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ABSTRACT

The Willow architecture is a comprehensive approach to survivability in critical dis-
tributed applications. Survivability is achieved in a deployed system using a unique
combination of (a) fault avoidance by disabling vulnerable network elements intention-
ally when a threat is detected or predicted, (b) fault elimination by replacing system
software elements when faults are discovered, and (c) fault tolerance by reconfiguring
the system if non-maskable damage occurs. The key to the architecture is a powerful
reconfiguration mechanism that is combined with a general control structure in which
network state is sensed, analyzed, and required changes effected. The architecture can
be used to deploy software functionality enhancements as well as survivability. Novel
aspects include: node configuration control mechanisms; a workflow system for resolving
conflicting configurations; communications based on wide-area event notification; toler-
ance for wide-area, hierarchic and sequential faults; and secure, scalable and delegatable
trust models.
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1. Introduction

As a society, we are becoming increasingly dependent on the continuous, proper functioning of large-scale,

heterogeneous, distributed information systems. These systems are formed from large numbers of

components, both hardware and software, originating from multiple sources assembled into complex and

evolving structures spread across wide geographic areas. Our goal is to develop techniques that help to

either prevent disruptions or ensure that these systems can continue to provide acceptable though not

necessarily complete levels of service, that is to survive, in the face of serious disruptions to their normal

operation. In this paper we present the main features of the Willow architecture, an architecture that

provides a comprehensive architectural approach to survivability [14] in critical distributed applications.

The important contribution of the architecture is the merging of three major approaches to dealing with

faults into a single system. Although this paper only summarizes the architecture, other details are

available in other cited papers.

The Willow architecture is based on the notion that survivability of a distributed application requires a

broad approach to dealing with faults in the application, an approach that includes fault avoidance, fault

elimination, and fault tolerance. Thus it includes mechanisms: (a) to avoid the introduction of faults into

the systems at the time of initial deployment or subsequent enhancement; (b) to eliminate (i.e., remove)

faults from a deployed application once they are either identified or merely suspected but before they can

cause failure; and (c) to tolerate the effects of faults during operation. These various mechanisms are all

based on a general notion of reconfiguration at both the system and the application levels together with a

framework that implements a monitor/analyze/respond approach to the identification and treatment of

faults.

Experience has shown that serious faults are often introduced during system deployment and

enhancement. For example, software components are distributed with default passwords set, the wrong

software version is deployed, corrective patches are not applied, and so on. Prevention and repair of such

faults are the reason that fault avoidance and fault elimination are needed. A novel special case of fault

elimination occurs in circumstances where a fault is suspected but not diagnosed. In such cases, it is
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desirable for the component(s) with the fault to be removed from the system if circumstances indicate that

the fault might be manifested. As an example, consider worm attacks against servers that have been

vulnerable to worms in the past. If there is a possibility that some servers might still be vulnerable and a

new worm is detected, rapidly disconnecting all the servers in the suspect class from the network until the

worm is eliminated might be a prudent precaution. In this case, a fault is suspected and eliminated

temporarily, although during the period that the fault is eliminated, functionality probably had to be

changed. This particular form of fault elimination is sometimes referred to as posturing.

Although fault avoidance, fault elimination, and fault tolerance are related but different concepts, each

is an approach to dealing with faults, and all three are provided by Willow. Their implementations share a

number of architectural elements and a common architectural theme of reconfiguration. Despite all three

being designed to deal with faults, they are not entirely compatible and actions taken by one can conflict

with actions taken by another. For example, if a fault such as a widespread power failure occurs while an

activity is underway to eliminate a fault by replacing software components, it might be necessary to

reconfigure the system to deal with the power loss as a higher priority than the ongoing software

replacement. The Willow architecture contains mechanisms to deal with such conflicts.

Security of the Willow architecture and its data sources is of paramount importance because, if it were

compromised, an intruder could do immense damage. Various techniques have been developed to support

the Willow architecture and are described.

This paper is organized as follows. In section 2, the characteristics of the applications of interest are

discussed and the notion of survivability reviewed. The special characteristics of the faults with which we

are concerned are summarized in section 3, and in section 4 we present the concepts of the Willow

architecture. A detailed discussion of the architecture is presented in section 5 and an evaluation in section

6. Finally, we review related work briefly in section 7, and present our conclusions in section 8.

2. Critical distributed applications and survivability

The distributed information systems with which we are concerned arise in the context of the nation’s

critical infrastructures. Transportation, telecommunications, power distribution and financial services are
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examples, and such services have become essential to the normal activities of society. Similarly, systems

such as the Defense Department’s Global Command and Control System (GCCS) are essential to the

nation’s defense operations.

In such a system, all or most of the service it provides can be lost quickly if certain faults arise in its

information system. Since societal dependence on critical infrastructures is considerable, substantial

concern about the dependability of the underlying information systems has been expressed, particularly

their security [17, 19].

