elements of A are less than or equal to v

E.g.
» for k = 1, the minimum of A
» for k = | |A|/2], the median of A
» what is the 6th smallest element of A = (2, 36,5, 21, 8,13, 11, 20, 5,4, 1)?
the 6th smallest element of A—a.k.a. select(A, 6)—is 8

k-Smallest Element

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

E.g., A=(2,36,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

E.g., A=(2,36,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

E.g., A=(2,36,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1)

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

E.g., A=(2,36,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

AL =(2,4,1) A =(5,5)

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

E.g., A=(2,36,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1) A, =(55) Az=(36,21,8,13,11,20)

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

E.g., A=(2,36,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1) A, =(55) Az=(36,21,8,13,11,20)

Now, where is the 7th smallest value of A?

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen valuev € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

E.g., A=(2,36,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1) A, =(55) Az=(36,21,8,13,11,20)

Now, where is the 7th smallest value of A?
It is the 2nd smallest value of Ag

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A

select(A., k) if k < |AL]
select(A, k) = v if Al < k < A+ |A/]
select(Ag, k — |ALl — |AV]) ifk > AL+ |A/]

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A

select(A., k) if k < |AL]
select(A, k) = v if Al < k < A+ |A/]
select(Ag, k — |ALl — |AV]) ifk > AL+ |A/]

m Computing A;, A/, and Ag takes O(n) steps

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A
select(A., k) if k < |A]
select(A, k) = v if Al < k < A+ |A/]
select(Ag, k — |ALl — |AV]) ifk > AL+ |A/]

m Computing A;, A/, and Ag takes O(n) steps

m How do we pick v?

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A
select(A., k) if k < |A]
select(A, k) = qv if |JALl < k < |AL| + A/
select(Ag, k — |ALl — |AV]) ifk > AL+ |A/]
m Computing A;, A/, and Ag takes O(n) steps

m How do we pick v?

m |deally, we should pick v so as to obtain |A;| = |Az| = |A|/2

» so, ideally we should pick v = median(A), but...

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A
select(A., k) if k < |A]
select(A, k) = qv if |JALl < k < |AL| + A/
select(Ag, k — |ALl — |AV]) ifk > AL+ |A/]
m Computing A;, A/, and Ag takes O(n) steps

m How do we pick v?

m |deally, we should pick v so as to obtain |A;| = |Az| = |A|/2

» so, ideally we should pick v = median(A), but...

m We pick a random element of A

Selection Algorithm

SELECTION(A, k)

1 v = Alrandom(1...|A])]
2 AL,AV,AR =g
3 fori=1to A
4 ifAli] <v
5 AL = AL UA[I]
6 elseif A[i] ==
7 A, = A, UA[]
8 else A, = Agr U A[/]
9 ifk <Al
10 return SELECTION(A,, k)

11 elseifk > |A/| + |A/|
12 return SELECTION(Ag, k — |A/| — |A/])
13 elsereturnv

