
A reuse-based approach to the 
correct and automatic web 

service composition
Paola Inverardi and Massimo Tivoli

University of L’Aquila
Dep. Computer Science

{inverard, tivoli}@di.univaq.it



Application domain

• Distributed business processes that cross 
organizational boundaries

• e-Government, e-Commerce, e-Banking

• They can be implemented by performing 
service composition

• i.e., as novel services that correctly orchestrate 
existing services

• Handcrafted service composition is 
supported but it is still a difficult activity



Our goal

• Automatic service composition

• to build a new service as an automatic and correct 
composition of existing services

• based on our previous work on component 
assembly (the SYNTHESIS tool)

• web services (WSs)



Setting the context

• A centralized repository

• e.g., UDDI registry

• Each existing WS publishes its complete SLS

• e.g., WSDL + BPEL in the context of WSs

• The architect of the new WS specifies its 
partial SLS



Method’s overview

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)



Explanatory example... continuing

• 2 existing WSs: LIB and PAY

• LIB is an old electronic library

• PAY provides an on-line payment capability

• 1 new WS to be built: CWS

• CWS is a new electronic library providing an on-
line payment capability



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL BPEL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL BPEL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL BPEL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL BPEL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

WSDL BPEL



Explanatory example... continuing

• INPUT 1: WSDL + BPEL spec. of PAY

• internal model 1: LTS of PAY

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

we automatically produce



Explanatory example... continuing

• INPUT 2: WSDL + BPEL spec. of LIB 
(analogous to the spec. of PAY)

• internal model 2: LTS of LIB

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

we automatically produce



Explanatory example... continuing

• INPUT 3: WSDL + partial BPEL spec. of CWS

we automatically produce

3. METHOD DESCRIPTION
In this section, by means of an explanatory example, we

informally describe our method to the correct and auto-
matic composition of web services. In Figure 1 we show
our method by pointing out the input and output data pro-
cessed, and the intermediary models that are produced and
processed for synthesis purposes.

WS1

(WSDL + 

BPEL)

WSn

(WSDL + 

BPEL)

.

.

.

.

existing web services

LTS1

LTSn

.

.

.

.

.

.

.

composite service

specification

CWS

(WSDL + 

partial 

BPEL)

operation

correspondence

vectors

LTScws

composite service

implementation

CWS

(WSDL + 

BPEL)

SYNTHESIS
(for web services)

Figure 1: SYNTHESIS for Web Services

As already said in Section 1, the SYNTHESIS version for
web services proposed in this paper, takes as input the SLS
(i.e., WSDL + BPEL) of the existing services registered in
the centralized service repository. Furthermore, SYNTHE-
SIS for web services, takes as input also the partial SLS of
the service to be built from the existing ones (i.e., WSDL
+ partial BPEL). From these two inputs, our method
automatically derives the LTSs modelling the specified
business logic for the existing services. For example, let
us consider that we want to compose two existing web
services, LIB and PAY, in order to build a composite web
service CWS that implements an electronic library. Through
CWS, an authorized customer can search for a book, order
it, and pay for its order. LIB provides the capabilities
of customer authentication and electronic library. PAY
provides the capabilities of customer authentication and
on-line payment. The following code is a fragment of the
SLS of PAY. The first fragment has been taken from the
WSDL specification of PAY, the second one from its BPEL
process specification.

<definitions ...

<portType name="PAY_PT">

<operation name="login"> ... </operation>

<operation name="logout"> ... </operation>

<operation name="pay"> ... </operation>

</portType> ...

<role name="PAY">

<portType name="PAY_PT"/>

</role>

<service name="PAY_BP"/>

</definitions>

<process name="PAY_PROCESS" ...

<partners>

<partner name="customer" ... />

<partner name="book_vendor" ... />

</partners> ...

<sequence>

<receive name="authentication" partner="customer"

portType="PAY_PT" operation="login" .../>

<while ...> ...

<receive name="payment" partner="customer"

portType="PAY_PT" operation="pay" .../>

</while>

<receive name="exit" partner="customer"

portType="PAY_PT" operation="logout" .../>

</sequence>

</process>

SYNTHESIS for web services parses this SLS and auto-
matically builds the LTS of PAY as it is shown in the right-
hand side of Figure 2. The LTS of LIB (shown in the left-
hand side of Figure 2) is built analogously to what has been
done for PAY.

