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ABSTRACT
When it comes to reliability, there are two main categories
of distributed publish/subscribe systems: reliable systems
and best-effort systems. The former gives the highest prior-
ity to guaranteed and ordered delivery while the latter aims
for high throughput and low delays. We propose a method
to improve the delivery guarantees of the basic unreliable
service offered by a best-effort publish/subscribe system.
This method does not require any modification to the sys-
tem’s protocols or broker software, and instead simply uses
the system’s publish/subscribe API. The method is based
on a technique, similar to reliable multicast, that enables
subscribers to cooperatively recover lost messages. We ex-
perimentally demonstrate the effectiveness and performance
of our recovery scheme in the presence of frequent message
losses, and show that it enables subscribers to recover more
than 70% of lost messages with minimum negative effects on
the overall network performance.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems

General Terms
Reliability,Performance

Keywords
Content-based networking, publish/subscribe

1. INTRODUCTION
Message oriented middleware, and in particular content-

based publish/subscribe systems, have a wide range of appli-
cations in enterprise environments, in areas such as process
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control, work-flow, asset management, and system manage-
ment. These applications usually have stringent require-
ments in terms of delivery guarantees, so to support such ap-
plications, system architects opt for publish/subscribe sys-
tems that provide guaranteed delivery. Various forms of
reliability have been studied, along with various methods to
achieve them [1, 2, 16, 8, 11]. However, in this paper we
refer primarily to a form of reliable delivery also known as
message persistence in such standards as the Java Messaging
Service specification. According to this delivery mode, the
service must guarantee not to loose messages due to failures
of message brokers.

Persistent messages are clearly a desirable feature for ap-
plications, but they also have a cost in terms of lower through-
put and greater end-to-end delay. In fact, in order to of-
fer such higher delivery guarantees, the publish/subscribe
system (distributed or not) must implement a store-and-
forward mechanism whereby each broker must log each mes-
sage onto a persistent storage before accepting the message
for delivery from a client or from another broker, and such a
commitment to deliver must also be confirmed to the sender.

On the contrary, systems in the“best-effort”class [10, 3, 6,
17] do not offer guaranteed delivery but instead try to maxi-
mize throughput and reduce end-to-end delay. So, typically,
these systems do not log messages to a persistent storage,
nor do they implement any mechanism to guarantee mes-
sage ordering. Acknowledgment messages are not used and
no explicit congestion control mechanism is in place. The ad-
vantage of these systems is that they allow for more stream-
lined message processing, with simpler protocols and with
broker designs closer to those of network routers. Still, de-
spite their better performance and simplicity, the unreliable
nature of best-effort systems seems to limit their deployment
significantly, especially in critical application domains.

Our goal in this work is to reduce the dichotomy between
the reliable but more involved store-and-forward architec-
ture, and the unreliable but streamlined best-effort architec-
ture. In other words, our goal is to obtain a combination of
the best features of both types of service. More specifically,
we take a best-effort network as a basis for a content-based
publish/subscribe service, and on top of that we design an
end-to-end, probabilistic reliable service. The protocol is
end-to-end in the sense that it requires no changes in the
internal structure of the broker network or its protocols,



and relies only on the participation of clients (though, the
same technique we propose can be easily extended to take
advantage of in-network caches). The resulting service is
probabilistic in nature, in the sense that it can not guar-
antee delivery in an absolute sense, and in fact it probably
would not achieve the same reliability as schemes that use
stable storage within the network. Nevertheless, as we show
experimentally, in practice the service can reduce message
losses significantly, and with only minimal compromises in
terms of throughput.

Our design is modeled after Scalable Reliable Multicast
(SRM) [9]. Very briefly, SRM works as follows: a receiver
that detects a message loss (using sequence numbers) tries
to recover a copy of that message from other group members
by multicasting a request to the group. SRM also uses an
adaptive timer to reduce the number of duplicate requests
and replies, and to cope with the effects of such duplicates.

However, SRM is not directly applicable to content-based
publish/subscribe because messages are not explicitly ad-
dressed to a group, and therefore because it is not immedi-
ately clear how to address a request for a lost message. In
fact, for the same reason, it is not even clear how to detect
a message loss. This is because there is no clearly identifi-
able stream of messages other than what is published by a
single source, and gaps in such a stream are very often due
to the legitimate filtering of the content-based selection. In
other words, simple sequence numbers do not allow a re-
ceiver to distinguish a lost message from a message that was
legitimately filtered out by the receiver’s subscriptions.

The protocol we propose addresses these two fundamental
issues using a synthetic publication record that is attached to
messages and that allows receivers to detect message losses
and also to request the corresponding missing messages. We
also extend SRM with a simple scheme for better cache man-
agement. We implemented and tested this protocol within
a best-effort content-based publish/subscribe system. Our
experiments show that the protocol is capable of recover-
ing from a large number of messages losses in networks of
different size and with different dynamics.

In Section 2 we first set the context of our work by dis-
cussing best-effort publish/subscribe networks and reliable
IP multicast, and then present the problem we address and
give an overview of the reliability protocol we propose as
a solution. In Section 3 we detail the reliability protocol
and its implementation. Section 4 presents the experimen-
tal evaluation and in Section 5 we review related research.
Finally in Section 6 we offer some concluding remarks.

2. CONTEXT AND PRELIMINARIES
In order to put our end-to-end reliability protocol in the

proper context, we briefly review best-effort content-based
networks and the analogous reliability protocols for IP mul-
ticast. We also give a high-level summary of our solution.

