
Automating Experimentation on Distributed Testbeds

Yanyan Wang† Matthew J. Rutherford† Antonio Carzaniga†,‡ Alexander L. Wolf †,‡

†Department of Computer Science
University of Colorado

Boulder, Colorado 80309-0430

‡Faculty of Informatics
University of Lugano

6900 Lugano, Switzerland

ABSTRACT
Engineering distributed systems is a challenging activity.
This is partly due to the intrinsic complexity of distributed
systems, and partly due to the practical obstacles that de-
velopers face when evaluating and tuning their design and
implementation decisions. This paper addresses the latter
aspect, providing techniques for software engineers to auto-
mate the experimentation activity. Our approach is founded
on a suite of models that characterize the distributed sys-
tem under experimentation, the testbeds upon which the
experiments are to be carried out, and the client behaviors
that drive the experiments. The models are used by gen-
erative techniques to automate construction of the work-
loads, as well as construction of the scripts for deploying
and executing the experiments on distributed testbeds. The
framework is not targeted at a specific system or application
model, but rather is a generic, programmable tool. We have
validated our approach by performing experiments on a va-
riety of distributed systems. For two of these systems, the
experiments were deployed and executed on the PlanetLab
wide-area testbed. Our experience shows that this frame-
work can be readily applied to different kinds of distributed
system architectures, and that using it for meaningful exper-
imentation, especially in large-scale network environments,
is advantageous.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Experimentation

Research supported in part by the National Science Foun-
dation, Defense Advanced Research Projects Agency, and
Army Research Office under agreement numbers ANI-
0240412, F30602-01-1-0503, and DAAD19-01-1-0484.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

Keywords
Distributed systems, wide-area testbeds, PlanetLab, exper-
iment automation

1. INTRODUCTION
This paper addresses the problem of experimenting with

highly distributed systems. We use the term highly dis-
tributed system to refer to a system capable of delivering
a service to many clients through a large number of dis-
tributed access points. This is in contrast to a traditional
client/server system, where a single access point offers ser-
vice to multiple distributed clients. A highly distributed sys-
tem usually consists of a network of components, executing
independent and possibly heterogeneous tasks, that collec-
tively realize a coherent service. Examples of such systems
are various forms of communication systems, application-
level overlays, networks of caching servers, peer-to-peer file-
sharing systems, distributed databases, replicated file sys-
tems, and distributed middleware systems in general.

Engineering a highly distributed system is a challenging
activity. The difficulties are due in part to the intrinsic com-
plexity of large, distributed architectures and protocols, and
in part to the practical obstacles that one faces in evaluating
and tuning alternative designs and implementations. Diffi-
culties of the first kind arise early on in the development
process, where analytical methods and simulations can offer
valuable guidance to the engineer. By contrast, the latter
kind of difficulties are typical of the later stages of develop-
ment, where only systematic, repeated experimentation with
executable prototypes in realistic execution environments
can yield accurate results. Unfortunately, the scale, hetero-
geneity, and dynamism of highly distributed systems make it
difficult to efficiently conduct these experiments manually,
and existing tools for experimenting with distributed sys-
tems are primarily oriented toward much simpler scenarios,
such as client/server.

The work described here focuses on this latter aspect.
Specifically, we have developed a comprehensive framework
to help software engineers manage and automate experi-
ments with highly distributed systems performed on distrib-
uted testbeds. The framework covers a simple two-phase
process of workload generation and experiment deployment
and execution.

A distributed system workload is a partially ordered list of
service calls from clients to system access points. Typically,
such workloads are created either by logging the actual be-
havior of an application during a particular run or by posit-
ing a probabilistic distribution of service calls. The former

requires an application to pre-exist the experiments, while
the latter requires a careful analytical analysis of applica-
tion behavior. We introduce an additional, complementary
approach in which the engineer first performs an offline sim-
ulation of expected client behavior and records the resulting
service calls. Then, during an actual run of an experiment,
the service calls are issued as live stimuli to the subject sys-
tem; the same set of recorded service calls can be reused
in different experimental scenarios. Simulation requires nei-
ther the availability of an application nor the results of a
probabilistic analysis, although both can be used in the con-
struction of the simulation.

Experiment deployment and execution applies a workload
to a system and gathers run-time data. To achieve this, the
subject system and the workload are first deployed across
an experimentation testbed. Next, the system is started,
and then stimulated by the execution of service calls at the
times and locations dictated by the workload. When the
experiment terminates, logged output and diagnostic data
are collected from across the testbed to facilitate data anal-
ysis and reduction. Deployment and execution are driven by
scripts. But rather than asking engineers to provide these
scripts, we automate their construction from a suite of more
easily configured and higher-level models of the system, the
testbed, and the desired experiment.

Our implementation of the framework is called Weevil.1

Weevil is not targeted at a specific system or application
model, but is a generic, programmable tool. We have used
Weevil to experiment with a variety of highly distributed
systems, both on a local-area distributed testbed and on a
wide-area distributed testbed, PlanetLab [14].2 The Plan-
etLab testbed, by intention, exhibits many of the challenges
of a true deployment: faulty nodes, faulty communication,
and unpredictable delays.

Our early experience, reported here, demonstrates that
Weevil contributes a useful and powerful new tool to the
engineers of highly distributed systems. In particular, we
have used Weevil to:

• model two different publish/subscribe communication
systems (Siena [3] and Elvin [15]), a mobility service
for publish/subscribe clients (MobiKit [2]), two differ-
ent peer-to-peer file sharing systems (Freenet [6] and
Chord [16]), and a composite web-cache system (Squid
proxies [8] and Apache web servers [11]);

• model two different deployment and execution environ-
ments (a local-area testbed and the PlanetLab wide-
area testbed);

• reproduce and broaden the results of a published study
on cooperative web caching [20] without incurring the
cost and difficulty of collecting additional live trace
data;

• validate experimentally the results of an analytical
analysis of Freenet [5] that predicted the behavior of a
new routing algorithm; and

1http://www.cs.colorado.edu/̃ ywang/weevil/
2PlanetLab is an overlay network currently consisting of
over 500 nodes located at over 250 sites around the world.
Its stated purpose is to provide an “open platform for de-
veloping, deploying, and accessing planetary-scale services”.
See http://www.planet-lab.org/.