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login PAY.logout

PAY.pay

Figure 2: LTSs for LIB and PAY

The SLS of CWS defines a WSDL declaring three op-
erations: CWS.login (i.e., customer login), CWS.logout
(i.e., customer logout), and CWS.getBook (i.e., searching,
ordering, and payment for a book). Moreover, its partial
BPEL specification allows SYNTHESIS for web services to
derive the following operation correspondence vectors:

CWS.login ::= LIB.login | PAY.login

CWS.logout ::= LIB.logout | PAY.logout

CWS.getBook ::= LIB.search -> LIB.order -> PAY.pay

The set of operation correspondence vectors (i.e., the set
of “::=” equations) partially defines the business logic of the
specified composite service.

(A)

CWS.login

(B)

CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

Figure 3: (A) most permissive LTS for CWS (B) cor-
rect LTS for CWS

Article Number 4

parallel activities
parallel activities

sequential activities



Explanatory example... 
concluding

Step 3:
mismatch prevention

and
correspondence

vector re-application

CWS.login CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.search

LIB.order

PAY.pay

Step 2:
guided parallel

composition

(A)

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.logout | PAY.logout

LIB.search

LIB.search

LIB.order

PAY.pay

LIB.login | PAY.login+

(B)

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login
PAY.logout

PAY.pay

Step 1:
correspondence

vector application

Figure 4: Method steps

In fact, it says nothing about the interaction protocol
that must be respected by a customer when he invokes the
composite service operations. It just specifies what exe-
cution flow (in terms of operations of the constituent ser-
vices) is triggered once an operation of the composite service
is invoked. By continuing our explanatory example, when
CWS.login is invoked on the composite service, LIB.login
and PAY.login are performed independently as two paral-
lel activities (i.e., the “|” operator). It is done analogously
for CWS.logout. When CWS.getBook is invoked, LIB.search,
LIB.order, and PAY.pay are sequentially performed (i.e., the
“->” operator).

From the WSDL specification of CWS, SYNTHESIS for
web services trivially derives an LTS modelling the most
permissive business logic for CWS, i.e., the one that allows
a customer to invoke the CWS’s operations in any order and
in any execution state (see Figure 3.(A)). It can be seen
as the model of an uncontrolled orchestrator for LIB and
PAY with respect to the operation “entry-points” of CWS. The
uncontrolled orchestrator is not the correct business logic
for CWS, although, e.g., no deadlock occurs. In fact, one
can, e.g., requires to pay for an empty order that, although
non-critical, represents a violation of the indeed business
logic of CWS. To derive the correct business logic, and hence
automatically complete the partially specified SLS of CWS,
our method takes into account the LTSs of LIB and PAY,
and combines them with the three operation correspondence
vectors above specified. This is done in order to refine the
LTS shown in Figure 3.(A) and automatically synthesize a
controlled orchestrator for LIB and PAY with respect to CWS,
whose LTS is shown in Figure 3.(B).

The LTS shown in Figure 3.(B) models the correct and
complete business logic for CWS. From it, SYNTHESIS for
web services, automatically derives the actual BPEL code
for CWS hence automatically completing its partially specified
SLS.

In Figure 4, we show the three steps automatically per-

formed by SYNTHESIS to derive the LTS of CWS, which
models its whole correct business logic.

In the first step, from the most permissive LTS of CWS,
a new LTS is automatically built by rewriting each transi-
tion according to the specified correspondence vectors. Let
us denote this new LTS as CWS′. Then, in the second step,
a kind of LTS parallel composition operator is performed.
This parallel composition takes into account the LTSs of
LIB, PAY, and CWS′. Differently from a classical synchronous
parallel composition operator between LTSs, our parallel
composition deals with “concurrent” actions. For instance,
the action LIB.login | PAY.login of CWS′ must synchronize
with both action LIB.login of LIB and action PAY.login of
PAY hence letting concurrently evolve the LTS of CWS′, LIB,
and PAY. Furthermore, our parallel composition is guided by
CWS′ in the sense that it does not look at all possible non-
deterministic choices. In other words, through this parallel
composition, our method searches for all those traces of CWS′

that can synchronize with traces of LIB and PAY. When a
synchronization does not occur, a transition leading to a sink
state (i.e., a state without outgoing transitions) is produced
(see the white-filled states shown in Figure 4). Each sink
state corresponds to a safety violation of the business logic
of CWS′ with respect to its constituent services (i.e., LIB, and
PAY). The third step performs backwards error propagation
in order to prevent the detected business logic mismatches
(i.e., all the finite traces in the parallel composition are re-
moved). Moreover, during this last step, the correspondence
vectors are re-applied in order to suitably rewrite the actions
in the parallel composition hence obtaining the correct LTS
for the business logic of CWS.