2.1 Best-Effort Content-Based Networks
A best-effort content-based network is essentially a dis-

tributed publish/subscribe system architected as a datagram
network, where routers act as event dispatchers. The ad-
dressing in this network is “content-based” in the sense that
messages (publications) are addressed implicitly by their
content and by the predicates (subscriptions) matching that
content posed by receiver hosts. The communication ser-
vice provided by the network is “best effort” in the sense

that messages are treated as datagrams in an IP network,
and therefore may be lost due to link instability and conges-
tion in routers. A best-effort content-based network may be
built as an overlay on top of an unreliable transport protocol
like UDP, or on reliable TCP connections. There are also
publish/subscribe systems that directly work atop IP mul-
ticast to disseminate events to large sets of subscribers [14].
However, regardless of the nature of the overlay or network
underlay, congestion and errors in routers can still render
the network unreliable. On the positive side, the goal of the
best-effort design is to minimize the amount of state main-
tained within the network and reduce processing at each
router, thereby promoting efficiency and scalability.

In this paper we assume a very common content-based
publish/subscribe interface in which messages are at least in
part structured as sets of attributes, and can be selected by
subscriptions predicated upon the values of those attributes.
In particular, the term constraint refers to a condition on
the value of an attribute, the term filter denotes a logical
conjunction of constraints (sometimes called a subscription)
and the term predicate denotes a logical disjunction of filters
(i.e., a set of subscriptions).

2.2 Reliable IP Multicast
A best-effort content-based network offers a service that

is similar in nature to IP multicast. Since our goal is to im-
prove the reliability of a best-effort content-based network,
and specifically since we propose to do that with a pure end-
to-end solution, we model our solution after the existing end-
to-end reliability protocols developed for IP multicast. As
we will discuss later, such protocols are not immediately ap-
plicable to a content-based addressing because of its greater
expressiveness. Nevertheless, we review such protocols here
and in particular we focus on Scalable Reliable Multicast
(SRM) [9] as a basis for our reliability protocol.

In the context of IP networks, a number of reliability
mechanisms have been proposed in the form of additions to
the standard IP multicast. Among the most notable ones,
Scalable Reliable Multicast (SRM) [9] and Reliable Mul-
ticast Transport Protocol (RMTP) [12] provide reliability
without reliance on the routing infrastructure (i.e., “end-to-
end”) while Pragmatic General Multicast (PGM) [18] pro-
poses additional functionalities to routers in order to provide
reliability. In the terminology of these protocols, a request
is a (broadcast or multicast) message whose function and
meaning is similar to that of a negative acknowledgment
(NACK), which is to request a missing message. The term
repair refers to a reply (to a request) that carries the miss-
ing message. We use these terms with the same semantics
in the rest of the paper.

We chose SRM as a basis for our reliability protocol for
two reasons. First, SRM makes limited assumptions about
the application logic, and second, it only relies upon a basic
multicast service to recover lost messages without requiring
any addition or modification to the underlying multicast ser-
vice. Since in the paper we often refer to SRM semantics
and internals, we now give a cursory description of how SRM
achieves end-to-end reliability. For a detailed description we
refer the reader to the original paper by Floyd et al. [9].

SRM is a general-purpose reliability protocol designed for
large scale applications that use IP multicast. To be generic,
SRM does not make any particular assumption about the
formats and sizes of application-level messages. Thus, mes-



sage loss detection is not embedded in the protocol but is
instead assumed to be part of the application logic. Once
the application detects the loss of a message within a group,
it multicasts a request to the same group. Other applications
in the same group that received (and cached) the message
respond by multicasting a repair to the group. In order to
reduce duplicate requests and repairs for the same message,
nodes hold their requests and repairs for an initially random
delay. A node holding a request would then progressively
back off by doubling the delay every time it receives a re-
quest for the same message. A node holding a repair would
simply cancel the repair upon receiving the same repair.

The random delays are chosen uniformly in the interval
[C1ds,a, (C1+C2)ds,a] for request and [D1ds,a, (D1+D2)ds,a]
for repair messages where ds,a is the average message trip-
time from the multicast source to the node and C1, C2,
D1 and D2 are adjustable parameters. The protocol has
an algorithm for automatic tuning of these parameters so
that the likelihood of duplicates and the time to recover lost
messages are lowered to a minimum.

2.3 Problem and Overview of the Solution
To extend the simple idea of cooperative message recov-

ery to content-based networks, we must overcome two main
technical problems. The first problem is to enable receivers
to detect message losses. For some applications, specifically
when messages are channeled into identifiable streams and
subscribers receive all messages in a stream, this can be eas-
ily done by marking each message within its stream with a
sequence number. In this case, a gap in the sequence num-
bers indicates a message loss. However, such streams do not
exist in a content-based publish/subscribe network, where
messages are delivered only if they match the interests of
subscribers, and where such interests may partially overlap.
In other words, with partially overlapping receivers’ inter-
ests, it is impossible to assign sequence numbers to messages
so as to obtain continuous sequences for all receivers. There-
fore, in practice, a receiver can not distinguish a message
that was lost from a message that was not delivered because
it does not match the receiver’s interests.

We address this problem by adding some information to
each message that allows a receiver to determine, with some
probability, if any of the latest publications of the sender
that were not received was in fact of interest for the receiver.
This information, which we call the publication record, con-
sists of a set of Bloom filters, each encoding one of the
sender’s most recent publications. We discuss this encod-
ing below.

The second problem is to recover a lost message that was
determined to be of interest. As in SRM, we propose a co-
operative recovery scheme whereby a lost message is recov-
ered from some other application in the network that might
have received and cached the message. In SRM a receiver
would multicast a request for a lost message to the same
multicast group to which the message was sent, which con-
veniently identifies all potential caches from which the mes-
sage might be recovered. Unfortunately, in a content-based
publish/subscribe network it is not as easy for a receiver to
address other receivers of a given message. One way to reach
potential caches is to send a request to all caches, which can
be done by having all caching applications subscribe for a
generic “request” message. However, that solution might in-
cur an unacceptable overhead for caching applications and

for the network in general, especially in situations where the
network is already congested.