• provide a more realistic experimental analysis of scal-
ability in Chord than that of a published study [16] by
performing an experiment that used a similar number
of distributed components deployed over an order of
magnitude more machines.

There are two important lessons to take away from these
experiences. First, we were able to use Weevil to gain useful
and novel results and, second, Weevil made the process of
gaining those results substantially less costly by allowing us
to leverage automation. In principle, the same results could
be achieved through manual means, but in practice the time
and effort available to an engineer (or researcher, for that
matter) are limited. Using Weevil we were able to carry out
multiple experiments on large numbers of elements while
managing the exploration of broad experimental configura-
tion spaces. We found Weevil’s ability to rapidly propagate
parameter and configuration changes, as well as rerun ex-
periments in the face of node failures, especially important.

In the next section we provide some terminology and in-
troduce a simple example. Our simulation-based approach
to workload generation is presented in Section 3. Section 4
describes our use of models and generative techniques to
support experiment deployment and execution. Our experi-
ences with Weevil are discussed in Section 5. Some related
technologies are reviewed in Section 6 and we conclude in
Section 7 with a discussion of future work.

2. BACKGROUND
A particular experiment is related to three primary

concepts: the system under experimentation (SUE), the
testbed, and the actor. We use the term “actor” here to
avoid confusion with the overloaded term “client”. An ac-
tor maps a client to its system access point and stimulates
the SUE as dictated by the client’s portion of the workload.
An experiment consists of (1) selecting or generating a work-
load, (2) configuring and deploying the actors and the SUE,
(3) running the actors and the SUE, and (4) returning data
for review. Weevil supports these four activities through a
central-controller architecture in which a master manages
the process. The master generates control scripts, which
are deployed together with the actors and the SUE on the
testbed.

B2: Browser

galeonH2:

P1: Proxy

H3:

S1: Server

H5:

S2: Server

H6:

B1: Browser

wgetH1:

URLs

P2: Proxy

H4: cache

SUESim.

w
or

kl
oa

d

Figure 1: Deployment Diagram of Web-Proxy Ex-
periment

In the next two sections we refer to an example experiment
aimed at studying the performance of web proxies. Figure 1
shows a deployment diagram of the SUE and testbed used
in this experiment. There are six components mapped onto
six hosts. The components are of three kinds: browsers, web
proxies, and web servers. It is important to note that al-
though we are primarily interested in evaluating the perfor-

mance of the proxies, the browsers and servers are included
as part of the SUE, since they represent key elements of
the operating environment. Figure 1 also shows two actors
communicating with the SUE. The two actors exhibit an
interdependent behavior (during workload generation, not
experiment execution), engaging in out-of-band communi-
cation (with respect to the SUE) by exchanging URLs.

3. WORKLOAD GENERATION
A common practice in software experimentation is to gen-

erate a workload on the basis of a statistical model that ab-
stracts usage patterns of the SUE. This approach is concise
and efficient. However, usage patterns often vary widely
based on context, and a statistical model offers only limited
expressiveness. Also, sufficient data must be available to
create an accurate statistical model of an existing behavior.

As a more general, complementary approach, Weevil sup-
ports an operational technique that models usage behavior
directly. Specifications for an operational model could come
from, for example, empirical traces [17], detailed user behav-
ior profiles [12], or an experimentation plan in which specific
usage scenarios are described. Our idea is to give software
engineers the ability to quickly and easily express their spe-
cific system usage scenarios or user behaviors to create a
diversity of workloads.

a3.c

actor
behavior

actor
configuration

a2.c

workload
output library

discrete−event
simulator

workload scenario

scenario
definition

simulation
program

a.cc

timeactor

a12 10
23

...
b5 GET...

POST...

action

unified
workload

simulation execution

simulation setup

Figure 2: Simulation-Based Workload Generation

The workload generation process is illustrated in Figure 2.
It allows the engineer to model one or more types of actor
behaviors as programs written in a common programming
language, such as C++, supported by a workload-generation
library. The actors may therefore execute arbitrary func-
tions and maintain arbitrary state. After programming the
actor behavior types, the engineer populates a scenario con-
sisting of actor instances specified in the actor configuration.
The actor behavior types and the actor configuration make
up a workload scenario definition. A workload scenario is
then translated into an executable simulation program that
is linked with the workload-generation library and executed
to produce the desired workload.

The workload consists of all interactions between actors
and the SUE, which are recorded by a special output func-
tion provided by the Weevil workload-generation library.
These interactions represent service calls that are applied
to the SUE during the actual experiment execution. Thus,

we are using a discrete-event simulator to simulate actor be-
haviors, and capture the service calls made to the SUE as
a reusable and reconfigurable workload that can be applied
in multiple experimental scenarios.

In practice, actor behavior is encapsulated in a subclass of
the WeevilProcess class, which is itself an extension of the
Process class provided by the SSim discrete-event simula-
tion library.3 The library supports message communication
between instances of Process, so behavior programs may
specify interactions with other actors as well as interactions
with the SUE.

In the web-proxy example, we generate a workload by
simulating two humans browsing two sites and randomly
picking URLs that are known to exist. Additionally, each
human periodically recommends a URL to the other, who
immediately requests the recommended URL upon receiv-
ing the recommendation. Modeling such a behavior as a
program is straightforward for a software engineer.

We have used simulation-based workload generation to
model a wide variety of actor behaviors. Examples are de-
tailed elsewhere [18].

Our motivation for developing the simulation-based work-
load generator is its inherent flexibility and scalability. It is
flexible in two dimensions. First, it can be immediately used
to program workload generators based on statistical models.
In fact, those generators reduce to scenarios with indepen-
dent stochastic processes. Second, because it is fully pro-
grammable, it offers a natural way to represent complicated
actor behaviors at any level of abstraction. It allows for an
easy and compact specification of interdependent dynamic
client behaviors that may result in complex and interesting
workloads for collaborative activities.

