Towards Model Driven
Design of Service Based
Context Aware Applications

Vincenzo Grassi Andrea Sindico

JIHIE

UNIVERSITA' degli STUDI di ROMA . - 1 J 1IN B O
TOR VERGATA mind is the first defence

Key Concepts

* Pervasive applications should be context
aware

» Context-aware adaption as a crosscutting
concern

» Aspect Oriented Software Development

Agenda

1. Conceptual Model

2. UML Model

3. Code

Conceptual Model

Conceptual model of context

Context
Context Attribute 0.1 Event
1.7 |
|

1.*
0..1 % .
[Context] State Based] [Event Based]7
Source Context Context
A [Context A
uses R uses

* State Event] *
i Constraint J
| |
VA
Context
Constraint

Conceptual model of context

0..1

Source

[Context

|

Usual Context
Approaches

4[Context Attribute
i 0.1
1.7 |
|

Context
Event

> 1.%
. +— .
State Based Event Based

Context Context
________________ 1 i i
A [Context A
uses . uses

* State Event] *
Constraint Constraint J
| |
VA
Context
Constraint

Aspect
Oriented
Approaches

Conceptual model of context
aware adaption

0.1 Context 0..1
eeeeeeeeee A Constralnt A Selected by

. Insertion Insertion
Entity Value Value Point
in

Conceptual model of context
aware adaption

0..1
Selected by &

Context
Constraint

|

Entity Value

=

Binding

can be used to achieve different
types of adaption

For example:

* to bind a service interface to
different implementations

 to bind a service ivocation to
different services

e to bind a parameter in a service
invocation to different values

Conceptual model of context
aware adaption

0.1
A Selected by

Insert

The concept of context-aware
insert is derived from AOSD

It can be structural or behavioral

It consists of a specification of the
value that must be inserted and
of the point where it must be
inserted

|

Context
Constraint

|

|

|

Insertion Insertion
Value Point
1.7%
Insert]7
| |
Behavioral Structural
Insert Insert

|

UML Model

New UML Elements

Context Monitor

* is a Container for State based Context, Event based Context,
State Constraints and Event Constraint

« captures events in the execution of a system and produce
signals on context changing

Context Adaptor
* is a Container for adaption mechanisms (binding, insert)

* reacts to signals generated by Context Monitors

New UML Elements

A Context Monitor may provide context informations to
several Context Adaptors

A Context Adaptor may be driven by several Context
Monitors

These new elements realize a separation of concerns
among “Context Monitoring” and “Context Adaption”

Context Monitor

<<WebService>>

aService

T

getAValue()

AN B

Il N A
| <<source>> |
| paramA=aService::getAValue() :
! |
<<ContextMonitor>> \ \ S Ve
examp'eMonitor <<StateBasedContext>>
aStateContext
varA
paramA
E <<uses>> ‘: _
/ ! varA= aStateContext::paramA i
<<ContextConstraint>> \
~

[varA > 100]

—» > ServiceBlInvocation

serviceAlnvocation

-
>
N

l

v

——» > ServiceClnvocation

J

::: [varA<0]

»| contextB >

contextA

Context Adaptor
[Coime)

<<Behavioral Insert>>

|/

Context A Activity A

/ <<Behavioral Insert>> \

e N
condition
Context B L] > Activity B
N\ ¢ J
s N
Activity C
\ J

N o

Connecting Monitors to
Adaptors

/ <<ContextMonitor>> \
anotherMonitor

<<ContextMonitor>> \ f <<ContextAdaptor>> \
exampleMonitor exampleAdaptor

—O)>—

Code

AQO Approach

Monitor and Adaptors can be considered as two distinct
aspects wich crosscut each other

Base Application

Context Adaption
Context Monitoring
(7] -— - -
? " d Aspect S S S
—_ o o (o} o
®) = m gg gg <‘£’
Aspect
(& 2 \ 2 \ Z AspeCt \ \ \ J

Implementation

aspect ExampleMonitor {

//events to be sent to the adaptors
public void contextA() {}

public void contextB(){} Inner events among Monitor and Adaptors

pointcut serviceBorC(): call(* WSB.sericeB(..)) ||
call(* WSA.serviceA(..));

pointcut serviceA() : call(* WSA.servicA(..)); Base Application Crosscuts

void around(): serviceBorC() {

if (serviceAInvocated && conditionA) {
proceed() ;
contextA() ;

Context Monitoring Logic
after(): serviceA(){
serviceAlInvocated=true;
if (conditionB) {
contextB() ;
}

Implementation

aspect ExampleAdaptor ({

pointcut contextA(): call(* ExampleMonitor.contextA()) Context changes captured by Context
pointcut contextB(): call(* ExampleMonitor.contextB()) ; Monitors

after (): contextA() {
//ActivityA

}

after (): contextB() {) o

Context Adaption Activities

If(condition) {
//ActivityB

}

//ActivityC

Future Works

A COntext Oriented Language to bring at language level concepts
as State, Context, ContextMonitor and ContextAdaptor

New techniques to deal with unforeseen adaptation requirements
in context-aware applications

Automatic generation of AO4BPEL code

