
Distributed-System Failures:
Observations and Implications for Testing

Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf

Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado, 80309-0430 USA
{rutherfo,carzanig,alw}@cs.colorado.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-994-05 April 2005

c© 2005 Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf

ABSTRACT

Distributed software systems are notoriously difficult to test. As in all software testing, the space
of potential test cases for distributed systems is intractably large and so the efforts of testers must
be directed to the scenarios that are most important. Unfortunately, there does not currently
exist a general-purpose, disciplined, and effective testing method for distributed systems. In this
paper we present an empirical study of failures experienced by the users of seven open-source
distributed systems. The goal of the study is to understand the extent to which there are patterns,
commonalities, and correlations in the failure scenarios, such that one could define an improved
testing method for distributed systems. Our results indicate that: a new generation of test-
adequacy criteria are needed to address the failures that are due to distribution; the configurations
that cause user-reported failures are reasonably straightforward to identify; and generic failure
observations (i.e., those for which reusable techniques can be developed) are strongly correlated to
the distributed nature of system failures. The second two results in particular imply that there is
a reasonable bound on the effort required to organize the testing activity. Overall, the study gives
us some early confidence that it is feasible to consider a testing method that targets distributed
systems. The results of this study are offered as a basis for future work on the definition of such
a method.

1 Introduction

Software testing is a subdiscipline of software engineering that, like all engineering disciplines, is governed
by the tradeoff between time and resources on the one hand, and completeness and quality on the other.
Given this, it is vital that testing methods be developed with an eye toward guiding testers to the most
important failure scenarios while expending the least amount of effort. This paper presents a study aimed
at determining whether it is feasible to consider developing such a method for the testing of distributed
systems, since a general-purpose, disciplined, and effective method does not currently exist.

Distributed software systems are notoriously difficult to test. Some of these difficulties are related to
the problems in selecting effective test data for non-standard inputs, such as the topology of the distributed
components and network characteristics of bandwidth or latency. Other difficulties arise from the challenges
associated with defining and observing system failures in the face of nondeterminism and a possibly hetero-
geneous distributed testbed. In considering a testing method, we must find some structure to the problem
that will reduce the effort required of a tester to navigate through an otherwise intractable space of potential
test cases. If no such structure can be found, then there is simply no basis for defining a method. Thus,
this paper represents a first and necessary step in the development of a method. We seek to understand the
extent to which there are patterns, commonalities, and correlations in failure scenarios, such that one could
justifiably define a testing method for distributed systems.

Testing methods are usually classified by the level at which they occur: unit, cluster, integration, sub-
system, and system. Another way of classifying testing methods is according to the role of the group that
performs the testing. In most software development organizations there are two distinct groups: developers
test the code that they write at the unit or cluster level, while quality assurance (QA) personnel test the
application at the subsystem or system level. In general, developers use the properties and structure of
their code to guide testing, while QA personnel concentrate on requirement specifications and use cases as
their guide. Furthermore, QA testing acts as a backstop, or a last line of defense, that an organization uses
to protect itself from failures in the field. No matter how well or how badly developers fulfill their testing
responsibilities, the QA personnel have an obligation to ensure that the fewest possible failures escape. Thus,
they must act defensively, and assume little about the testedness of the system achieved by developers.

Conducting a study of distributed-system failures presents a number of difficult challenges, but perhaps
none more so than simply finding concrete data. While gaining access to details about any aspect of
an organization’s software development process is not easy (particularly for a commercial organization),
reviewing product failure information is virtually impossible due to its sensitive and potentially damaging
nature. Fortunately, many popular distributed applications are developed as open-source projects having
associated with them publicly accessible defect-tracking systems. It is the failure reports contained in the
defect databases of open-source distributed systems that are the raw data of this study. The study population
consists of seven systems representing a broad spectrum of distributed-system styles: peer-to-peer, federation,
and client/server, as well as a component library.

The use of open-source software in our study is not only convenient, it is actually an asset, since most of
these projects function with little or no dedicated QA personnel, in contrast to traditional closed-source com-
mercial systems. Therefore, open-source software is generally released having only been tested by developers,
providing us with a unique opportunity to isolate failures that escape this class of testing. Furthermore,
although many open-source developers consistently write and apply unit tests, they rarely if ever document
and publish them, even within the defect-tracking systems. Under these circumstances, the failure reports
originate mainly with users, who naturally concentrate on the features and configurations of most importance
to them. In a sense, the users are acting as surrogate QA system-level testers for the purposes of this study,
admittedly providing a broadly user-centric, as opposed to a strictly requirements-centric, prioritization of
test cases. The question here is not how well those pseudo-QA testers may have performed their job, but
rather whether there is something we can learn from the failures they did manage to uncover.