4. CONCLUSIONS
In this paper we proposed an automatic approach to the

correct composition of already implemented web services.
The aim of this composition is to automatically and cor-
rectly build a new web service. The proposed approach can

Article Number 4



Explanatory example... 
concluding

Step 3:
mismatch prevention

and
correspondence

vector re-application

CWS.login CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.search

LIB.order

PAY.pay

Step 2:
guided parallel

composition

(A)

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.logout | PAY.logout

LIB.search

LIB.search

LIB.order

PAY.pay

LIB.login | PAY.login+

(B)

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login
PAY.logout

PAY.pay

Step 1:
correspondence

vector application

Figure 4: Method steps

In fact, it says nothing about the interaction protocol
that must be respected by a customer when he invokes the
composite service operations. It just specifies what exe-
cution flow (in terms of operations of the constituent ser-
vices) is triggered once an operation of the composite service
is invoked. By continuing our explanatory example, when
CWS.login is invoked on the composite service, LIB.login
and PAY.login are performed independently as two paral-
lel activities (i.e., the “|” operator). It is done analogously
for CWS.logout. When CWS.getBook is invoked, LIB.search,
LIB.order, and PAY.pay are sequentially performed (i.e., the
“->” operator).

From the WSDL specification of CWS, SYNTHESIS for
web services trivially derives an LTS modelling the most
permissive business logic for CWS, i.e., the one that allows
a customer to invoke the CWS’s operations in any order and
in any execution state (see Figure 3.(A)). It can be seen
as the model of an uncontrolled orchestrator for LIB and
PAY with respect to the operation “entry-points” of CWS. The
uncontrolled orchestrator is not the correct business logic
for CWS, although, e.g., no deadlock occurs. In fact, one
can, e.g., requires to pay for an empty order that, although
non-critical, represents a violation of the indeed business
logic of CWS. To derive the correct business logic, and hence
automatically complete the partially specified SLS of CWS,
our method takes into account the LTSs of LIB and PAY,
and combines them with the three operation correspondence
vectors above specified. This is done in order to refine the
LTS shown in Figure 3.(A) and automatically synthesize a
controlled orchestrator for LIB and PAY with respect to CWS,
whose LTS is shown in Figure 3.(B).

The LTS shown in Figure 3.(B) models the correct and
complete business logic for CWS. From it, SYNTHESIS for
web services, automatically derives the actual BPEL code
for CWS hence automatically completing its partially specified
SLS.

In Figure 4, we show the three steps automatically per-

formed by SYNTHESIS to derive the LTS of CWS, which
models its whole correct business logic.

In the first step, from the most permissive LTS of CWS,
a new LTS is automatically built by rewriting each transi-
tion according to the specified correspondence vectors. Let
us denote this new LTS as CWS′. Then, in the second step,
a kind of LTS parallel composition operator is performed.
This parallel composition takes into account the LTSs of
LIB, PAY, and CWS′. Differently from a classical synchronous
parallel composition operator between LTSs, our parallel
composition deals with “concurrent” actions. For instance,
the action LIB.login | PAY.login of CWS′ must synchronize
with both action LIB.login of LIB and action PAY.login of
PAY hence letting concurrently evolve the LTS of CWS′, LIB,
and PAY. Furthermore, our parallel composition is guided by
CWS′ in the sense that it does not look at all possible non-
deterministic choices. In other words, through this parallel
composition, our method searches for all those traces of CWS′

that can synchronize with traces of LIB and PAY. When a
synchronization does not occur, a transition leading to a sink
state (i.e., a state without outgoing transitions) is produced
(see the white-filled states shown in Figure 4). Each sink
state corresponds to a safety violation of the business logic
of CWS′ with respect to its constituent services (i.e., LIB, and
PAY). The third step performs backwards error propagation
in order to prevent the detected business logic mismatches
(i.e., all the finite traces in the parallel composition are re-
moved). Moreover, during this last step, the correspondence
vectors are re-applied in order to suitably rewrite the actions
in the parallel composition hence obtaining the correct LTS
for the business logic of CWS.