Simulation-based workload generation is scalable in the
sense that it can seamlessly deal with very complex scenar-
ios, consisting of a multitude of interacting actors, executing
over long periods of (virtual) time. In fact, this is precisely
what simulation engines are designed to do. This ability
to scale up is particularly beneficial because it allows an
engineer to produce workloads in which complex collective
behaviors emerge from simple individual behaviors.

4. DEPLOYMENT AND EXECUTION
Weevil is a generic, programmable tool for performing ex-

periment deployment and execution. The overall process is
depicted in Figure 3. Actions are represented by rectan-
gles and are labeled by circled numbers. Input and output
data for those actions are represented by ovals. Dark ovals
represent input models provided by the engineer. White
ovals represent control scripts and data files generated by
Weevil. The cross-hatched ovals represent data generated
by the SUE during an experiment. Solid arrows represent
normal input/output data flow, whereas dotted arrows rep-
resent the execution of scripts.

We have taken an automated, model-based approach to
the design of Weevil, whereby generative techniques are used
to transform experiment configuration directives into an ex-
periment management framework. This provides three main
advantages over manual approaches: (1) engineers are re-
lieved of the burden of creating and maintaining a large
volume of experiment control scripts, and instead must only
deal directly with a relatively concise set of configuration

3http://www.cs.colorado.edu/serl/ssim/

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

2 1 3

script
master

4 7

test data
per−machine

5

6

host
mapping

makefile gen.
partitioning
workload

start/stop
scripts

script gen.

unified actor

actor
workloads scripts

cleanup

deployment cleanup

execution

data collection

experiment configuration file

SUEworkload mapping testbed

log files

makefile

Figure 3: Weevil Experimentation Process

parameters; (2) models can be shared among experiments
and easily tweaked when experiments must be changed;
and (3) Weevil’s generative capabilities transparently han-
dle much of the complexity brought about by a system’s or
a testbed’s scale and heterogeneity.

4.1 Configuration Modeling
For each experiment, Weevil must be provided with a

workload together with experiment configurations for two
primary models: the SUE and the testbed. Additionally,
mappings between the SUE and the testbed, and between
actors represented in the workload and the SUE, must be
provided. These configuration models are represented by the
dark ovals along the top of Figure 3. In the current version
of Weevil, they are programmed in GNU m4 [1] by calling
Weevil-defined declaration macros to instantiate the model
elements. In other words, the declaration macros will define
a set of property macros serving as properties of an exper-
iment. Other than the reserved properties described here,
Weevil allows system-specific properties to be assigned. All
these property macros can be used as parameters in other
declaration macros. They are resolved during script gen-
eration using m4’s macro expansion. Weevil supports the
engineer during this activity by performing extensive checks
on the syntax and consistency of the configurations, and by
providing detailed error messages about any problems en-
countered.

SUE Model. The conceptual model of an SUE is shown
in Figure 4. As this figure shows, an SUE is comprised of
typed Components, Relations between them, and an Order
in which to start up the components.

In general, an SUE can consist of different types of com-
ponents, such as the browsers, proxies, and servers in the
example of Figure 1. Each component is declared as an in-
stance of a ComponentType. ComponentType has startScript
and stopScript attributes, and optionally a config attribute
that contains the contents of a configuration file. This de-
sign allows common attributes to be shared among all com-
ponents of a type. For different experiments targeting the
same system, an engineer would typically need to make mi-

+ID:String

Order

+sequence:String
+ ID:String

SUE Component

+ID:String
+props:Property[]

Relation

+ID:String
+name:String
+src:Component
+dest:Component
+props:Property[]

ComponentType

+ID:String
+startScript:String
+stopScript:String
+config:String

+props:Property[]
+output:String
+processing:String

1

1

1..*0..1 1

1
1..*

0..*

Figure 4: SUE Conceptual Model

nor changes to other entities without having to modify Com-
ponentType attributes. The attributes processing and output
are used to specify post-processing of experiment output: a
processing script is first executed on the component log files,
and then the output of the script is copied back from each
component’s workspace to the master.

The Relations contained in an SUE model are used to rep-
resent any binary associations between components. These
are optional and entirely system specific. For instance, in
Figure 1 there are three relations (shown as dashed lines):
component P1 is a “proxy” for B1, P2 is a “proxy” for B2,
and P1 is a “peer” of P2. In general, relations are used
in situations where one component references properties of
another component for its execution.

Order entities are used to represent the necessary or pre-
ferred order in which to start the components. This is op-
tional and entirely system specific, since some SUEs require
certain components to be ready before others. For example,
Siena requires a parent server to be ready before its children
can start, but the children can start in any order. Similarly,
a bootstrap Chord instance needs to be available before any
other nodes can join a Chord network.

Testbed Model. Weevil makes minimal assumptions about
the testbed. It only requires an account on each testbed host
accessible through user-level remote shell access. As shown
in Figure 5, a Testbed has an identifier and a collection of
Hosts.

Testbed

+ ID : String

Host

+ ID : String
+ address : String
+ account : String
+ bourneShellPath : String
+ javaPath : String
+ weevilRoot : String
+ props : Property[]

HostType

+ ID : String

1 1..*

1 1..*

Figure 5: Testbed Conceptual Model

Each host in a testbed is an account on a network ad-
dress. In PlanetLab the account is actually the PlanetLab
slice name to which the engineer is assigned. Weevil uses
the Bourne shell for experiment framework execution. Thus,
each Host has the attribute bourneShellPath to provide its
local path to the program sh. The javaPath attribute is
needed if an actor is implemented in Java, as described be-
low. weevilRoot specifies the workspace on the host assigned
for the experiment.

To support deployment on heterogeneous testbeds, Weevil
includes a HostType entity that is used to partition the hosts
into categories needed for each software binary package.