The testing activity involves two key tasks: (1) selecting inputs that are effective at causing failures
and (2) constructing and applying oracles that are capable of recognizing that a failure has occurred. The
method we developed for this study requires us to identify and classify each scenario described in a failure
report in terms of the overall configuration of components, the specific inputs needed to drive the system

1

to failure, and the technique used to observe the failure. Further, we must determine whether each failure
scenario was truly distributed or simply multi-component. A multi-component scenario would involve only
the need for one component to provide input to another, while a truly distributed scenario is a multi-
component scenario that would additionally involve properties such as concurrency, platform heterogeneity,
unreliable communication, delays, timeouts, or the like. This is a critical distinction that helps shed light
on the underlying nature of a failure and the testing techniques that might be required to expose it. We
also distinguish between failure observations that are generic, in the sense that they are largely applicable
to most kinds of distributed systems (e.g., detecting system crashes), and those that are specific, relating to
the functionality of the system (e.g., incorrect content of a message). Clearly, generic observations can be
supported by reusable techniques, while specific observations often need purpose-crafted techniques.

Our observations resulting from this study hold several important implications for the development of
advanced testing methods. First, a new generation of test-adequacy criteria are needed to address the
significant number of failures that are due to distribution. Current criteria are largely blind to the relevant
issues revealed by our study. Second, the configurations that cause user-reported failures are reasonably
straightforward to identify. This means that testers are not required to find exceedingly complex or exotic
configurations in order to expose the failures that users would typically encounter. This, in turn, means that
there is a reasonable bound on effort. Third, generic observations are strongly correlated to the distributed
nature of system failures, which means that there is again a reasonable bound on effort, in this case the
effort required to define and construct test oracles.

The results of our study are certainly preliminary, and the population, although representative of high-
level distribution styles, is somewhat limited in size. Nevertheless, the study gives us some early confidence
that it is feasible to consider a testing method that targets distributed systems. The results of this study
are offered as a basis for future work on the definition of such a method.

The next section outlines related research efforts that provide empirical studies based on defect reports.
Section 3 describes each of the subject systems we considered. Section 4 describes the method we used to
conduct our study, while Section 5 presents the results of the study. Section 6 concludes the paper with
thoughts on how the results of the study might lead to a feasible testing method, as well as future work.

2 Related Work

There is a large body of work devoted to the use of defect reports to inform the development of testing
techniques and methodologies. For the most part, these are aimed at studying the faults that are identified
by the reports, not the types of tests that could have identified the faults earlier. For example Fenton and
Ohlsson [4] and Ostrand and Weyuker [8] both describe the use of fault data from successive releases of
commercial systems. They present a number of interesting results related to correlations between module
size and fault-proneness and the relationships between pre- and post-release faults in modules, but they do
not consider the types of tests (particularly for the post-release faults) that could have produced the failures
sooner.

Another example of this is the analysis of bug reports and subsequent change requests to determine the
root cause of the defects across all phases and activities in the development process [5, 6]. As part of their
root-cause analysis, Leszak, Perry and Stoll describe the development of countermeasures to help improve
the development effort. One of the countermeasures listed was improving unit testing. However, this is
motivated by the root-cause information not the test-input information that could have potentially been
gleaned from the initial defect reports.

In orthogonal defect classification (ODC) [1, 2], both a defect type and a defect trigger are identified for
each defect. The defect type is similar to a root cause, and is recorded by the software engineer making
the changes needed to fix the defect. Conversely, the defect trigger is a coarsely grained categorization
of the circumstances that lead to the defect being reported. At a high level, the defect trigger is used to
improve the verification process by determining why the circumstances that caused the defect where not
seen during testing. Our input classification is similar in intent to the defect trigger classification. However,
our classification is more detailed, as well as being more directly targeted at distributed systems. ODC is

2

a general-purpose defect analysis technique that is targeted at improving the software development process
for a project in general, while we are primarily concerned with exploring the feasibility of creating a new
testing method.

More recently, Li et al. [7] studied user defect reports from several open source projects, and fault and
failure reports from commercial software, to study defect occurrence models for large, multi-release software
systems, including operating systems and a distributed middleware system. While the raw data for their
study are similar to ours, Li et al. are primarily interested in frequency data. Interestingly, they also note
that user defect reports in open source systems often contain duplicates and invalid reports, though in their
study, these reports are considered in scope, since a developer has to review each one, regardless of its
ultimate utility.

3 Subject Distributed Systems

Our study reviewed failure reports from seven diverse distributed systems. We selected these systems to
represent a broad spectrum of distribution styles: peer-to-peer (P2P), federated, and client/server. We also
included in our study population a component from a distributed component library.

3.1 Peer-To-Peer

For our purposes, the defining characteristic of P2P applications is their ability to operate without the
resources of a centrally controlled server application. Peers generally discover each other, and then cooperate
to deliver services.