Critical information systems are typically networks with very large numbers of heterogeneous nodes

that are distributed over wide geographic areas [13]. It is usually the case that these systems employ

commodity hardware, and that they are based on COTS and legacy software. The networks are often

private, and implement point-to-point connectivity (unlike the full connectivity of the Internet) because

that is all that is required by the associated applications. Within this structure, there are different numbers

of the different types of node, and the different types of node provide different functionality. Some nodes

provide functionality that is far more critical than others leading to a situation where the vulnerabilities of

the information system tend to be associated with the more critical nodes.

An important architectural characteristic of many critical information systems is that provision of

service to the end user frequently involves several nodes operating in sequence with each supplying only

part of the overall functionality. This composition of function can be seen easily in the processing of checks

in the nation’s financial payment system where the transfer of funds from one account to another involves

user-specific actions at local banks, transaction routing by regional banks, bulk funds transfer by central

banks, and complex signaling and coordination that assures fiscal integrity [21].

The Willow architecture is designed to enhance the survivability of critical information systems.

Information-system survivability has been defined in detail elsewhere [14], and so we merely review the

meaning of the term here. Informally, the concept is: (1) an information system should provide its complete

functionality for some, possibly pre-specified, fraction of the time; (2) the system should meet pre-defined

reduced or different requirements if it cannot provide full functionality because of failures (including

security attacks); and (3) several sets of different requirements might be stated to permit useful if limited
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functionality to be specified to accommodate different degrees of damage. Given that failures are

inevitable, it is essential that attention be paid to how failures are handled and, in particular, how the

systems’ users will be served during these times. Note that survivability is not a different name for the

existing term “graceful degradation”. The essential distinctions are: (1) the possibility of different rather

than merely reduced functionality; and (2) the precise statement of these different functionalities in user-

defined requirements.

3. Types of fault

3.1 Non-local faults

Traditional fault avoidance and fault elimination techniques such as programming languages with strong

type checking and systematic inspection can be used in the development of individual components for

critical information systems. Similarly, to effect component- or node-level fault tolerance designers can

employ traditional techniques such as N-modular redundancy in processing, communications, data storage,

power supplies, and so on. These techniques cope well with a wide variety of faults but in this research we

are not concerned with faults that affect a single hardware or software component or even a complete

application node. We refer to such faults as local, and, although they are important, we assume that local

faults are dealt with to the extent possible by existing techniques.

We are concerned with the need to deal with faults that affect significant fractions of a network, faults

that we refer to as non-local. Some examples of non-local faults are: (1) several nodes having software

components lacking essential security patches, defective virus databases, or improperly configured

operating systems: (2) extensive loss of hardware or a widespread power failure; (3) failure of an

application program; (4) coordinated security attacks, and so forth. Non-local faults are much more

difficult to deal with than local faults for obvious reasons.

3.2 Complex faults

In critical information systems, non-local faults are only a small part of the problem. The scale of modern

critical applications raises the following three additional issues:
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• Fault Sequences

It is necessary to deal with fault sequences, i.e., new faults arising while earlier faults are being dealt

with. The reason that this is a serious complication is that responses to faults in some cases will have to

be determined by the overall application state at the time that the fault is manifested.

• Fault Hierarchies

Any non-local fault must be dealt with appropriately. However, once the effects of a fault are detected,

the situation might deteriorate or more information might be obtained leading to the subsequent diag-

nosis of a more serious fault requiring more extensive action. This suggests the notion of a fault hierar-

chy and any approach to fault elimination or fault tolerance must take this into account.

• Interdependent Application Faults

Many critical infrastructure applications depend upon one another. For example, the nation’s financial

system depends upon commercial electric sources and upon commercial telecommunications facilities.

Faults and the resulting losses of service in the electrical network could cause losses of financial ser-

vices if electric supply were interrupted for protracted periods even though nothing was wrong with

the financial system itself.

4. Willow concepts

Our approach to dealing with complex, non-local faults is to use an extended form of a particular system

architecture that is referred to as a survivability architecture or an information survivability control

system [20]. A survivability architecture is characterised by having as its basic structure a control loop that

operates during system execution to monitor the system, analyze it, and effect some form of response if

analysis reveals a problem. This monitor/analyze/respond structure is the basis of many network intrusion

detection systems, for example [18].

The Willow architecture generalizes the control concept and includes multiple inter-operating but

separate loops. In addition, during the execution of the critical application, the state of its operating

environment is monitored along with the state of the application itself, and the resulting integrated set of

state information is analyzed. Necessary changes to the critical application system are effected as required.
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In the case of the Willow architecture, all of these notions are applied in a very general sense. Application

system state, for example, includes the detailed software configurations in use on the various nodes. The

state of the operating environment includes intelligence information about security threats together with

details about new releases of the software components used within the system. Finally, necessary changes

include correcting defective operating system or application configurations.