Mappings. The two models described above are designed
to be largely independent of each other and of the workload
to be used during an experiment. This gives the engineer
a fair amount of flexibility in composing experiments. The
connection among the three is specified using two mappings.

The first mapping associates the SUE and the testbed by
simply specifying on which host of the testbed each compo-
nent of the SUE should reside.

Component

+ID:String
+props:Property[]

+ID:String+ID:String

WorkloadProcess Actor

ActorType

+ID:String
+style:"Java" or "Shell"

+props:Property[]

+binaryDistDir:String
+argument:String
+classpath:String

1

1..*

1

1 1 1..*

Figure 6: Actor-Mapping Conceptual Model

The second mapping, shown in Figure 6, associates the
workload and the SUE. Each workload process is mapped
to a single component through an Actor that is declared
as an instance of an ActorType. ActorType represents the
implementation of the actors using the same system APIs.
An actor is a system-specific program that understands how
to stimulate the SUE as dictated by the workload. Weevil
provides a library to support its implementation in Java or
as a shell script.

4.2 Setup and Script Generation
Given a set of configuration models, the engineer can now

“compile” the experiment configurations into the framework
scripts that will be used for experiment deployment and exe-
cution. First, the configurations are checked for consistency,
and a per-experiment Make file is generated to control the
rest of the process (shown as action 1 in Figure 3). Next,
the overall workload is tailored according to the experiment
configuration (action 2). For instance, in the web-proxy
example, the network addresses of the web-server compo-
nents are not known when the workload is generated, but
are rather dictated by the component-to-host mapping. Also
performed as part of this action is the partitioning of the
overall workload into per-actor workloads. Finally, a start
script, a stop script, and a cleanup script are generated for
each component in the SUE, and a master control script is
generated to manage the execution of the experiment (ac-
tion 3).

4.3 Deployment and Execution
At this point, the engineer can perform an experiment

by simply executing the master control script. The master
control script deploys the components of the SUE, per-actor
workloads, actors, and control scripts to the hosts (action 4),
then starts all the components and actors (action 5). By es-
timating the round-trip time between the master host and
testbed hosts, the master script intelligently decides when
to have actors begin processing their workloads. The master
script waits for all actors to complete processing their work-
loads and then causes execution of the stop scripts for each
of the components. After all the components terminate,
post-processing scripts are executed and output is copied

back to the master machine (action 6). Finally, the testbed
machines are cleaned up as necessary (action 7).

We dedicated significant effort to designing a robust mas-
ter control script that allows an experiment to be run as
efficiently and reliably as possible. For example, Weevil
copies files from the master to the testbed hosts in parallel,
thereby reducing the overall deployment time significantly.
Additionally, the master script takes great care to handle
the many error conditions that may arise during experiment
deployment and execution in complicated distributed envi-
ronments, such as PlanetLab. In particular, Weevil’s master
control script detects and reports errors as early as pos-
sible to prevent distorted experimental results and wasted
resources. Moreover, the script is broken into discrete work
units that are isolated transactionally so that the setup and
deployment steps of an experiment need not always be re-
peated when errors occur.

5. EXPERIENCE
Our experience with Weevil has been focused on evaluat-

ing and improving Weevil’s applicability to various systems,
workloads, and testbeds, as well as Weevil’s utility in au-
tomating the experimentation process. Specifically, we are
asking the following research questions.

• Versatility of the system models: Is Weevil applicable
to a wide variety of highly distributed systems?

• Fidelity of the workload models: Is Weevil’s workload-
generation method faithful to specific problems and
scenarios?

• Scalability of the deployment and execution mecha-
nisms: Is Weevil capable of handling large-scale ex-
periments and testbeds?

• Utility of the automation features: Does Weevil pro-
vide an effective cost savings in automating the exper-
imentation process?

Below we describe our experience with respect to each indi-
vidual question.

5.1 Model Versatility
To evaluate Weevil’s breadth of applicability, we mod-

eled and ran experiments on six, quite different highly dis-
tributed systems: Siena [3], a publish/subscribe service im-
plemented through a network of servers; Elvin [15], a pub-
lish/subscribe middleware system that supports the federa-
tion of servers; MobiKit [2], a mobility framework for distrib-
uted publish/subscribe systems that is implemented through
a proxy-client mechanism; Freenet [6], a peer-to-peer file
sharing system; Chord [16], a distributed value/location
lookup service based on distributed hashing; and a com-
posite web-cache system made up of Squid proxies [8] and
Apache web servers [11].

The six systems provide a representative sampling from
the broad spectrum of highly distributed systems. Each
has unique characteristics that require special consideration
when configuring experiments. For example, Weevil’s script
generation was designed to support systems like Siena that
are controlled by command-line parameters, as well as sys-
tems like Freenet that are controlled by configuration files.
In the end, Weevil was able to accommodate many such
system-specific features.

An extensive discussion of how we used the features of
Weevil to model and exercise the six systems is beyond the
scope of this paper, but is available elsewhere [18]. Never-
theless, we provide some additional information for each of
Squid/Apache, Chord, and Freenet as part of our discussion
of the other three research questions.

5.2 Workload Fidelity
To verify that Weevil’s simulation-based workload gener-

ation method can faithfully create realistic workloads, we
developed workloads representing the web-cache client be-
havior described in a study on cooperative web caching [20].
According to the study, cooperative caching improves cache
hit rate rapidly with smaller populations, while it is un-
likely to provide significant benefit for larger populations.
The study was based on traces collected from multiple live
proxies at the University of Washington and Microsoft Cor-
poration, data that are usually difficult to obtain.

Based on the analysis provided by the trace study, we cre-
ated a workload by modeling and simulating the behavior
of several actor groups, each one representing an indepen-
dent organization in the study. The actors within one group
use the same proxy and tend to have similar interests, re-
sulting in a higher level of intra-group communication than
inter-group communication. Thus, the population of actors
in a scenario with fewer groups is overall more homogeneous
in its web-access behavior. We generated several different
workloads by executing the simulation program with differ-
ent actor population configurations.