3.1.1 Gtk-Gnutella

Gnutella is a popular protocol for decentralized file sharing. Gtk-Gnutella is a Unix-based Gnutella client. A
client joins the network by locating a single existing member who can then help bootstrap the new node by
sending to the new node its list of known addresses. A decentralized system of web applications collectively
known as the Gnutella Web Caching System (GWebCache) stores lists of active hosts and other caches; this
too is used for bootstrapping.

The Gnutella protocol runs over both TCP and UDP and includes control messages for joining the
network, issuing queries, and responding to queries. HTTP is used to ultimately download files from peers.
Gtk-Gnutella also supports the GWebCache protocol for retrieving and updating lists of active peers.

In Gnutella, nodes can operate in “ultrapeer” mode or “leaf” mode. Ultrapeers are typically run on
machines having access to large amounts of bandwidth and other resources. Ultrapeers are able to respond
to query messages on behalf of leaf nodes to which they are connected, thereby reducing the network usage
for leaf nodes.

Gtk-Gnutella is written in C, and supports a rich graphical user interface via the GTK library. It has a
large number of configuration options related to interacting with peers, joining the network, and controlling
the amount of bandwidth used for uploads and downloads. It is the only application we considered with a
dedicated (i.e., non-web-based) graphical user interface.

3.1.2 JBoss Clustering

JBoss is a fully featured enterprise Java (J2EE) application server. A single instance of JBoss can be used
as a servlet and Enterprise JavaBean (EJB) container, and provides the typical services of a J2EE container,
including management of transactions, security policies, and threading. An advanced feature of JBoss is its
support for clustering of multiple JBoss instances to provide load balancing and redundancy. While JBoss
itself is typically considered to be a canonical server application, we consider its clustering feature in the
P2P category, since the clustering module is completely decentralized and supports automatic discovery of
cluster members who cooperatively provide a service.

3

JBoss clustering supports replication of HTTP session and EJB state, Java Naming and Directory In-
terface (JNDI) replication, failover and load balancing of JNDI and EJBs, and cluster-wide deployment of
J2EE components. JBoss is written in Java.

3.2 Federated

Federated applications are similar to P2P applications in that they are able to cooperate with other programs
to collectively deliver a particular service. They differ from P2P applications in that they can provide services
when running alone, and they must be manually configured to cooperate with other programs.

3.2.1 Elvin

Elvin1 is a content-based publish/subscribe communication middleware application [9, 10]. In its most basic
configuration, an Elvin application consists of a publishing client and a subscribing client both connected
to a single router. The subscriber provides the router with information about its content preferences, and
whenever a publisher sends a notification that matches these preferences, the router forwards it to the
subscriber. Elvin supports federation of routes located in different administrative domains. It also supports
failover, in which routers can cooperate to provide replication for advanced quality-of-service features. Each
Elvin router can optionally be managed through a web interface. The core Elvin router is written in C and
runs on both Windows and Unix platforms. Client bindings are available in a number of languages.

3.2.2 Squid

Squid is an advanced caching proxy written in C that is able to proxy communications for the HTTP/HTTPS
and FTP protocols, among others. Squid provides advanced support for integration with other web caches
to improve performance and reliability. Squid can also operate as an HTTP accelerator for a standard web
server. It includes built-in support for management via SNMP, and is able to operate as a caching DNS
resolver.

3.3 Client/Server

In the traditional client/server model, a single server program services multiple client programs without
cooperation from other programs. However, there are very few server programs that are truly independent
and do not use other services, such as DNS, sometime during their operation. Therefore, the two applications
we selected as servers primarily operate alone to provide a service, but in some configurations may also act
as clients of other servers.

3.3.1 AOLserver

AOLserver is a web server designed to be highly scalable and configurable. It is developed and used by
America On-Line. The server core is written in C and is configured and programmed using the Tcl API
that it exposes. AOLserver also supports server-side programming through Tcl, and integrates with various
popular relational databases. Management of AOLserver is accomplished through a telnet-like interface.

Through the server-side programming API, AOLserver can act as an email client, and as an
HTTP/HTTPS client to other (not necessarily AOLserver) web servers.

3.3.2 James

James is an email server written in Java. It supports SMTP, POP3, and NNTP. James can also be configured
to act as a POP3 client, and supports the use of popular relational databases for storing email and metadata.
Management of a running James instance is accomplished through a telnet-like interface. As an email server,

1Depending on the interpretation of the term, Elvin may not be considered truly “open-source”. However, it has a publicly
accessible defect tracking system, which is why it was included in this study.

4

James makes extensive use of the DNS system, and has a built-in DNS resolver/cache for this purpose. James
can be customized through its Mailet interface.

3.4 Distributed Component

With the advent of server frameworks, distributed application programming is often accomplished through
the development of components designed to operate within those frameworks. The components are similar
to basic code libraries, but they often support special interfaces required by the framework and they must
often be aware of the threading model used by the framework.