We address this second problem using the same publica-
tion record attached to messages. A receiver that receives
a Bloom filter Bm from the publication record of a message
m′, and therefore determines that m was of interest, cre-
ates a request message that includes Bm. This request is
intended for other applications interested in the same mes-
sage m that are willing to serve as caches for lost messages,
and therefore that would subscribe for request messages that
match Bm.

The publication record, and in particular the encoding of
messages into Bloom filters, is such that a subscription S can
be evaluated against the Bloom filter Bm representing mes-
sage m (without the original content of the message). This
is what allows a receiver to verify that a message identified
by a Bloom filter B in the publication record matches one
of the receiver’s subscriptions. So, our idea is to express this
matching condition between a Bloom filter B and a receiver
subscription S within another subscription. This is possible
thanks to the structure of the Bloom filters that encode the
message content, which we discuss below in Section 3.1.

Lastly, an application that has a cached copy of a lost
message and that receives a request for a repair must some-
how deliver that message to the requesting application. This
can be done in a straightforward way through a direct (uni-
cast) connection, or also through the publish/subscribe API
by effectively republishing the message for the requesting
receiver. Each of these solutions has advantages and disad-
vantages that we discuss below.

3. END-TO-END LOSS RECOVERY

3.1 Message Loss Detection
As stated in the previous section, in a content-based pub-

lish/subscribe network, where subscriptions can express par-
tially overlapping interests, conventional sequence numbers
are not sufficient to detect message losses. To remedy this
problem we augment messages (publications) with an en-
coded summary of the latest publications of the same sender.
This summary, which we call the sender’s publication record,
may allow a receiver to determine that a particular message
that was not received was in fact lost.

A publication record is attached to a message mk by its
source s and consists of R entries representing the previous
R messages mk−1,mk−2, . . . ,mk−R published by s. Each
entry Bi is a Bloom filter obtained by encoding message
mk−i using the encoding scheme developed by Carzaniga et
al. [4]. The encoding works as follows: first, a message m
is mapped into a set of “categories” or “tags.” For example,
a message that contains the attributes (event=disk-failure,
cause=overheating, priority=high) might be associated with
tags “disk-failure,”“overheating,” and “high-priority.” Then
the set of tags is simply represented as a Bloom filter. In
addition to defining sets of tags for messages, the encoding
scheme also defines tags for subscriptions with the intended
semantics that, if a message m matches a subscription S,
then the tags associated with m are a superset of the tags
associated with S. Carzaniga et al. describe one such en-
coding that is quite simple but that also incurs some false
positives [4]. For the purpose of this paper we adopt the
same encoding. In summary, a subscription S is encoded as
a Bloom filter BS (representing a set of tags) and a message



m is encoded as a Bloom filter Bm (representing a set of
tags), and if m matches S then Bm ⊇ BS (where a Bloom
filter B is interpreted as a set of bits).

When a subscriber receives a message mk that carries a
publication record 〈B1, . . . BR〉 the subscriber checks whether
it has received messages mk−1, . . . ,mk−R from the same
publisher. Then, for each message mi that was not received,
the subscriber checks whether the Bi entry in the publica-
tion record matches any of its subscriptions S. That is, the
subscriber checks whether there is one of its subscriptions
S such that Bi ⊇ BS . (Of course, the subscriber does not
have to recompute the encoding of its subscriptions for each
message.) If one such subscription is found for Bi, then the
subscriber concludes that message mk−i was lost and may
decide to try to recover the message.

3.2 Routing Requests
A subscriber may try to recover a lost message by request-

ing a copy of that message from other applications that re-
ceived and cached the message. The problem is then to ad-
dress such a request so as to reach all and only the receivers
that might have cached a copy of the lost message.

We propose to transmit the request through the same pub-
lish/subscribe system, by constructing a special request mes-
sage and by having receivers subscribe for those requests for
messages that they might have received. So, an application
with subscription S that is willing to cache messages for
other applications must subscribe for requests for messages
matching S. For example, a simplistic way to do that for a
subscriber interested in, say, {news=sport, team=Yankees}
would be to subscribe for a request message {reliability-
message=request, news=sport, team=Yankees}. However,
this simplistic approach does not work. For one thing, the
second subscription is useless, since the first one would al-
ready match all corresponding request messages. More im-
portantly, a subscription for a request that repeats the same
constraints as a normal subscription would not work, be-
cause a receiver trying to recover a missing message may
not be able to fill in the relevant attributes.

Consider in fact the following scenario. Application Al-
ice subscribes for {team=Yankees} while application Bob
subscribes for {news=sport}. Now, suppose Alice receives
message m ={news=sport, team=Yankees} while the same
message is lost on the way to Bob. Also suppose that Bob re-
ceives a following message m′ ={news=sport, team=Mets}
carrying a publication record that allows Bob to detect the
loss of m. At this point, Bob can determine that the missing
message m matches its own subscription {news=sport} and
therefore might issue a request {reliability-message=request,
news=sport}. However, that request would not reach Alice.
In order for such a request to reach all potential caches, Bob
would have to fill in all the attributes of m in the request.
In other words, Bob would have to know m completely in
order to issue an effective request to recover m.