The workloads were then applied to a distributed web-
caching system made up of several Apache servers and three
or six Squid proxies, depending on the number of actor
groups modeled in the workload. The actors were imple-
mented as a shell script that parses each work line in the
workload and hands off the execution of the actions to a
program, squidclient, that is provided as part of Squid’s dis-
tribution. We conducted the experiments on a local-area
testbed consisting of six hosts running the Linux or FreeBSD
operating system. Weevil supports the deployment of appro-
priate component software binary distribution onto the het-
erogeneous testbed through the hostType attribute of each
host. Using a local-area testbed is reasonable in this case,
since the cache hit rate is unrelated to network latency.

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

H
it

R
at

e(
%

)

Population

Proxy Cache Request Hit Rate

three groups
six groups

Figure 7: Cache Hit Rate vs. Client Population

Figure 7 shows the hit rates for experiments with three ac-
tor groups (proxies) and experiments with six actor groups
(proxies). Each of the plotted lines has an inflection point
with a steep increase in request hit rate below and a shal-

lower increase above. The experiments with three groups
have higher hit rates, which results from their more homo-
geneous behavior.

These results reproduce and extend the analysis provided
in the published study. They demonstrate our ability to
model a complex, empirically derived behavior. Moreover,
we were able to set up these experiments within several
hours, with the first requiring the most effort, since it in-
cluded the time to model the system and testbed. Once
these elements were in place, creating and executing addi-
tional experiments involved only simple adjustments to pa-
rameters.

5.3 Framework Scalability
Since highly distributed systems are targeted at large-

scale network environments, we cannot evaluate them fully
without experimenting on large-scale testbeds. This is the
ultimate purpose of Weevil. To determine how Weevil per-
forms in the large, we used it to conduct experiments with
Freenet and Chord on PlanetLab.

Freenet Experiments. Freenet is a peer-to-peer file-sharing
system. It has been undergoing a redesign of its core archi-
tecture: the “Next Generation (NG) Routing Algorithm” is
intended to replace its “Classic Algorithm”. According to
Clarke’s analysis of the two algorithms [5], the NG routing
algorithm makes Freenet nodes much smarter about decid-
ing where to route information when a new request is re-
ceived. Based on that analysis, the NG routing algorithm
should exhibit better scalability and show improved perfor-
mance for most requests.

To verify this, we conducted a series of experiments in
which we varied the number of Freenet nodes and their ge-
ographical separation. In each experiment, a number of
Freenet instances are started across the testbed. Each of
them is located on an individual PlanetLab host. An ac-
tor’s behavior is to inject 20 files into the Freenet overlay
and then to issue 16 requests for retrieval of randomly cho-
sen file names from all the injected files. To avoid any un-
wanted effects due to file size, the length of all files in the
experiments is fixed at 200 bytes. The requests are issued
one-by-one with a random interval.

The workloads for different experiments are to be pro-
duced by different numbers of actors using the same behav-
ior model just described. We first programmed the actor
behavior model. Then for each different experiment, we sim-
ply adjusted the number of actor declarations in the actor
configuration. Weevil created the simulation program for all
the actors, and generated the unified workload and the files
to be injected.

As all the components in the SUE are Freenet nodes, we
declared a single component type called FreenetNode. A fea-
ture of Freenet, which is quite common among other distrib-
uted systems, is that its components are controlled by con-
figuration files rather than command-line parameters. This
requires Weevil to customize a configuration file on a per-
component basis. As shown in Figure 4, ComponentType
contains a config attribute that is the content of its configu-
ration file. This content is retrieved during setup using m4’s
include mechanism. For Freenet, we add macros into the de-
fault configuration file that are expanded during script gen-
eration. The following snippet from our template Freenet
configuration file shows how the listenPort parameter is

set by Weevil:

listenPort = ‘WVL_Component_’WVL_Component_ID‘_ListenPort’

Each Freenet node has a ListenPort property assigned
to it that is stored in a property macro of the form:
WVL Component <ID> ListenPort. During setup, the macro
WVL Component ID is defined in turn to the identifier of each
component currently being processed. So, the macros on the
right-hand side of the assignment expand to be the listen
port for the component being processed. Other parameters
in the template configuration file are set similarly. As a re-
sult, the template configuration file is customized for each
component in the SUE.

We did not include Order and Relation configurations in
the SUE model since the order to start up Freenet nodes
does not matter and the relations between Freenet nodes
are not explicitly configured. Therefore, the only configu-
ration differences between experiments are the number of
component declarations and their property definitions.

We applied the same workloads and experiment configu-
rations to versions of Freenet implementing the two routing
algorithms. Our experiment sizes ranged from 10 to 120
Freenet nodes, each deployed to an individual PlanetLab
host. For each experiment, we measured the times required
to locate and download the requested files.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e(

s)

Freenet Node Number

Freenet Retrieve Request Response Time
(Classic Routing Algorithm)

5th, 50th, and 95th percentiles

(a)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e(

s)

Freenet Node Number

Freenet Retrieve Request Response Time
(NG Routing Algorithm)

5th, 50th, and 95th percentiles

(b)

Figure 8: Freenet Retrieve Latency

Figures 8a and 8b show the median, the 5th, and the 95th
percentile of retrieve latency for the Classic and NG routing
algorithms, respectively. The median latency increases from
13s to 135s for the Classic algorithm, and from 16s to 44s
for the NG algorithm. Obviously, the Classic algorithm has
a significantly higher retrieve latency rate on average. This
validates our expectations of the relative scalability of the

two routing algorithms. Additionally, Figure 8 shows that
the Classic algorithm exhibits a larger standard deviation
than the NG algorithm, indicating that the Classic algo-
rithm’s performance fluctuates greatly for different requests,
something which results from its ignorance of the underlying
network topology. Another interesting observation is that
all the experiments have similar low 5th percentile laten-
cies. These are caused by retrieval requests for files already
cached locally on the physical site, and for files cached on a
fast host and found after very few routing attempts. This
indicates that the Classic algorithm and the NG algorithm
perform equivalently for these kinds of requests.

