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Key Concepts

* Pervasive applications should be context
aware

» Context-aware adaption as a crosscutting
concern

» Aspect Oriented Software Development



Agenda

1. Conceptual Model

2. UML Model

3. Code



Conceptual Model




Conceptual model of context
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Conceptual model of context
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Conceptual model of context
aware adaption
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Conceptual model of context
aware adaption
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Binding

can be used to achieve different
types of adaption

For example:

* to bind a service interface to
different implementations

 to bind a service ivocation to
different services

e to bind a parameter in a service
invocation to different values



Conceptual model of context
aware adaption
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UML Model




New UML Elements

Context Monitor

* is a Container for State based Context, Event based Context,
State Constraints and Event Constraint

« captures events in the execution of a system and produce
signals on context changing

Context Adaptor
* is a Container for adaption mechanisms (binding, insert)

* reacts to signals generated by Context Monitors



New UML Elements

A Context Monitor may provide context informations to
several Context Adaptors

A Context Adaptor may be driven by several Context
Monitors

These new elements realize a separation of concerns
among “Context Monitoring” and “Context Adaption”



Context Monitor
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Context Adaptor
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Connecting Monitors to
Adaptors
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Code




AQO Approach

Monitor and Adaptors can be considered as two distinct
aspects wich crosscut each other

Base Application
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Implementation

aspect ExampleMonitor {

//events to be sent to the adaptors
public void contextA() {}

public void contextB(){} Inner events among Monitor and Adaptors

pointcut serviceBorC(): call(* WSB.sericeB(..)) ||
call(* WSA.serviceA(..));

pointcut serviceA() : call(* WSA.servicA(..)); Base Application Crosscuts

void around(): serviceBorC() {

if (serviceAInvocated && conditionA) {
proceed() ;
contextA() ;

Context Monitoring Logic
after(): serviceA(){
serviceAlInvocated=true;
if (conditionB) {
contextB() ;
}




Implementation

aspect ExampleAdaptor ({

pointcut contextA(): call(* ExampleMonitor.contextA()) Context changes captured by Context
pointcut contextB(): call(* ExampleMonitor.contextB()) ; Monitors

after (): contextA() {
//ActivityA

}

after (): contextB() { ) o

Context Adaption Activities

If(condition) {
//ActivityB

}

//ActivityC




Future Works

A COntext Oriented Language to bring at language level concepts
as State, Context, ContextMonitor and ContextAdaptor

New techniques to deal with unforeseen adaptation requirements
in context-aware applications

Automatic generation of AO4BPEL code