Changes to the critical application system include both software updates that will be transparent to the

system’s user and modifications to the system’s functionality that will not be transparent. Functionality

changes include reducing some services, ceasing others, and perhaps initiating application services that are

not normally available (such as basic emergency services). Monitoring and change are carried out by

sensing and actuating software that resides on network elements of interest. Analysis is performed by

servers that are not part of the application network, and communication between the monitored nodes and

the servers is by independent communications channels. The Willow architecture concept including

multiple instances of the basic control loop is illustrated in Figure 1.

The necessary changes in a critical application are effected by reconfiguration. The Willow

MonitorMonitor

Figure 1 Willow survivability architecture concept
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Critical Infrastructure Application
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Information
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architecture supports reconfiguration in a very broad sense, and reconfiguration in this context refers to

any scenario that is outside of ongoing, “steady-state” operation. Thus, for example, initial system

deployment is included intentionally in this definition as are system enhancements and upgrades,

posturing, recovery from hardware failure, and so on. All are viewed merely as special cases of the general

notion of reconfiguration. We refer to reconfiguration that is effected before the system has sustained any

damage as proactive and after the system has sustained damage as reactive. Proactive reconfiguration adds,

removes, and replaces components and interconnections, or changes their mode of operation. In a

complementary fashion, reactive reconfiguration adds, removes, and replaces components and

interconnections to restore the integrity of a system in bounded time once damage or intrusions have taken

place. Examples of specific system reconfigurations that can be supported by Willow are:

• Application and operating system updates including component replacement and re-parameteriza-
tion. Initial application system deployment is treated as a special case of this.

• Planned posture changes in response to anticipated threats.

• Planned fault tolerance in response to anticipated component failures.

• Systematic best efforts to deal with unanticipated failures.

Since reconfiguration could be used as a means of security attack, the input that is used in the Willow

decision-making process is managed by a comprehensive trust mechanism [5]. In addition, extensive

protection is used for the elements of the Willow architecture itself.

The Willow concept derives from a realization that system and application configuration control and

application fault tolerance are two different aspects of the general problem of overall control of distributed

systems. Both utilize specialized knowledge about the applications, the resources available and the

application state to prepare and react to changing conditions for distributed applications. The difference

lies in the time frames at which the two aspects operate, and in the mechanisms used to detect and respond

to circumstances needing action. Application fault tolerance is mostly time-bounded, needing prescribed

responses to anticipated faults. Software configuration management involves run-time analysis of

application state to determine necessary basic actions from a series of prescribed facts and newly available

application elements (new software versions, operating system conditions, etc.)
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5. The Willow architecture

5.1 Control loops

The major components and the major forms of communication in the Willow architecture are illustrated in

Figure 2. The top part of the figure shows the majority of the Willow system and the lower part shows the

distributed application that Willow is supporting. The distributed application operates on a traditional

network and has computation and communication requirements that are met by an unspecified (but

assumed large) set of nodes together with appropriate communications links. The Willow system operates

(at least in this example) on a separate network, the details of this network will depend upon the

computational and communication needs of the specific Willow system for the application.

Figure 2 The Willow architecture showing major
components and execution-time event
communications
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The fundamental structure of the Willow architecture, the set of control loops, has sensing, diagnosis,

synthesis, coordination, and actuation components and these are depicted in Figure 2. The control loops

begin with a shared sensing capability shown within the application nodes. Sensors can include reports

from applications, application heartbeat monitors, intrusion detection alarms, or any other means of

measuring actual application properties.

From sensing events, independent diagnosis and synthesis components build models of application

state and determine required application state changes. In the current Willow architecture, there are two of

these components—the Administrator’s Workbench for proactive reconfiguration and RAPTOR for

reactive reconfiguration. Additional diagnosis and synthesis components can be added easily and this is

illustrated in the figure by the “Other” analysis component.

Synthesis components issue their intended application changes as workflow requests. These are

coordinated by the workflow and the resource managers to ensure that changes occur correctly and

smoothly within the application.

When workflows are allowed to activate, workflow events are received by the Field Docks located

within the application nodes and result in local system state changes. The Field Dock infrastructure

provides a single standard interface for universal actuation at application nodes [8, 9, 10]. Actuation

completes the control loop cycle.

5.2 Proactive control

The proactive controller, the Administrative Workbench, is an interactive application allowing system

administrators to monitor system conditions remotely, adjust system properties, and most importantly,

cause the propagation and implementation of proactive reconfigurations.