3.4.1 OpenSymphony Workflow

The OpenSymphony Workflow component provides advanced support for workflows. The component is
customized to a particular workflow through a configuration file, and supports various popular databases for
persistence of workflow histories. The component is written in Java.

OpenSymphony Workflow can be executed in a standalone fashion, but it is also intended to operate
within a J2EE container as a web application (servlet) or EJB.

4 Empirical Method

The raw data used in the study are the reports contained in the databases of the defect-tracking systems
used with the systems we considered. A central challenge faced in conducting the study was to transition
from the informal application-specific descriptions submitted by users to generalizable descriptions of a test
scenario. The method we used consists of four distinct activities. First, among all user reports, we isolate
the ones describing defects that are suitable for our study; then, for each suitable report, we describe the
architecture of the system in the reported scenario; we classify the inputs that cause the failure; and finally
we classify the observations that highlight the failure.

4.1 Report Classification

Defect-tracking systems are used for many things, and particularly in open-source projects some of the uses
are not necessarily related to reporting defects. Therefore, our first challenge was to identify a subset of the
reports that are relevant to the scope of our study. For a defect report to be included in our study it must
satisfy the following criteria:

• it describes a system-level failure;

• it describes a run-time failure; and

• it must have been verified by a developer.

Our initial set of reports for each application consisted of all “closed” reports. Using the querying features
of the defect-tracking systems we were able to eliminate some extraneous reports by only considering those
marked as “fixed”. However, such queries were not available for all defect-tracking systems, so even fixed
reports must still be classified manually.

Table 1 shows the report types we used for this initial preprocessing step. In general, reports are
eliminated from consideration because they (1) do not describe a failure (marked as IMPROVEMENT, RFE,
WORKSFORME, 3RDPARTY); (2) describe a compilation or documentation defect (marked as STATIC); or (3) do
not provide enough details about the system-level behavior that causes the failure (marked as NEI, UNIT).

Most report-type classifications are a straightforward matter of reading through the initial report and
the subsequent dialog between developers and users. However, there is some subjectivity in making a NEI
or UNIT classification. The following two examples should help clarify how these categorizations are used.

5

Report Type Description %

INSCOPE in-scope report 34.17

IMPROVEMENT code improvement 21.96
STATIC non-run-time failure 14.47
NEI not enough information 11.18
RFE request for enhancement 7.83
UEI user error / ignorance 3.92
UNIT unit test 2.84
WORKSFORME developer cannot replicate 2.72
3RDPARTY failure is in external software 0.91

Table 1: Classified Report Types

The following code generates a java.lang.StringIndexOutOfBoundsException

exception: -

MailAddress mailAddr = new MailAddress("A@B.");

The exception is as follows: -

Jul 05 16:59:59 2001: java.lang.StringIndexOutOfBoundsException: String index

out of range: 4

Jul 05 16:59:59 2001: at java.lang.String.charAt(String.java:503)

Jul 05 16:59:59 2001: at org.apache.mailet.MailAddress.<init>

(MailAddress.java:102)

I can only generate this error if the last character is a fullstop.

Figure 1: James Report #5

Figure 1 contains the initial description of a defect report for James. This report was classified as
UNIT because it makes no mention of the user-level inputs needed to reproduce the failure or the user-level
observations that would be needed to recognize the failure.

#0 0x40197d21 in __kill () from /lib/libc.so.6

#1 0x40197996 in raise (sig=6) at ../sysdeps/posix/raise.c:27

#2 0x401990b8 in abort () at ../sysdeps/generic/abort.c:88

#3 0x8061bce in xassert (msg=0x809c4e2 "auth_user_request != NULL",

file=0x809c4c0 "authenticate.c", line=478) at debug.c:250

#4 0x8050778 in authenticateAuthUserRequestLock (auth_user_request=0x0)

at authenticate.c:478

#5 0x8058fd3 in clientRedirectDone (data=0x845de90,

result=0x8211f68 "http://127.0.0.1:2968/") at client_side.c:314

#6 0x8080f34 in redirectHandleReply (data=0x845e600,

reply=0x8211f68 "http://127.0.0.1:2968/") at redirect.c:70

#7 0x806e7e4 in helperHandleRead (fd=7, data=0x8211f20) at helper.c:691

#8 0x8061050 in comm_poll (msec=878) at comm_select.c:434

#9 0x807a8a8 in main (argc=2, argv=0xbffff7ac) at main.c:720

Figure 2: Squid Report #198

Similarly, Figure 2 shows a report that simply consists of a debugger stack trace that was classified as
NEI. In this report, there is clearly enough detail for the developers to fix the problem, but there is not
enough information to reconstruct the scenario that leads to the failure.