Chord Experiments. Chord provides a decentralized and
symmetric peer-to-peer distributed lookup service that can
be easily adapted to a file-sharing service. While the func-
tionality provided by Chord is similar to that of Freenet,
the two projects have different goals. Freenet is targeted at
data anonymity, while Chord is targeted at efficient lookup.
Freenet does not assign responsibility for data to specific
servers. Its lookups take the form of searches for cached
copies, which effectively limits the possibility of providing
lower bounds on retrieval latency. In contrast, Chord does
not provide anonymity, but its lookup operation runs in pre-
dictable time.

To determine the difference in performance between the
two systems, and to evaluate Chord’s scalability, we per-
formed the same series of experiments as those we performed
on Freenet using the same set of workloads. However, we
had to replace up to 17 percent of the PlanetLab hosts, since
some of those used in our Freenet experiments were unavail-
able when we performed the Chord experiments; this is the
reality of using a wide-area, public testbed. Nevertheless,
the results should be comparable, since we carefully replaced
the hosts with those having similar geographical separation
as the original ones. The results are shown in Figure 9.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e(

m
s)

Chord Node Number

Chord Retrieve Request Response Time

5th, 50th, and 95th percentiles

Figure 9: Chord Retrieve Latency

Figure 9 shows the median, the 5th, and the 95th per-
centile of retrieve latency for Chord. The retrieve latencies
are an order of magnitude less for Chord than for Freenet.
For Chord, the median latency increases from 183ms to
583ms. This is more pronounced than that reported by
Chord’s authors [16]. We believe this is due to a difference in
experiment configuration. In particular, although the Chord
authors increased the number of Chord instances in their ex-
periments, their testbed consisted of only ten hosts; experi-
ments with more than 10 instances were conducted by run-
ning multiple independent copies of the Chord software at

each site. In our experiments, we increased the geographical
scale of the testbed as well as its node count. In that sense,
our experiments are more realistic than those of Chord’s
authors, and the results likely to be more reliable.

Discussion. The experience of deploying and executing ex-
periments on a wide-area testbed demonstrated Weevil’s
ability to help in scaling up experiments. Although we had
no prior experience with Freenet and Chord, we were able to
set up the experiments within several hours. The primary
difficulties introduced by PlanetLab are the high network
latency and instability of the testbed hosts, which led us
to improve the efficiency and robustness of Weevil’s master
control script.

To begin to quantify our experience using Weevil on Plan-
etLab, we collected five metrics for the Chord experiments,
as shown in Table 1. Setup time is the time it takes Weevil
to perform the workload partitioning and script generation
(actions 1-3 in Figure 3). Deployment time is the time it
takes Weevil to deploy the actor workloads and the gener-
ated scripts to the hosts, plus the time it takes to start the
component software on each host and to decide the time at
which all the actors should begin processing their workloads
(action 4). Configuration differences is the number of lines
of the experiment configuration file that are changed. Script
differences is the number of different lines in the generated
scripts. For each column in the table for these two metrics,
the value given is relative to the experiment represented in
the previous column. Generated files is the number of files
created by Weevil for the experiment.

Scale 10 30 60 90 120
Avg. setup time (sec) 2 7 24 58 114
Avg. deploy. time (sec) 11 20 24 38 59
Config. differences – 31 41 41 41
Script differences – 758 1148 1178 1208
Generated files 41 121 241 361 481

Table 1: Experiment Scale Modification

These numbers clearly illustrate that Weevil allows the
experiment to be easily and quickly reconfigured to han-
dle changes, that generation and automation are effective
ways to configure and manage large-scale experiments, and
through parallel communication and file transfer, the overall
deployment time scales well. Between these experiments, we
made changes simultaneously in several dimensions, includ-
ing the number of hosts, components, and actors. A more
systematic evaluation of Weevil’s ability to leverage automa-
tion, with changes made in each dimension independently,
is discussed below.

5.4 Automation
We now present a quantitative evaluation of the benefits

of Weevil’s automation features. In particular, we measured
the effort involved in switching between different experi-
ments with Chord performed on PlanetLab. We considered
varying degrees of modification, from minor tweaks to sub-
stantial changes. Specifically, we considered testbed modi-
fications, parameter modifications, SUE modifications, and
workload modifications. We collected the same five metrics
as those in Table 1 for each series of these experiments.

Testbed Modification. When experimenting with distrib-
uted systems it is common practice to tune and tweak an
experiment on a small testbed and then progressively ramp
up the size of the testbed as the experimental setup becomes
more solid. Other changes to the testbed might be driven
by the need to change or replace a machine, or to migrate an
experiment from a local-area testbed to a wide-area testbed.
Since testbed changes are likely to be common, we wanted
to see how Weevil would cope with them.

We experimented with a Chord network consisting of 120
components, each with its own actor. The initial exper-
iment was deployed on a testbed with 10 host machines;
subsequent experiments were conducted with 30, 60, 90,
and finally 120 hosts. The bulk of the configuration files
were shared verbatim between the experiments except three
parts. First, host descriptions for the new machines were
added to the testbed description. Next, the existing compo-
nent/host mapping was adjusted to evenly spread the com-
ponents across the larger testbeds. Finally, we adjusted a
few component properties that are affected by the mod-
ified component/host mapping. These changes are made
concisely by using Weevil’s programmability. In the exam-
ple below, we updated the component/host mapping from
the 10-machine experiment to the 30-machine experiment
by changing a single value:

< WVL_SYS_Foreach(‘i’,
< ‘WVL_SYS_ComponentHost(‘CHMapN’i, ‘N’i, ‘H’eval(i%10))’,
< WVL_SYS_Range(‘’, 0, 119))dnl

> WVL_SYS_Foreach(‘i’,
> ‘WVL_SYS_ComponentHost(‘CHMapN’i, ‘N’i, ‘H’eval(i%30))’,
> WVL_SYS_Range(‘’, 0, 119))dnl

With these simple configuration changes, Weevil was not
only able to automatically deploy the system onto the larger
testbeds, but also automatically relocate each actor to its
corresponding component’s new host. The metric values of
these experiments are shown in Table 2.