We propose to overcome this problem by once again rely-
ing on the information contained in the publication record.
In the scenario we just described, Bob does not know the
content of the missing message m, but he does know its
encoding Bm. Therefore, Bob could include Bm in a re-
quest message such that Alice could subscribe for it using
an encoding of its own subscription. For example, suppose
that Alice’s subscription would be encoded in a Bloom fil-
ter BA whose 1-bits are at positions 7 and 15 (all other

bits are zero). Then, Alice could subscribe for {reliability-
message=request, b7=true, b15=true} effectively represent-
ing BA by means of attributes each representing one of the
1-bits in BA. Notice that what matters is the presence of
such attributes, not their value. Now, Bob could do the same
by composing his request for m using the encoding Bm he
finds in the publication record. And since the encoding is
such that a message m matching a subscription S would be
encoded by a Bloom filter Bm whose 1-bits are a superset
of the subscription’s Bloom filter BS , Alice would have to
receive that request.

With the ability to detect lost messages and to route re-
quests to all potential caches for those messages, the re-
covery process proceeds in a similar fashion as in SRM. We
illustrate this process through a an example. Consider a sub-
scriber A that has an active subscription and suppose that
A is willing to provide repairs for all the events matching
that subscription. To do that, A encodes the subscription
and issues a second subscription using the 1-bit attributes
as described above. As subscribers intending to participate
in the recovery mechanism, B and C also initially issue an
additional subscription to receive matching repair requests.
As we will detail below, this is done to suppress duplicate
requests.

P

A B C

P

(a)

(c)

(b)

(d)

req-m5

A B C

A B C A B C

m5
m9

P

m9
m9m9m5

m5

P

req-m5 rep-m5

Figure 1: Message m5 is lost before reaching B and
C (a); having received m9 (b), C publishes a request
for m5 (d); A replies with a repair (d).

Now, assume that later, a publisher P publishes an event
m5 matching A’s subscription. The message is received by A
but due to a temporary failure it is not received by B and C
whose subscriptions also match m5 (see Figure 1a). Later,
P publishes another message m9 that is received by B and
C (because it matches their subscriptions). This message
carries the publication record of P that includes the Bloom-
filter encoding of m5. Using that data, both B and C realize
that they have missed m5 (see Figure 1b).

The detection of a message loss triggers the recovery mech-
anism at B and C. Thus, B and C issue repair requests, but
in doing that, they try to suppress duplicate requests. The
two nodes start to count down from a randomly generated



timer (discussed in Section 2.2). Assume that C picks the
earlier timeout between the two. Once C’s timer expires, C
publishes a request for m5 by including the 1-bit attributes
corresponding to the Bloom-filter encoding of m5 as well as
a unique message id for m5 (source plus sequence number)
that is also part of the publication record. This request is
received by both B and A because it matches their request
subscriptions (see Figure 1c). Upon receiving the request,
B, which has a timer running on an identical request, reacts
by delaying its own request by doubling its timer value.
A instead reacts by searching its message cache for a mes-

sage with the given id, and when it finds it, publishes a repair
message consisting of the original message m5 with an addi-
tional attribute that indicates that it is a repair (and there-
fore a duplicate publication). The repair message reaches
both B and C (see Figure 1d), at which point B cancels its
pending request and both B and C deliver m5.

Thanks to the expressiveness of content-based network-
ing, this request routing technique allows for fine grained
control over the request messages and their receivers. On
the one hand, it allows clients to precisely describe request
message they are willing to reply to, if any. On the other
hand, it also allows for the implementation of special poli-
cies for the distribution of request messages, for example to
confine request and repair messages within a single adminis-
trative domain. It is also easy to use this recovery protocol
with designated cache nodes distributed in strategic points
over the network that take on the responsibility of providing
repairs, as suggested in RMTP [12] for reliable IP multicast.

3.3 Sending Repairs
As explained in the example of Figure 1, a caching sub-

scriber can respond to a request by re-publishing a message
and by flagging that publication as a repair. Alternatively,
the cache may send the repair directly to the requesting
node through a unicast connection. Re-publishing is ad-
vantageous when the same message is requested by several
receivers—something that might happen with overlapping
subscriptions and non-local faults. Conversely, a unicast re-
ply may be a better option when no other receivers requested
the same message, and when that message would reach many
receivers that already received the original copy. There may
also be security and authenticity issues with the repair mes-
sages that are provided by caching nodes. This can be seen
as a general trust and security management problem in the
context of publish/subscribe systems, which is out of the
scope of this paper.

3.4 Message Cache
An important parameter that is not discussed in the orig-

inal paper on SRM by Floyd et al. [9] is the amount of mem-
ory a caching node (generally, a subscriber) has to allocate
to its message cache. The cache should be allocated and
managed so as to obtain a high cache-hit ratio while also
avoiding unnecessary caching and therefore saving memory
resources. In this section we elaborate on this issue.

On the one hand, for performance reasons we would like
to have nodes maintain the message cache in main mem-
ory, within the limits of their memory constraints. On the
other hand, it is also desirable to limit memory usage to
a minimum. Therefore, nodes need to know when to drop
some of the messages from their cache. The best strategy
depends on various parameters, such as end-to-end message

Symbol Meaning

λ Publication rate
C1, C2 SRM request timers
Pm Match probability
dP,B Trip time between requester and publisher
dB,A Trip time between requester and caching node
K Cache size

Table 1: Parameters used in the calculation of the
cache size.

delivery delay, sender publication rate, match probability,
and timer parameters of the requesting nodes. A message
cache of constant size is oblivious to such network dynamics
and may sometime lead to memory waste and other times
to cache misses. Instead, we seek an adaptive cache that
would perform well under variable network conditions. In
particular, we formulate an approximation for the optimum
cache size focusing on the most common scenario.

We consider the message cache as a ring buffer with dy-
namic size, and we consider the problem of finding the opti-
mum size of this ring buffer based on the parameters sum-
marized in Table 3.4. (Indeed, our implementation uses a
ring buffer for its message cache.) For this formulation we
assume that message losses occur in bursts of S messages
per second, where 1 ≤ S < λPm. We further assume that
request messages are not lost.