Table 2 shows that after preprocessing we are left with 602 in-scope failure reports. James report #66,
entitled “MX Chaining in the RemoteDelivery mailet is broken”, is an example of an in-scope report. It
begins:

MX chaining in RemoteDelivery is broken. Basically, the code in place assumes that a given MessagingException
generated while sending mail doesn’t merit a retry unless it encapsulates an IOException. This doesn’t appear
to be the exception generated when a server refuses a connection. So the exception is rethrown, and the other
SMTP servers are never tried.

This report highlights a fault in the logic that deals with retrying email delivery when a domain has
multiple mail exchangers (MX DNS records). The steps needed to reproduce this failure are:

1. start an SMTP server (not necessarily James);

6

System Total Reports In-scope Reports %

AOLServer 196 69 35
Elvin Router 149 67 45
Gtk-Gnutella 337 115 34
James 203 85 42
JBoss Clustering 36 22 61
OpenSymphony Workflow 289 37 13
Squid Cache 552 207 38

1762 602 34

Table 2: In-Scope Reports by System

2. configure a DNS server with a test domain that has two MX records: the first points to an invalid
address; the second points to the server started in step (1);

3. run a James server configured to use the DNS server started in step (2);

4. send an email, through the James server, to an account at the test domain using an SMTP client;

5. observe that the SMTP server started in (1) does not receive the email.

James report #66 does not explicitly include these steps, but the description provides enough details about
the failure that these can be inferred.

There are three major aspects of each scenario that are summarized for each report: (1) architecture,
(2) inputs, and (3) observations. The remainder of this section describes them in detail.

4.2 Architecture

The architecture of a scenario refers to the number and organization of any components needed to reproduce
the failure. The architecture is separated into the configuration of the application itself, the configuration
of any supporting components, collectively referred to as the harness, and properties of the underlying
network. The harness is divided into drivers and services, where a driver component is one that initiates
communication with the system, while a service component instead awaits communication from the system.

In James #66 the scenario architecture consists of one instance of James, one SMTP client driver, one
SMTP service, and one DNS service. There are no special network properties required.

In a few scenarios, the underlying network was required to have certain characteristics. For example, a
JBoss Clustering scenario requires that the underlying network not support IP multicast.

Components %
1 19.60
2 41.20
3 33.39
4 4.82
5 1.00

Table 3: Architectural Summary

The scenario architectures we identified involved between one and four application instances, between
zero and three driver components, and between zero and three service components. Only seven scenarios
required specific characteristics of the underlying network. Table 3 shows a summary of the architectures
described in the reports. The first column in this table reflects the total number of components involved in
a scenario. For example, a scenario involving an AOLserver instance and an HTTP client, and a different
scenario requiring two Gtk-Gnutella instances are both considered to involve two components. One notable
feature of the data in Table 3 is that over 80% of the scenarios involved more than one component.

7

4.3 Inputs

In addition to the scenario’s architectural elements, the scenario’s inputs are identified and organized into
general categories. We take a broad view of “inputs” in which we consider all the installation/configuration
settings and run-time actions needed to reproduce the reported failure. As with the architectural classifica-
tion, the inputs are separated by whether the site of the input is the system, one of the harness elements,
or the underlying network. The input categories presented in Table 4 were derived from an examination of
the reports themselves. In particular, new categories were created as needed, to accommodate an aspect of
a scenario that did not fit neatly within the existing ones.

Locus Category Description

System Configuration configuration activities
Customization API programming activities
Execution execution style or command

line options
FileData data files contents
FileSystem changes to files or file system

structure
Installation compilation and installation

activities
OperatingSystem changes to the operating sys-

tem
Platform specific software platform
UserInterface interaction with the system

via interface

Harness Behavior specific network-related be-
havior

Configuration driver/service configuration
Platform specific software platform
SendMessage send a particular message

Network Manipulation alter underlying network

Table 4: Input Categories

Most categories listed in Table 4 are self explanatory. “Customization”, which appears as a system
input, requires further explanation. Customization refers to the creation of any plug-in-like software that
runs within a component in the system or the harness. For example, many of the failures associated with
AOLserver required that a server-side script be created with particular contents, and hence this was classified
as a customization.

The inputs categorized for James #66 are: (1) Harness:SendMessage for the DNS response and email
and (2) System:Configuration for the DNS configuration of James.

After performing the initial input categorization, we considered each input independently and determined
whether it was truly “distributed”. The purpose of this categorization was to enable us to distinguish
between scenarios whose architecture is multi-component, simply because the system accepts input at run
time through the network interface, and scenarios that actually involve the distributed nature of the system.
Inputs that were considered to be distributed fell into these three rough categories.

• Inherent: e.g., concurrency; relative differences in processing speed, latency, and bandwidth; unreliable
communication; platform heterogeneity.

• Accidental: e.g., addresses, ports and well-known port assignments; networking resource limits.

• Error simulation: e.g., connection timeouts and termination; invalid or truncated messages.