Number of hosts 10 30 60 90 120
Avg. setup time (sec) 113 113 113 114 114
Avg. deploy. time (sec) 51 40 43 53 59
Configuration differences – 23 33 33 33
Script differences – 804 664 664 514
Generated files 481 481 481 481 481

Table 2: Testbed Modification

The numbers in the second row of Table 2 highlight Wee-
vil’s parallel file transfer capabilities, as the deployment time
grows slowly with the number of hosts. The 10-host experi-
ment has a longer deployment time than the 30- and 60-host
ones because there is less opportunity for parallelism with so
many components residing on each host. The most impor-
tant result of this experiment is the amplification achieved
by Weevil’s generative capabilities. Small changes in the
configuration were multiplied by a factor of up to 35 in the
resulting generated scripts. This amplification, coupled with
Weevil’s consistently quick setup time, clearly demonstrates
the benefits of automation and generation for the task of
modifying the testbed. The number of files generated de-
pends on the number of components and the number of ac-
tors, which were fixed for this experiment.

System Parameter Modification. An engineer usually
evaluates a system under different configurations. We per-

formed two experiments with different parameter settings
to characterize Weevil’s ability to support this. In the first
experiment, we changed the value of an existing parameter,
and in the second case we added a new parameter in order
to override its default value. Normally, an engineer would
modify such parameters directly in the start command or
in the configuration file of each component. However, since
Weevil supports parameterization of start scripts and con-
figuration files, we were able to configure each component
type centrally in our experiment configuration in a clean and
flexible way. When specifying a new parameter, we updated
both the start script and each component’s properties. For
example, we wished to create three virtual nodes on each
Chord node, which can be accomplished with the -v option
in Chord’s start command. We did not include this option
in our initial start script because we used the default value
“1” in that experiment. We were able to accomplish this
simply by adding the following option to the start script

-v ‘WVL_Component_’WVL_Component_ID‘_vn’

and by adding the following component property declaration
to the experiment configuration file

> WVL_SYS_Foreach(‘i’,
> ‘WVL_SYS_ComponentProp(‘N’i, ‘vn’, 3)’,
> WVL_SYS_Range(‘’, 0, 119))dnl

The metric values of these experiments are shown in Ta-
ble 3. Once again, the data show how a few tweaks in the
system configuration result in a large number of changes to
the management scripts.

Parameter Initial Updated New
Avg. setup time (sec) 114 114 114
Avg. deploy. time (sec) 59 59 59
Configuration differences – 1 2
Script differences – 120 120
Generated files 481 481 481

Table 3: Parameter Modification

SUE Modification. The preceding experiments examined
adjustments or other minor changes to an experiment. In
this example, we explore a more fundamental change involv-
ing the configuration of the SUE itself.

Number of components 10 30 60 90 120
Avg. setup time (sec) 34 39 52 75 114
Avg. deploy. time (sec) 42 32 41 52 59
Configuration differences – 7 7 7 7
Script differences – 846 1056 1026 906
Generated files 151 211 301 391 481

Table 4: SUE Modification

We altered the SUE of an existing experiment by increas-
ing the number of components from 10 to 120, with the
number of hosts and actors fixed at 120. To accomplish this
we instantiated the new components and added their prop-
erties and relations. We also updated the component/host
mapping to accommodate the new components. Again, all
of these can be accomplished in just several lines utilizing
Weevil’s programmability. The metric values for these ex-
periments are shown in Table 4. As the difference numbers
show, even fundamental changes in an experiment can be
accomplished with very small configuration changes, which
are amplified by Weevil as necessary when generating files.

Workload Modification. Load testing is very common for
distributed systems. One way to modify the load on a sys-
tem is by changing the number of actors. In our experi-
ments, a Chord network of 120 nodes was deployed on 120
PlanetLab hosts. We experimented with this by increas-
ing the number of actors from 10 to 120. In these experi-
ments, each actor is mapped to an individual Chord node.
One wrinkle with this experiment is that adding more ac-
tors requires the creation of new workloads with correspond-
ingly more independent processes. These new processes are
mapped to existing components through the actors in the
experiment configuration file.

Number of actors 10 30 60 90 120
Avg. setup time (sec) 71 75 84 98 114
Avg. deploy. time (sec) 34 49 53 55 59
Configuration differences – 5 5 5 5
Script differences – 183 273 273 273
Generated files 371 391 421 451 481

Table 5: Workload Modification

The data for these experiments, shown in Table 5, confirm
what the previous experiments showed, namely that Weevil
allows the experiment to be easily reconfigured to handle
both shallow and fundamental changes, and that generation
and automation save a lot of effort on the part of the engi-
neer, making it easier to conduct iterative experiments.

6. RELATED WORK
In the context of testing distributed systems, a number

of tools (e.g., DECALS [9], RiOT [7], and TestZilla4) have
been targeted at large-scale distributed applications. How-
ever, they are essentially control and logging systems for ex-
ecuting user-provided test scripts in parallel. Unlike Weevil,
none of them consider automated workload generation and
script construction and, hence, only provide a service that
operates at a much lower level. Additionally, none of the
documentation available for these tools report evaluation of
their operation on a wide-area testbed.

Users of PlanetLab have contributed a number of tools
and services to streamline its usage. The most popular of
these tools, Parallel SSH [4], vxargs,5 plDist,6 and CoDe-
ploy,7 are simply intended to provide efficient deployment
files or execute parallel commands. Two others, the Nixes
Tool Set8 and the PlanetLab Application Manager,9 are
mainly focused on distributed service deployment and main-
tenance. None of the tools assist the engineer in systematic,
repeated experimentation.

Another widely used testbed, Netbed/Emulab [19], pro-
vides an integrated emulation and simulation environment,
where traffic-shaping techniques are used to configure a clus-
ter to a desired profile. While Netbed provides support
for system deployment and experiment management, there
is, similar to PlanetLab, no support for workload and cus-
tomized script generation, and automatic collection of appli-
cation-level data is not supported.