Consider a publisher Z that publishes a message mi. This
message has two intended receivers: A that receives mi and
B that incurs a message loss and does not receive mi. To
find a lower bound for the size K of the message cache at
A, we assume that A is closer to the publisher while B is
farther away from the publisher in terms of end-to-end delay.
Thus, on average, it takes dZ,B + 1

λPm
+ ε time units for

B to receive mj , the next (relevant) message from Z, and
detect the loss of mi by investigating the publication record
attached to mj . We neglect ε, the small processing time of
mj . Therefore, the request message from B will be received
by A after an expected delay of (C1 + C2

2
)dZ,B + dB,A time

units. Consequently, in order to be able to provide a repair
for the lost message mi, A has to store mi in its ring buffer
for at least dZ,B + 1

λPm
+ (C1 + C2

2
)dZ,B + dB,A time units.

The minimal caching time we just computed determines,
together with the arrival rate at A, determines a minimal
cache size. Since A receives messages from the publisher
with an expected inter-arrival time of 1

λPm
, and hence must

overwrite mi in its ring buffer approximately after K
λPm

time
units. Thus, in order for A to be able to provide repair for
mi, the request must arrive at A before A overwrites mi in
its ring buffer. So we have:

dZ,B +
1

λPm
+ (C1 +

C2

2
)dZ,B + dB,A ≤

K

λPm

solving the inequality, we find a lower bound for the cache
size K:

K > λPm[(C1 +
C2

2
+ 1)dZ,B + dB,A]

The parameters of the above formula vary over time, and
therefore must be continuously estimated. Each caching
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Figure 2: Probability of loss detection for (a) different sizes of publication record and match probability,
(b) different sizes of publication record, match probability and different number of nodes sharing a loss (2,
3, 5 from bottom to top in each line category).

node A, can directly measure λPm which equals the recep-
tion rate from the publisher Z at A. The value of (C1 +
C2
2

)dZ,B) is not measurable by A and therefore is included
in each request message sent by B. The auto-tuning algo-
rithm in SRM works in a way that the requesting node is
likely to be the closest node to the point of failure. Thus,
the requesting node for a given publisher is likely to often
be the same node. Thus, this value is averaged over received
requests for message of the publisher Z with the assumption
that requests are coming from the same node or nodes at the
same distance from the publisher. Finally, the value of dB,A
is easily found by the simple method described by Floyd et
al. in [9].

Algorithm 1 Adjust cache size

if closets repair provider = True then
a← ((C1 + C2

2
+ 1)dZ,B + dB,A)λPm + 1

b← 0
if HitRatio < H then
b← 1.1K

c← max (a, b)
else
c← 0.9K

if Kmin ≤ c ≤ Kmax then
K ← c

Another consideration is that based on SRM semantics,
via auto-adjustable timer parameters, the node that pro-
vides repair messages is usually the closest node (in terms
of end-to-end delay) to the point of message loss, which is
in fact a method to minimize recovery time. Therefore, it
is better to have this node handle caching more aggressively
and other nodes gradually reduce their cache size, since they
are not actively involved in providing repairs for messages
coming from that specific publisher. Moreover, given that
the above formulation gives a lower bound for K, caching
nodes also need to monitor their average hit ratio, which is
updated upon reception of each request, and if this ratio is
below a preconfigured value, increase their cache size. Algo-
rithm 1 shows this procedure, which a caching node executes
periodically. H is a preconfigured hit ratio and Kmin and
Kmax are minimum and maximum allowed cache size, re-
spectively, and are configurable parameters. This algorithm
is quick to increase the cache size as a reaction to sudden
spikes in publication rate λ, and instead reacts with a grad-
ual increase (10%) of the cache size when the network is

stable but the hit ratio is lower than the configured level H.
The algorithm is also rather conservative when it comes to
reducing cache size, since we would like to avoid dropping
cache entries too early as a result of abrupt changes in the
network dynamics.

3.5 Discussion
The effectiveness of the proposed recovery protocol is pri-

marily influenced by the effectiveness of the loss detection.
Obviously, the publication record carried by each message
must be limited in size due to practical limitations and also
to limit traffic overhead. This is in fact, where the proba-
bilistic nature of our recovery protocol stems from.

We now discuss the impact of publication-record size on
the probability of loss detection. Considering a subscriber S
and a publisher P whose publication matches S’s subscrip-
tions with probability Pmatch , the probability that S detects
the loss of a message sent by P depends on the message
loss probability Ploss on the path from P to S, the matching
probability Pmatch , and the size R of the publication record.
Simply put, if each message carries a publication record of
size R, then the loss of a message m will not be detected
by its intended receiver if none of the R messages published
after m are received by that receiver. So, the probability of
loss detection is:

1− (1− Pmatch + PmatchPloss)
R (1)

Figure 2a shows the probability of loss detection for dif-
ferent sizes of publication record and different match proba-
bilities for a loss probability of 0.01. As the figure suggests,
when the match probability is 0.001 (i.e., out of every 1000
publications, only one message is expected to match the sub-
scriber’s interests) the loss detection mechanism is very inef-
ficient. With 5% matching probability, a publication record
of size 10 makes the loss-detection possible with a probabil-
ity of 0.4. At a first glance, Figure 2a might suggest that
this loss detection mechanism would limit the applicability
of our recovery mechanism. While this is true for applica-
tions with very low match probability, note that Figure 2a
demonstrates the worst case where there is only one intended
receiver for the lost message. In other words, when a mes-
sage loss is shared among multiple receivers, it is sufficient
that only one of them detects the loss. This happens when
subscribers have overlapping subscriptions.