A scenario was classified as distributed if it required any of its constituent inputs to be distributed. For
example, a number of defects in AOLserver are demonstrated by creating a server-side script with particular
characteristics and then executing the script by sending the appropriate HTTP request to the server; these
are all classified as non-distributed. By contrast, an AOLserver scenario that required a client to connect to
the HTTPS port and simply wait for the connection to timeout is classified as distributed.

8

4.4 Observations

For a system behavior to be classified as a failure, the anomalous behavior must be observed during execution.
For each scenario, we described and classified the observation that was made. The categories that we used
are summarized in Table 5. As we did for inputs, we separated our observation categories by whether they
are applied to the system components, to the harness components, or to the network. The fourth column in
Table 5 shows the percentage of all 602 observations that fell into each category.

Locus Category Description %

System Process application process 28.57
LogOutput log or console messages 17.77
State internal state 12.96
File files or directories 6.48
Performance resource usage 2.16
OperatingSystem operating system elements <1
Message network messages <1

Harness Message network messages 25.41
Networking networking API 1.82
State internal state 1.16
Performance resource usage <1
LogOutput log or console message <1

Network Transport transport-layer aspects <1

Table 5: Observation Categories

In our initial observation classification, we also produced a succinct summary of each observation. These
summaries were then used in a second refinement phase to further categorize each observation category. In
all, we identified 29 different subcategories of observations. Due to space limitations we cannot show the
entire list. As an example, the subcategories of the Message category are as follows.

• Absence: no message was sent or received when it should have been.

• Content: the data transmitted in a message were somehow invalid.

• Format: the message format was incorrect.

• Presence: a message was sent or received when it should not have been.

• Type: a message of a particular type was was observed.

The observation in James #66 was classified as a Message:Absence, since the SMTP service should have
received an email message.

Finally, each subcategory was labeled as either generic or specific, according to the level of specificity of
observation that was needed. Generic observations are those that can be applied to virtually any software
system (e.g., application crashes, errors appearing in standard system logs, or memory leaks), and obser-
vations that are tied to the application being tested, but still at a high level (e.g., the presence or absence
of network messages). By contrast, specific observations involve detailed judgments about computed data
values (e.g., contents of message fields). These observation labels are the basis for our analysis of observations
discussed in the next section.

5 Analysis and Discussion

The analysis presented in this section is centered around (1) determining what general trends exist with
respect to the complexity of the failure scenarios and (2) examining the specificity of observations that
are required to detect failure. We examine both of these aspects from the perspective of two measures of
a scenario’s distributedness: (1) how many different components must cooperate to cause the failure and

9

System # Dist. # Scenario %
AOLServer 14 85 16
Elvin Router 13 69 18
Gtk-Gnutella 23 115 20
James 12 67 18
JBoss Clustering 2 37 5
OpenSymphony Workflow 1 22 4
Squid Cache 38 207 18

103 602 17

Table 6: Distributed Scenarios by System

(2) whether or not the scenario requires any “distributed” inputs as described in Section 4.3. This leads us
to distinguish between multi-component and distributed scenarios in the discussion below.

After classifying each input as distributed or not we were able to determine that 17% of the 602 scenarios
required truly distributed inputs. While 17% is not a very high percentage, it is important to remember that
the scenarios in this study were reported by users, and that failures involving concurrency and timing issues
are notoriously hard to replicate. Additionally, as the data in Table 6 show, the percentage of scenarios
that are distributed is relatively consistent across all the systems we studied, lending credence to our belief
that this class of failures is fundamental across all distributed systems. In any case, our conclusion is
that a significant fraction of all the failures is directly related to the distributed nature of the systems.
This observation suggests that specialized testing methods and adequacy criteria are needed to address
distribution.

The core assumptions underlying our analysis are that a failure scenario with a larger number of com-
ponents is inherently more difficult for a tester to perform, and that the space of possible test cases grows
rapidly as scenarios of higher complexity are considered. Table 3 shows the overall architectural complexity
of the reported scenarios in terms of the number of components involved. One interesting observation from
the data in this table is that approximately 75% of the scenarios we encountered involved either two or three
components, and that 93% of the scenarios can be accounted for with simple scenario architectures involving
three or fewer components.

Components %
1 12.62
2 36.89
3 41.75
4 6.80
5 1.94

Table 7: Architectural Complexity for Distributed Scenarios

Table 7 shows the same data for the distributed scenarios. It should be pointed out that just over 12% of
the distributed scenarios actually only required a single system instance. Most of these defects were related
to misconfiguration of ports, addresses and DNS related settings and are thus part of the “accidental”
distributed inputs. At a high level, comparing the values in Table 7 with those in Table 3 confirms the
observation made above that even for the scenarios requiring distributed inputs, more than 90% of the
scenarios we encountered involved three or fewer components.