4http://www.cs.cornell.edu/vogels/TestZilla/default.htm
5http://dharma.cis.upenn.edu/planetlab/vxargs/
6http://www.arl.wustl.edu/̃ mgeorg/plDist.html
7http://codeen.cs.princeton.edu/codeploy/
8http://www.aqualab.cs.northwestern.edu/nixes.html
9http://appmanager.berkeley.intel-research.net/

A few other distributed system testing frameworks employ
a model-driven approach to configuration, but their frame-
works and models are fairly narrow in scope. Two examples
are the JXTA Distributed Framework10 and CCMPerf [10],
which is targeted at CORBA applications.

Finally, Skoll [13] supports “distributed quality assurance
(QA)”, whereby QA activities are divided into subtasks and
distributed onto the computing resources of worldwide user
communities. This approach allows applications with a large
space of possible configurations to be tested in parallel. To
our knowledge, Skoll has not yet been applied to distributed
systems.

7. CONCLUSION
In this paper we have presented Weevil, a framework for

automating experiments on distributed testbeds. Weevil is
targeted at highly distributed systems, removing many prac-
tical obstacles, such as scale and heterogeneity, that hin-
der experimentation. The framework covers workload gen-
eration, as well as experiment deployment and execution.
Our simulation-based workload generation approach offers
a complementary means to generate synthetic workloads,
while our model-based configuration and automated script
construction provide a higher-level service than other avail-
able tools.

To date we have used Weevil on a broad set of distributed
systems drawn from three common operating paradigms:
event-based, peer-to-peer, and traditional client/server.
Further, we have used Weevil to perform experiments on
both local-area and wide-area testbeds. Our workload gen-
eration approach allowed us to create workloads for real sce-
narios and to successfully reproduce and broaden previously
published experimental results. Finally, we have evaluated
Weevil’s ability to leverage automation across multiple ex-
periments. All of these experiences demonstrate that Weevil
is readily configured for different systems, is capable of man-
aging large-scale experiments, and is a genuinely efficient,
labor-saving experimentation tool.

Our immediate plans for Weevil are to include support
for dynamic workloads. Often, an experiment requires an
actor to tailor its behavior based on output obtained from
the SUE during execution. To support this, Weevil must
provide a means for the user to specify rules for workload
modification, to set up response/request relations, and to
make the workload responsive to experiment execution.

8. REFERENCES
[1] R. Adams. Take command: The m4 macro package. Linux

J., 2002(96):6, Apr. 2002.
[2] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and

evaluation of a support service for mobile, wireless
publish/subscribe applications. IEEE Transactions on
Software Engineering, 29(12):1059–1071, Dec. 2003.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service.
ACM Transactions on Computer Systems, 19(3):332–383,
Aug. 2001.

[4] B. Chun. pssh HOWTO. Intel Research Berkeley, Nov.
2003.

[5] I. Clarke. Freenet’s Next Generation Routing Protocol.
Freenet Project, July 2003.

10http://jdf.jxta.org

[6] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and
B. Wiley. Protecting free expression online with Freenet.
IEEE Internet Computing, 6(1):40–49, 2002.

[7] S. Ghosh, N. Bawa, G. Craig, and K. Kalgaonkar. A test
management and software visualization framework for
heterogeneous distributed applications. In Proceedings of
the 6th IEEE International Symposium on High Assurance
Systems Engineering (HASE ’01), pages 106–116, Boca
Raton, Florida, Oct. 2001.

[8] D. Guerrero. System administration: Caching the web.
Linux J., 1999(58es):11, 1999.

[9] A. Hubbard, C. M. Woodside, and C. Schramm. Decals:
Distributed experiment control and logging system. In
Proceedings of the 1995 Conference of the Centre for
Advanced Studies on Collaborative Research, page 32,
Toronto, Ontario, Canada, Nov. 1995.

[10] A. S. Krishna, N. Wang, B. Natarajan, A. Gokhale, D. C.
Schmidt, and G. Thaker. CCMPerf: A benchmarking tool
for CORBA component model implementations. In
Proceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’04), pages
140–147, Toronto, Canada, May 2004.

[11] B. Laurie and P. Laurie. Apache: The Definitive Guide.
O’Reilly and Associates, 3 edition, 2002.

[12] A. Martinez, Y. Dimitriadis, and P. de la Fuente. Towards
an XML-based model for the representation of collaborative
action. In Proceedings of the Conference on Computer
Support for Collaborative Learning (CSCL ’03), pages
14–18, Bergen, Norway, June 2003.

[13] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan,
D. Schmidt, and B. Natarajan. Skoll: Distributed
continuous quality assurance. In Proceedings of the 26th
IEEE/ACM International Conference on Software
Engineering (ICSE ’04), pages 459–468, Edinburgh, United
Kingdom, May 2004.

[14] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
Internet. ACM SIGCOMM Computer Communication
Review, 33(1):59–64, 2003.

[15] B. Segall and D. Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching. In
Proceedings of the Australian UNIX and Open Systems
User Group Conference (AUUG ’97), pages 243–255,
Brisbane, Australia, Sept. 1997.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of the 2001
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM
’01), pages 149–160, San Diego, California, Aug. 2001.

[17] L. Tauscher and S. Greenberg. How people revisit web
pages: Empirical findings and implications for the design of
history systems. International Journal on
Human-Computer Studies, 47(1):97–138, 1997.

[18] Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L. Wolf.
Weevil: A tool to automate experimentation with
distributed systems. Technical Report CU-CS-980-04,
Department of Computer Science, University of Colorado,
Oct. 2004.

[19] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed
systems and networks. In Proc. of the Fifth Symposium on
Operating Systems Design and Implementation, pages
255–270, Boston, MA, Dec. 2002. USENIX Association.

[20] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy. On the scale and performance
of cooperative web proxy caching. In 17th ACM
Symposium on Operating Systems Principles (SOSP ’99),
pages 16–31, Kiawah Island, SC, Dec. 1999.