As an example, let us consider a case of Figure 2a where



a node n has a match probability of 0.01. Let us also as-
sume that there are k other nodes (k = 1, 2, 4 in Figure 2b)
with the same matching probability as n and we also assume
that all these nodes’ subscriptions have a 50% overlap with
n’s subscriptions. That is, any message that matches n’s
subscription will match all of the other nodes’ subscriptions
with a probability of 0.5. Figure 2b (the three bottom lines)
shows the growth of the loss-detection probability (the prob-
ability that at least on node detects a shared loss) with the
growth of the publication-record size. The three top lines
correspond to the case where nodes have a match probabil-
ity of 0.05 and the rest of the scenario is similar. Notice
that the growth of loss-detection probability with the size of
publication record is faster for larger values of k.

Another consideration about this loss-detection mecha-
nism is that if the publication rate (number of publications
per time unit) is relatively low, detection of a message loss
will be late, especially for subscribers with low match proba-
bility. This problem can be alleviated by periodic soft-state
messages sent by the publisher. Such messages only serve
the purpose of enhancing the loss detection on the receiver
side. Receivers whose match probability is too low can sub-
scribe for soft-state messages for faster and more successful
loss detection.

Another way to mitigate the limitation of the proposed
loss-detection mechanism is to maximize the number of mes-
sages that can be summarized into a publication record of
a given size. Currently, we are investigating the tempo-
ral locality of events. That is, when two or more consec-
utive events sent out by a publisher have overlapping at-
tribute/value pairs. We plan to exploit temporal locality to
enhance the encoding scheme to allow for compression that
is, merging the encoded format of a few similar events in a
single Bloom filter. This might further increase the likeli-
hood of a false positive however, we believe that the overall
bandwidth usage will be improved with this compression
mechanism. Entries of a publication record can be further
compressed using compressed Bloom filters [13] to reduce
space usage and bandwidth overhead.

4. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of the recovery

protocol with a focus on effectiveness and cost. More specif-
ically, we are interested in measuring how many lost mes-
sages are recovered and how long it takes to recover them.
Another practical question we explore is how much extra
traffic is generated by the recovery protocol and what is the
user-tangible impact on the ordinary traffic.

We note that the performance of the recovery protocol de-
pends significantly on the choice of topology, workload, and
message-loss probability. Our choice for these experimental
settings does not aim to demonstrate the best-case perfor-
mance of our protocol, but rather intends to examine its
effectiveness under stress, in the presence of frequent mes-
sage losses, and with conservatively chosen workloads that
do not necessarily contribute to increase the effectiveness of
the recovery protocol.

4.1 Experimental Setup and Workload
We implemented the recovery protocol as a pluggable mod-

ule which integrates into any publish/subscribe application
and protocol that provides a common publish/subscribe API.
In particular, the publication record and other metadata re-

quired by the recovery protocol is attached to messages as
an array of bytes treated by brokers as application payload
not subject to the matching process. Most implementations
of the Java Messaging Service (JMS) are capable of car-
rying an opaque payload and hence clients using such sys-
tems can take advantage of the recovery protocol when the
system runs in best-effort mode. For the experiments pre-
sented in this section we used a recent implementation of
the Siena publish/subscribe system that implements a best-
effort content-based communication system [4].

Our experiment testbed is a cluster of Dell PowerEdge
with two dual-core 2GHz AMD Opteron processors and 4GB
of main memory running Linux with a 2.6.32 kernel. Con-
nectivity is through an isolated high-throughput Gigabit
Ethernet switch. Broker software, client and recovery proto-
col are implemented in Java and run on the 64-bit open-JDK
VM. Each physical machine hosts an broker that serves 5 in-
stances of the client (as their home broker) running on the
same machine. To simulate a wide area network, we used
the Linux traffic control tools to apply delay and message
loss on all inter-broker and links. Each link’s delay di, is
randomly chosen in the range of [25, 75] milliseconds, which
also continuously varies during the execution in the range of
[di − 5, di + 5] milliseconds. This variation of ±5 millisec-
onds is typical of the Internet, based on different Internet
measurements.1

We present the results for two sets of experiments with
two different network topologies and workloads. The first
topology is composed of 12 brokers with a diameter of 5
broker-hops in which out of the total of 60 clients, 6 nodes
are publishers and 54 are subscribers. Then to probe scal-
ability of the recovery protocol, the second experiment in-
volves a larger topology of 46 brokers with a diameter of 11
broker-hops. Among the total of 230 clients, 10 are publish-
ers and the rest are subscribers.

Using the Linux traffic control tools, we apply a link-level
message loss probability of 0.01 to all inter-broker links (i.e.,
each link loses approximately one message out of each 100
messages). This loss probability is rather large because for a
network of diameter 11 it sums to unrealistically large likeli-
hoods of message loss for some endpoints. For example, for
a sender and a receiver 11 broker-hops apart, the probability
of message loss is as large as 0.1. This is a deliberate choice
to stress-test the recovery protocol under very frequent mes-
sage losses.

In both experiments, we use synthetic workloads with
varying publication rates that simulate sudden short-term
spikes in publication rate of publishers, to simulate bursty
traffic that causes queuing delays. In these experiments, all
the nodes participate in the recovery process. That is, they
all volunteer to provide repair for messages that they receive.
As shown in Section 3.1, two crucial factors in the loss detec-
tion and hence in the effectiveness of the recovery protocol
are the matching probability and the number of receivers for
a message. To be conservative in our evaluation, we choose
workloads that exhibit low subscription/publication match
probability (the probability that a message matches a node’s
subscription) and a low number of receiver per message. Fig-
ure 3 characterizes the two workloads for the 12-broker and
46-broker experiments. As Figure 3a shows, in both work-

1For example see measurements by RIPE Network Coordi-
nation Centre (RIPE) available at
http://www.ripe.net/data-tools/stats/ttm/ttm-data
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Figure 3: (a) Number of receivers for cumulative distribution of messages. (b) Match probability for cumu-
lative distribution of subscriber/publisher pairs.

loads 50% of the messages have at most two receivers. Fig-
ure 3b plots the subscription/publication match probability
for each pair of subscriber and publisher. In both workloads,
80% of the pairs have a match probability of less than 0.08
while the maximum match probability is not higher than 0.1.