4. CONCLUSIONS
In this paper we proposed an automatic approach to the

correct composition of already implemented web services.
The aim of this composition is to automatically and cor-
rectly build a new web service. The proposed approach can

Article Number 4



Explanatory example... 
concluding

Step 3:
mismatch prevention

and
correspondence

vector re-application

CWS.login CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.search

LIB.order

PAY.pay

Step 2:
guided parallel

composition

(A)

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.logout | PAY.logout

LIB.search

LIB.search

LIB.order

PAY.pay

LIB.login | PAY.login+

(B)

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login
PAY.logout

PAY.pay

Step 1:
correspondence

vector application

Figure 4: Method steps

In fact, it says nothing about the interaction protocol
that must be respected by a customer when he invokes the
composite service operations. It just specifies what exe-
cution flow (in terms of operations of the constituent ser-
vices) is triggered once an operation of the composite service
is invoked. By continuing our explanatory example, when
CWS.login is invoked on the composite service, LIB.login
and PAY.login are performed independently as two paral-
lel activities (i.e., the “|” operator). It is done analogously
for CWS.logout. When CWS.getBook is invoked, LIB.search,
LIB.order, and PAY.pay are sequentially performed (i.e., the
“->” operator).

From the WSDL specification of CWS, SYNTHESIS for
web services trivially derives an LTS modelling the most
permissive business logic for CWS, i.e., the one that allows
a customer to invoke the CWS’s operations in any order and
in any execution state (see Figure 3.(A)). It can be seen
as the model of an uncontrolled orchestrator for LIB and
PAY with respect to the operation “entry-points” of CWS. The
uncontrolled orchestrator is not the correct business logic
for CWS, although, e.g., no deadlock occurs. In fact, one
can, e.g., requires to pay for an empty order that, although
non-critical, represents a violation of the indeed business
logic of CWS. To derive the correct business logic, and hence
automatically complete the partially specified SLS of CWS,
our method takes into account the LTSs of LIB and PAY,
and combines them with the three operation correspondence
vectors above specified. This is done in order to refine the
LTS shown in Figure 3.(A) and automatically synthesize a
controlled orchestrator for LIB and PAY with respect to CWS,
whose LTS is shown in Figure 3.(B).

The LTS shown in Figure 3.(B) models the correct and
complete business logic for CWS. From it, SYNTHESIS for
web services, automatically derives the actual BPEL code
for CWS hence automatically completing its partially specified
SLS.

In Figure 4, we show the three steps automatically per-

formed by SYNTHESIS to derive the LTS of CWS, which
models its whole correct business logic.

In the first step, from the most permissive LTS of CWS,
a new LTS is automatically built by rewriting each transi-
tion according to the specified correspondence vectors. Let
us denote this new LTS as CWS′. Then, in the second step,
a kind of LTS parallel composition operator is performed.
This parallel composition takes into account the LTSs of
LIB, PAY, and CWS′. Differently from a classical synchronous
parallel composition operator between LTSs, our parallel
composition deals with “concurrent” actions. For instance,
the action LIB.login | PAY.login of CWS′ must synchronize
with both action LIB.login of LIB and action PAY.login of
PAY hence letting concurrently evolve the LTS of CWS′, LIB,
and PAY. Furthermore, our parallel composition is guided by
CWS′ in the sense that it does not look at all possible non-
deterministic choices. In other words, through this parallel
composition, our method searches for all those traces of CWS′

that can synchronize with traces of LIB and PAY. When a
synchronization does not occur, a transition leading to a sink
state (i.e., a state without outgoing transitions) is produced
(see the white-filled states shown in Figure 4). Each sink
state corresponds to a safety violation of the business logic
of CWS′ with respect to its constituent services (i.e., LIB, and
PAY). The third step performs backwards error propagation
in order to prevent the detected business logic mismatches
(i.e., all the finite traces in the parallel composition are re-
moved). Moreover, during this last step, the correspondence
vectors are re-applied in order to suitably rewrite the actions
in the parallel composition hence obtaining the correct LTS
for the business logic of CWS.