Table 8 shows the top 8 scenario architectures as represented by the mix of application instances, driver
instances, and service instances. Altogether, these eight scenarios account for 96% of those encountered,
while the top four alone account for 85%. It is encouraging to note that the four most common scenario
architectures involve only simple harnesses, if at all.

While the inputs to a test determine if a fault will occur, for the scenario to generate a failure, the fault

10

App. Instance # Drivers # Services %
1 1 1 27.57
1 1 0 24.92
1 0 0 19.93
2 0 0 12.62
1 2 0 3.49
1 0 1 3.16
1 1 2 2.33
2 1 0 2.16

Table 8: Scenario Diversity

 0

 20

 40

 60

 80

 100

 1 2 3 4

O
bs

er
va

tio
ns

 (%
)

Component Count

Generic
Specific

Figure 3: Observation Complexity versus Distribution

11

must be observed. Figure 3 shows the percentage of observations at each level of architectural complexity
for the two main observation labels described in Section 4.4. Data are only shown for scenarios with four or
fewer components since there are so few scenarios with five components. This figure shows the encouraging
result that the proportion of generic observations and specific observations remain steady as the scenarios
become more distributed.

Within the generic observations, we further identified three groupings: (1) catastrophic, (2) universal, and
(3) general. Observations of catastrophic failures are the easiest to make since, by definition, the application
stops running. Universal observation are those that can be applied to virtually any software system (e.g.
error messages in system logs), while general observations are system-specific, but still broadly applicable
within the space of possible behaviors of the system (e.g. message format violations).

 0

 20

 40

 60

 80

 100

 1 2 3 4

O
bs

er
va

tio
ns

 (%
)

Component Count

Catastrophic
Universal

General

Figure 4: Generic Observations versus Distribution

Figure 4 shows that observations of catastrophic failures are most prevalent in single-component scenarios,
and that their frequency levels off at roughly 25% for scenarios with more components. The most striking
feature of Figure 4 is the rise of the general observations as the scenario complexity increases.

5.1 Implications for Testing

The prevalence of failures that are directly attributable to the distributed nature of systems suggests that
specialized testing methods are needed to address distribution. As for the complexity of these methods, the
implications of our two main findings are quite encouraging.

First, our analyses of the structural complexity of scenarios uncover the encouraging finding that the vast
majority of scenarios are accounted for with relatively simple architectures. This is even true of scenarios
that explicitly include inputs related to the distributed nature of the system. This implies that testers can
reasonably prioritize their attention on the simple configurations.

12

Next, while the proportion of very specific observations appears to remain relatively constant at about
30%, the need for general purpose oracles for a particular system appears to increase as scenarios involve
more components. This finding also bears out common sense which dictates that the failures in systems with
more communication and interaction will be more subtle to identify, and that techniques and methods for
developing system-level test oracles become more important in these cases.

Finally, at a higher level, the experience of conducting this study and attempting to impose some level
of structure and categorization on the space of distributed system failures is encouraging. We were able to
analyze a large number of failure reports from seven disparate systems using quite a small set of categories
and a relatively simple model of the scenario architectures. All of this implies that attempting to develop
systematic and rational approaches to high-level testing of distributed systems is not futile, and that general-
purpose methods, tools and techniques can be developed with at least the possibility of making a positive
impact on the quality of such systems.

5.2 Threats to Validity

While we feel confident that the results and their implications found through this study are reasonable, it is
important to recognize threats to their validity.

We state explicitly that we are not claiming that our results can be used to draw conclusions about
the testing of all distributed systems; we are only claiming that our study shows that there are some
systems to which our analysis applies, although we have tried to look at systems that represent a diversity
of distribution styles. There are a number of reasons why our results might not generalize. For example, the
systems considered in this study all result from open-source development projects that would be expected
to devote fewer resources to quality assurance than would commercial projects. Thus, failures that may be
caught through standard means might have escaped into the field.

The failures are only those that have been reported using the defect-tracking systems; it is highly likely
that failures are found and fixed by developers while using the system themselves, or that failures are seen
by users, but they simply upgrade to the newest release or avoid the problem in some way without reporting
it. Therefore, the study is limited to drawing conclusions about the failures that were actually reported by
users. We believe that this probably limits the complexity of the scenarios that are included in the study,
and it is the primary reason that we consider the results to be applicable to a test goal of exposing major
user-visible failures. In other words, even if all the failures mentioned in this study were fixed, there will
likely still be failures in the systems that can only be found through scenarios that are more complex than
those examined here.

A major threat to validity is the objectivity of the analyst. As pointed out by El Emam and Wieczorek [3],
this is a problem with all empirical defect classifications, since it is by nature a subjective activity. In our
study, all classifications were performed by a single analyst (the first author), and the results might have been
unwittingly skewed in some direction. The process that we have established guards against this by breaking
the classification into small steps. In the future, we hope to use a collaborative approach to defect-report
classification, where different analysts classify reports independently, and conflicts are resolved anonymously.