Figure 4, plots the aggregate publication and delivery
rates without the recovery protocol during the course of the
experiments, which runs for a total of 5 minutes. The rapid
changes in delivery rate is due to spikes in publication rates.

4.2 Recovery Effectiveness
First we look at the number of false negatives (that is, the

number of messages that were not delivered to their intended
receivers) with and without the recovery protocol. One de-
termining factor in the effectiveness of the protocol is the
size of the publication record. Figure 5 illustrates the effec-
tiveness of the recovery protocol with different publication-
record sizes. The y-axis shows the total number of false
negatives (message losses) and zero on the x-axis represents
the case where no recovery protocol is in place. The de-
crease in the number of false negatives is more pronounced
in the 46-broker network while it is slower in the 12-broker
network. Indeed, in the 12-broker experiment, growing the
publication record size from 1 to 10 only halves the number
of false negatives while in the 46-broker networks the false
negatives are reduces by a factor of 3, approximately.

Our calculation of the probability of message loss detec-
tion by Equation 1 as well as Figure 2a explain this result,
which is mostly due to the characteristics of the workload,
i.e., small matching probability and small subscriber/message,
which hinder a more effective loss detection in the 12-broker
network. Furthermore, our experiments with smaller mes-
sage loss probabilities showed that the exponential effect of
publication record size on the recovery effectiveness is more
substantial when message loss probability is smaller, which
is also explained by Equation 1. For instance, in the 46-
broker network when loss probability is 0.001, the recovery
protocol with a publication record size of 10 reduces the
number of false negatives by more than 8 times.

We now examine the network dynamics and the corre-
sponding protocol behavior over time. To do that, we focus
on the experiments with the best effectiveness results, that
is, with a publication record of size 10. We choose this
case because a larger size for the publication record gener-
ates larger amounts of network traffic and hence by studying
this case we gain a better understanding of its impact on the
network.

We begin our probe by looking at the aggregate rate of
false negatives with and without the recovery protocol dur-
ing runtime, shown in Figure 6. The reduction in the false
negatives that is almost a factor of two for the 12-broker
and a factor of three for the 46-broker network is persistent
during the whole course of the experiment. So, at a high
level, the recovery protocol does not show any pathological
behavior during the experiment.

We now proceed to examine another aspect of the recov-
ery effectiveness, namely the time it takes to recover a lost
message. Figure 7 shows the end-to-end delay of the original
(non-repair) messages as well as the repair messages. Note
that the delay of repair messages is in fact the time differ-
ence between their publication by the original publisher and
their delivery to the indented receiver as a repair. Figure 7
also plots the request/repair delay, which is the time dif-
ference between multicast of the first request for a certain
message and the first repair for that message. An inter-
esting observation is that the request/repair delay in both
networks is relatively small: for 80% of the messages in 12-
broker and 46-broker networks, this delay is below 200 and
350 milliseconds, respectively, while the total time to recover
missing messages is considerably larger. This means that a
large part of the recovery delay is due to “late” loss detec-
tion, which is a result of low matching probability and/or low
publication rate. This is not surprising, since the publication
rate of each publisher varies between 20 and 500 messages
per second in the 12-broker, and between 20 and 250 mes-
sages per second in the 46-broker networks, and hence, with
a match probability of 0.05, it might take up to 1 second to
detect a message loss.

Also, note that our choice of large message loss probability
causes many of the requests to be lost and so, some requests
must be reissued for a second or a third time, each time
after a timeout. In fact, in other experiments with 46-broker
network when we applied smaller link loss probabilities, we
observed that the request/repair delays were almost 50%
smaller, which in turn resulted in smaller recovery times.

4.3 Performance and Network Overhead
We now turn our attention to the operating costs of the

recovery protocol. In particular, We consider two measures:
network usage and the overall impact on the receivers in
terms of the extra delivery delay that the original messages
incur. The extra network load is caused by the publication
record attached to each message as well as the traffic of
request and repair messages. In our workload all messages
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Figure 4: Aggregate publication and notification rates in (a) 12-broker and (b) 46-broker networks.
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Figure 5: Impact of publication-record size on the effectiveness of the recovery protocol in (a) 12-broker and
(b) 46-broker networks.

have 10 attributes and to produce each entry of a publication
record we encoded a message in a Bloom filter of size 256
bits. Thus, a message with a publication record of size 10
carries 320 bytes of extra information. We deliberately used
this large number of attributes and large-size Bloom filters
to examine the negative effects of the recovery scheme in
a rather extreme case. In reality though, where messages
usually have smaller number of attributes, Bloom filters of
size 128 or 64 would suffice and cause less network overhead.

Figure 8 illustrates the aggregate rate of request and re-
pair messages during the experiment as well as the aggregate
rate of publications to be used as a reference measure. Ide-
ally, for each lost message there must be only one request
and one repair message. However, in many cases request
and repair messages are also lost, which is indeed the rea-
son why in Figure 8 the number of requests is more than
the number of repairs. Interestingly, we observed that in
both networks the multicast suppression mechanism built
in SRM works favorably well. More specifically, in the 12-
broker network more than 90% of the request and 80% of the
repair messages were not duplicated while in the 46-broker
network these values were 80% and 70%, respectively. This
larger duplicate number in the 46-broker network is due to
the network’s greater diameter, which is twice the diameter
of the 12-broker network. A higher diameter has a slight af-
fect on SRM’s multicast suppression mechanism, but more
importantly leads to more frequent losses of request/repair
messages.