4. CONCLUSIONS
In this paper we proposed an automatic approach to the

correct composition of already implemented web services.
The aim of this composition is to automatically and cor-
rectly build a new web service. The proposed approach can

Article Number 4



Explanatory example... 
concluding

Step 3:
mismatch prevention

and
correspondence

vector re-application

CWS.login CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.search

LIB.order

PAY.pay

Step 2:
guided parallel

composition

(A)

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.logout | PAY.logout

LIB.search

LIB.search

LIB.order

PAY.pay

LIB.login | PAY.login+

(B)

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login
PAY.logout

PAY.pay

Step 1:
correspondence

vector application

Figure 4: Method steps

In fact, it says nothing about the interaction protocol
that must be respected by a customer when he invokes the
composite service operations. It just specifies what exe-
cution flow (in terms of operations of the constituent ser-
vices) is triggered once an operation of the composite service
is invoked. By continuing our explanatory example, when
CWS.login is invoked on the composite service, LIB.login
and PAY.login are performed independently as two paral-
lel activities (i.e., the “|” operator). It is done analogously
for CWS.logout. When CWS.getBook is invoked, LIB.search,
LIB.order, and PAY.pay are sequentially performed (i.e., the
“->” operator).

From the WSDL specification of CWS, SYNTHESIS for
web services trivially derives an LTS modelling the most
permissive business logic for CWS, i.e., the one that allows
a customer to invoke the CWS’s operations in any order and
in any execution state (see Figure 3.(A)). It can be seen
as the model of an uncontrolled orchestrator for LIB and
PAY with respect to the operation “entry-points” of CWS. The
uncontrolled orchestrator is not the correct business logic
for CWS, although, e.g., no deadlock occurs. In fact, one
can, e.g., requires to pay for an empty order that, although
non-critical, represents a violation of the indeed business
logic of CWS. To derive the correct business logic, and hence
automatically complete the partially specified SLS of CWS,
our method takes into account the LTSs of LIB and PAY,
and combines them with the three operation correspondence
vectors above specified. This is done in order to refine the
LTS shown in Figure 3.(A) and automatically synthesize a
controlled orchestrator for LIB and PAY with respect to CWS,
whose LTS is shown in Figure 3.(B).

The LTS shown in Figure 3.(B) models the correct and
complete business logic for CWS. From it, SYNTHESIS for
web services, automatically derives the actual BPEL code
for CWS hence automatically completing its partially specified
SLS.

In Figure 4, we show the three steps automatically per-

formed by SYNTHESIS to derive the LTS of CWS, which
models its whole correct business logic.

In the first step, from the most permissive LTS of CWS,
a new LTS is automatically built by rewriting each transi-
tion according to the specified correspondence vectors. Let
us denote this new LTS as CWS′. Then, in the second step,
a kind of LTS parallel composition operator is performed.
This parallel composition takes into account the LTSs of
LIB, PAY, and CWS′. Differently from a classical synchronous
parallel composition operator between LTSs, our parallel
composition deals with “concurrent” actions. For instance,
the action LIB.login | PAY.login of CWS′ must synchronize
with both action LIB.login of LIB and action PAY.login of
PAY hence letting concurrently evolve the LTS of CWS′, LIB,
and PAY. Furthermore, our parallel composition is guided by
CWS′ in the sense that it does not look at all possible non-
deterministic choices. In other words, through this parallel
composition, our method searches for all those traces of CWS′

that can synchronize with traces of LIB and PAY. When a
synchronization does not occur, a transition leading to a sink
state (i.e., a state without outgoing transitions) is produced
(see the white-filled states shown in Figure 4). Each sink
state corresponds to a safety violation of the business logic
of CWS′ with respect to its constituent services (i.e., LIB, and
PAY). The third step performs backwards error propagation
in order to prevent the detected business logic mismatches
(i.e., all the finite traces in the parallel composition are re-
moved). Moreover, during this last step, the correspondence
vectors are re-applied in order to suitably rewrite the actions
in the parallel composition hence obtaining the correct LTS
for the business logic of CWS.

4. CONCLUSIONS
In this paper we proposed an automatic approach to the

correct composition of already implemented web services.
The aim of this composition is to automatically and cor-
rectly build a new web service. The proposed approach can

Article Number 4



Explanatory example... 
concluding

Step 3:
mismatch prevention

and
correspondence

vector re-application

CWS.login CWS.login CWS.logout

CWS.getBook

CWS.logout
CWS.getBook

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.search

LIB.order

PAY.pay

Step 2:
guided parallel

composition

(A)

LIB.login | PAY.login

LIB.logout | PAY.logout

LIB.logout | PAY.logout

LIB.search

LIB.search

LIB.order

PAY.pay

LIB.login | PAY.login+

(B)