Another major threat to validity is the content of the defect reports themselves. It is possible that a
report contains too much or too little information. If too many details about a scenario are included in an
initial report, and the developer does not make a note of this, the analysis of the report will include more
specifics than are really warranted. Conversely, if the initial report does not contain enough detail about the
scenario to reliably duplicate the failure, but the developer does not use the defect-tracking system to gather
the necessary information from the reporting user, then the report will be given a less-specific classification
than is warranted.

6 Conclusion

In this paper we present the results of an empirical study undertaken to understand and structure the space
of failure scenarios reported by users of distributed systems. Our intent is to motivate new testing techniques

13

tailored to distributed systems by presenting patterns, commonalities, and correlations in the user inputs and
observations described in defect reports. A secondary goal of our study is to determine how frequently the
distributed nature of an application comes into play when system failure occurs. Our results indicate that:
a new generation of test-adequacy criteria are needed to address the failures that are due to distribution;
the configurations that cause user-reported failures are reasonably straightforward to identify; and generic
failure observations are strongly correlated to the distributed nature of system failures.

A secondary contribution of this work is the empirical method we developed. As far as we know, this
is the first empirical study of its kind and the method is generally applicable to many varieties of software.
In particular, we believe that the classification activities and input and observation categories identified
could provide a basis for other defect report analyses aimed at understanding failure scenarios. Additionally,
critical examination of defect reports is not a purely academic endeavor; practical techniques derived from
our empirical method might provide QA managers with a means of understanding shortcomings of their
team’s testing processes, analogous to the way root-cause analysis can help development teams improve and
evolve their processes.

As already stated, the results of this study suggest that the space of failure scenarios for distributed
systems does exhibit some internal structure and is thus amenable to the the development of rational tech-
niques and methods to attack it. In our future work, we plan to concentrate on the development of test
adequacy criteria designed to induce QA personnel to execute scenarios similar to the ones described in the
defect reports of this study. The input and observation categories we identified provide a rich collection of
elements to consider for our adequacy criteria, and our evaluation of architectural complexity suggests that
starting with simple scenarios is likely to be quite effective.

The techniques and methods we develop based on this work will be targeted at system-level testing
as performed by QA personnel. We believe that the development of advanced techniques in this area is
entirely complementary to existing research targeted at improving developer testing since QA teams must
be conservative in their assumptions about how effectively developers are testing their code. Experience
suggests that much of the complexity of testing a distributed system (e.g., observing the interaction of
multiple components subjected to network effects) is not easily addressed by the developer who is testing
code at the unit level. Additionally, for some highly decentralized distributed applications, such as routing
and peer-to-peer data sharing, key features are emergent and therefore can only be tested at the top-most
level, again clearly outside the normal purview of unit-level developer testing. This leads us to hypothesize
that system-level testing will play a distinct and critical role in the development of distributed systems, no
matter how much we may be able to improve the testing processes at lower levels.

14

References

[1] Jarir K. Chaar, Michael J. Halliday, Inderpal S. Bhandari, and Ram Chillarege. In-process evaluation
for software inspection and test. IEEE Trans. Softw. Eng., 19(11):1055–1070, 1993.

[2] Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane S. Moebus, Bonnie K.
Ray, and Man-Yuen Wong. Orthogonal defect classification-a concept for in-process measurements.
IEEE Trans. Softw. Eng., 18(11):943–956, 1992.

[3] K. El Emam and I. Wieczorek. The repeatability of code defect classifications. In Proceedings of the The
Ninth International Symposium on Software Reliability Engineering, pages 322–333. IEEE Computer
Society, 1998.

[4] Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults and failures in a complex software
system. IEEE Trans. Softw. Eng., 26(8):797–814, 2000.

[5] Marek Leszak, Dewayne E. Perry, and Dieter Stoll. A case study in root cause defect analysis. In
Proceedings of the 22nd International Conference on Software Engineering, pages 428–437. ACM Press,
2000.

[6] Marek Leszak, Dewayne E. Perry, and Dieter Stoll. Classification and evaluation of defects in a project
retrospective. J. Syst. Softw., 61(3):173–187, 2002.

[7] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P. Santhanam. Empirical evaluation of defect
projection models for widely-deployed production software systems. In Proceedings of the 12th ACM
SIGSOFT International Symposium on the Foundations of Software Engineering, pages 263–272, New
York, NY, USA, 2004. ACM Press.

[8] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large industrial software
system. In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 55–64. ACM Press, 2002.

[9] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service
with quenching. In Proceedings of the Australian UNIX and Open Systems User Group Conference
(AUUG’97), 1997.

[10] Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps. Content based routing
with elvin4. In Proceedings of Australian UNIX and Open Systems User Group Annual Conference,
2000 (AUUG2k), Canberra, Australia, June 2000.

15