In effect, the overall and user-visible overhead is the change
in the delivery delay of the messages when the recovery pro-
tocol is active and causes extra network traffic. Figure 9
shows the end-to-end delivery delay for cumulative distribu-

tion of messages with and without the recovery scheme. As
the diagram suggests, the recovery protocol shifts the plot
of end-to-end delay without recovery to the right, which im-
plies a constant increase in the end-to-end delivery delay of
all messages. Nevertheless, given the minimum and max-
imum values of end-to-end delay without recovery, an in-
crease of 25 milliseconds in delay is not prohibitively large,
since the dominant network traffic is the ordinary publica-
tion traffic and so, request/repair messages do not cause
tangible impact on the overall network performance.

4.4 Adaptive Cache
We now examine the performance of the adaptive mes-

sage cache by measuring the hit rate and the size of message
cache in the network. A cache hit occurs when a request
for a message is sent out and at least one of the nodes that
received the request, is able to provide a repair. Thus, con-
sidering the whole network as a single cache, we define hit
ratio as the ratio between total number of cache hits to the
total number of requests.

In our experiment we assigned values of 5 and 300 to Kmin

and Kmax, respectively, with an initial cache size of Kmin.
The the target hit ratio H (see Algorithm 1) was set to 1.
Figure 10 plots the changes in hit ratio during the experi-
ment. In both networks, the hit ratio grows rapidly in the
first few seconds of the experiment and then does not exhibit
large changes during the rest of the experiment despite the
continuous oscillation of the publication rates.

The effectiveness of the adaptive cache is further demon-
strated by Figure 11, which shows the minimum, mean, and
maximum cache size among all the network nodes during the
experiment. Despite the high hit ratio, the amount of mem-
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Figure 6: (a) Changes in the aggregate rate of false negatives (message loss) with and without the recovery
protocol, for (a) 12-broker and (b) 46-broker networks.
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Figure 7: Cumulative distribution of the end-to-end delay for original and repair messages and request/repair
delay for (a) 12-broker and (b) 46-broker networks.

ory used for caching was a small. This is because most of the
nodes keep their cache size to a minimum (as evidenced by
small value of the mean cache size). In turn, this is because
the adaptive cache mechanism causes the nodes that do not
actively participate in providing repair messages to reduce
their cache size. On the other hand, nodes that are actively
providing repairs adjust their cache size to accommodate
changes in publication rate and improve hit ratio.

5. RELATED WORK
As we mentioned in Section 1, prominent implementa-

tions of publish/subscribe systems have taken two different
approaches concerning reliable delivery. Systems in the first
category strive to ensure that all subscribers receive all pub-
lished messages that match their subscriptions [1, 2, 16, 8,
11]. Guaranteed delivery and service availability are pro-
vided by replication of brokers and logging of messages onto
durable storage. Moreover, reception of messages by the in-
termediate brokers and the final recipients are acknowledged
at each hop. These are known as store and forward sys-
tems. The main problem of the store and forward design is
that it induces high delivery delays. Additionally, when the
publication rate is high, logging messages onto disk might
contribute to congestion.

In the second category there are best effort systems [10,
3, 6, 17]. These systems treat messages as datagrams in a
network, and therefore do not store messages onto disk, nor
they require any acknowledgment when transmitting mes-
sages from broker to broker or from a broker to a client.
The advantage of the best-effort design is its simplicity and
therefore its ability to scale in terms of throughput.

The idea of reliable message delivery in a publish/subscribe
system without support from the broker network has been
previously proposed in the work by Ostrowski and Birman[15].
The authors briefly mention the possibility of combining re-
liable multicast protocols like SRM and RMTP with an un-
reliable publish/subscribe protocol. However, the proposed
general approach is limited to topic-based publish/subscribe
systems. Even so, this work lacks a precise and concrete plan
on how it can be implemented.

Costa et al. [5] and Esposito et al. [7] propose using epi-
demic and peer-to-peer techniques to provide reliability in
publish/subscribe networks. Similar to our protocol, the
work by Costa et al. [5] provides reliability in probabilis-
tic terms. We believe that the work presented here is more
generic and easier to implement and deploy.

6. FINAL REMARKS
The goal of this paper is to enhance the reliability of best-

effort publish/subscribe systems with a minimum reduction
in the high throughput and end-to-end delivery delay that
such systems offer. Towards this end, we develop an end-to-
end method that effectively considers the broker network as
a black box. In essence, our solution consists of two compo-
nents. The first is a message-loss detection mechanism; the
second is a routing scheme to deliver request messages to
nodes that volunteer to provide repairs. Both mechanisms
are built on top of a standard publish/subscribe API, and
therefore neither requires any modification to the broker net-
work. Also, both mechanisms are based on a synthetic pub-
lication record attached to messages and in turn based on a
space-efficient encoding of messages and subscriptions into
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Figure 9: Delivery delay with and without the recovery protocol in (a) 12-broker and (b) 46-broker networks.

Boom filters. Through experimental evaluation, we show
that this end-to-end reliability method is effective in recov-
ering lost messages even in the presence of highly unstable
network conditions and low link reliability.

We believe that best-effort content-based systems, thanks
to their good performance and relatively simple architec-
ture, have great potentials to emerge as a general-purpose
communication paradigm integrated into the network fabric.
Similar to IP networks, we believe that higher level guaran-
tees, like message ordering and reliable delivery, ought to be
built atop the basic service offered by the broker network,
by involving the clients and potentially other dedicated net-
work components in the process. Indeed, this work is a part
of a project whose aim is to devise a transport protocol for
best-effort content-based networking.
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