LIB

LIB.login LIB.logout

LIB.search

LIB.search

LIB.order

PAY

PAY.login
PAY.logout

PAY.pay

Step 1:
correspondence

vector application

Figure 4: Method steps

In fact, it says nothing about the interaction protocol
that must be respected by a customer when he invokes the
composite service operations. It just specifies what exe-
cution flow (in terms of operations of the constituent ser-
vices) is triggered once an operation of the composite service
is invoked. By continuing our explanatory example, when
CWS.login is invoked on the composite service, LIB.login
and PAY.login are performed independently as two paral-
lel activities (i.e., the “|” operator). It is done analogously
for CWS.logout. When CWS.getBook is invoked, LIB.search,
LIB.order, and PAY.pay are sequentially performed (i.e., the
“->” operator).

From the WSDL specification of CWS, SYNTHESIS for
web services trivially derives an LTS modelling the most
permissive business logic for CWS, i.e., the one that allows
a customer to invoke the CWS’s operations in any order and
in any execution state (see Figure 3.(A)). It can be seen
as the model of an uncontrolled orchestrator for LIB and
PAY with respect to the operation “entry-points” of CWS. The
uncontrolled orchestrator is not the correct business logic
for CWS, although, e.g., no deadlock occurs. In fact, one
can, e.g., requires to pay for an empty order that, although
non-critical, represents a violation of the indeed business
logic of CWS. To derive the correct business logic, and hence
automatically complete the partially specified SLS of CWS,
our method takes into account the LTSs of LIB and PAY,
and combines them with the three operation correspondence
vectors above specified. This is done in order to refine the
LTS shown in Figure 3.(A) and automatically synthesize a
controlled orchestrator for LIB and PAY with respect to CWS,
whose LTS is shown in Figure 3.(B).

The LTS shown in Figure 3.(B) models the correct and
complete business logic for CWS. From it, SYNTHESIS for
web services, automatically derives the actual BPEL code
for CWS hence automatically completing its partially specified
SLS.

In Figure 4, we show the three steps automatically per-

formed by SYNTHESIS to derive the LTS of CWS, which
models its whole correct business logic.

In the first step, from the most permissive LTS of CWS,
a new LTS is automatically built by rewriting each transi-
tion according to the specified correspondence vectors. Let
us denote this new LTS as CWS′. Then, in the second step,
a kind of LTS parallel composition operator is performed.
This parallel composition takes into account the LTSs of
LIB, PAY, and CWS′. Differently from a classical synchronous
parallel composition operator between LTSs, our parallel
composition deals with “concurrent” actions. For instance,
the action LIB.login | PAY.login of CWS′ must synchronize
with both action LIB.login of LIB and action PAY.login of
PAY hence letting concurrently evolve the LTS of CWS′, LIB,
and PAY. Furthermore, our parallel composition is guided by
CWS′ in the sense that it does not look at all possible non-
deterministic choices. In other words, through this parallel
composition, our method searches for all those traces of CWS′

that can synchronize with traces of LIB and PAY. When a
synchronization does not occur, a transition leading to a sink
state (i.e., a state without outgoing transitions) is produced
(see the white-filled states shown in Figure 4). Each sink
state corresponds to a safety violation of the business logic
of CWS′ with respect to its constituent services (i.e., LIB, and
PAY). The third step performs backwards error propagation
in order to prevent the detected business logic mismatches
(i.e., all the finite traces in the parallel composition are re-
moved). Moreover, during this last step, the correspondence
vectors are re-applied in order to suitably rewrite the actions
in the parallel composition hence obtaining the correct LTS
for the business logic of CWS.

4. CONCLUSIONS
In this paper we proposed an automatic approach to the

correct composition of already implemented web services.
The aim of this composition is to automatically and cor-
rectly build a new web service. The proposed approach can

Article Number 4



Conclusions

• We proposed an automatic approach to the 
correct composition of WSs

• i.e., automatic orchestration

• A suitable extension/modification of our 
SYNTHESIS tool (see the paper for details)

• The proposed approach is related to several 
other approaches

• Pistore&Traverso (ASTRO project) just to mention one



Open issues

• Concerning the proposed approach

• automatic discovery of those existing services that are 
“most adequate” for the construction of the new service 

• dealing with a more realistic SLS, i.e., with QoS constraints, 
context-awareness, semantic information, etc... 

• Concerning the “pervasive service oriented 
environments” community

• automatic service discovery

• discovery-time orchestration or, in general, “dynamic” 
orchestration