The Software Depot in Figure 2 represents an external source of information that may be required by

Willow in order to complete its reconfigurations. In general, there will likely be many such depots. This

information may include models of new applications, components needed in a new configuration (but

which are not already available locally on the affected application node), and components that provide

additional actuators to, for example, access built-in reconfiguration capabilities for specific applications.
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5.3 Reactive control

The reactive controller, known as RAPTOR, is a fully automatic structure that is organized as a set of finite

state machines. The detection of the erroneous state associated with a fault (i.e., error detection) is carried

out by a state machine because an erroneous state is just an application system state of interest. As the

effects of a fault manifest themselves, the state changes. The changes become input to the state machine in

the form of events, and the state machine signals an error if it enters a state designated as erroneous. The

various states of interest are described using predicates on sets that define part of the overall state. The

general form for the specification of an erroneous state, therefore, is a collection of set definitions that

identify the application objects of concern and predicates using those sets to describe the various states for

which either action needs to be taken or which could lead to states for which action needs to be taken.

In an operating application, events occurring at the level of individual application nodes are recognized

by a finite-state machine at what amounts to the lowest level of the system. This is adequate, for example,

for a fault like a wide-area power failure. Dealing with such a fault might require no action if the number of

affected nodes is below some threshold. Above that threshold might require certain critical application

nodes to respond by limiting their activities. As node power failures are reported so a predefined set, say

nodes_without_power, is modified, and once its cardinality passes the threshold, the recognizer moves to

an error state.

The notion of a fault hierarchy requires that more complex fault circumstances be recognized. A set of

nodes losing power in the West is one fault, a set losing power in the East is a second, but both occurring in

close temporal proximity might have to be defined as a separate, third fault of much more significance

because it might indicate a coordinated terrorist attack. This idea is dealt with by a hierarchy of finite-state

machines. Compound events can be passed up (and down) the hierarchy, so that a collection of local events

can be recognized at the regional level as a regional event, regional events could be passed up further to

recognize national events, and so on. As an example, a widespread coordinated security attack might be

defined to be an attack within some short period of time on several collections of nodes, each within a

separate administrative domain. Detection of such a situation requires that individual nodes recognize the

circumstances of an attack, groups of nodes collect events from multiple low-level nodes to recognize a
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wide-area problem, and the variety of wide-area problems along with their simultaneity recognized as a

coordinated attack.

5.4 Dealing with conflicting goals

During operation of a distributed application in a Willow system, reconfiguration could be initiated to

avoid a fault (posturing), to eliminate a fault (classical reconfiguration in which some set of software

component are updated in some way to correct a problem), or to tolerate a fault (physical damage, security

attack, etc.). Thus there are multiple sources of initiation for reconfiguration and they are asynchronous.

Clearly, this means that more than one might be initiated at the same time in which case either one has to

be suspended or there has to be a determination that they do not interfere. Worse, however, is the prospect

that one or more new initiations might occur while already initiated reconfigurations are underway. Some

reconfigurations are more important than others—tolerating a security attack once detected, for example, is

more important than eliminating a minor fault in some piece of application software—and so

reconfigurations underway might have to be suspended or even reversed. Unless some sort of

comprehensive control is exercised, the system would quickly degenerate into an inconsistent state.

One approach would be to have each source make its own determination of what it should do. The

complexity of this approach makes it infeasible. An implementation would have to cope with on-the-fly

determination of state and, since initiation is asynchronous, that determination would require resource

locking and so on across the network. The approach we have taken is to route all requests for

reconfiguration through a resource manager/priority enforcer called ANDREA.

The prototype ANDREA implementation uses predefined prioritization of reconfiguration requests

and dynamic resource management to determine an appropriate execution order for reconfiguration

requests using a distributed workflow model to represent reconfiguration requests. The workflow model

formally represents the intentions of a reconfiguration request, the temporal ordering required in its

operation, and its resource usage. Combined with a specified resource model, this information is the input

to a distributed scheduling algorithm that produces and then executes a partial order for all reconfiguration

tasks in the network.
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Scheduling within ANDREA is preemptive allowing incoming tasks to usurp resources from others if

necessary so that more important activities can override less important ones. Transactional semantics allow

preempted or failed activities to support rollback or failure, depending on the capabilities of the actuators

enacting the reconfiguration. ANDREA supports an event-driven interface so that adaptive systems can be

easily interface and observe Willow’s reconfiguration protocol.

The current ANDREA system demonstrates formal specification of complex reconfiguration tasks

across multiple nodes of a distributed application system. Redundant application of complex, yet menial

management tasks is completely automated. Multiple administrators and automated controllers can engage

in proactive and reactive management of the system without resource conflicts and without the potential of

interrupting more important tasks initiated by another controller. A controller that initiates a high priority

task is guaranteed to receive resources in bounded time given that actuators for current tasks are compliant

with interruptible transaction semantics. In general, the current ANDREA system demonstrates that

asynchronous parallel control-loops can interact to enhance, rather than degrade, the survivability of an

application system.

5.5 Communication

The communication challenges presented by the Willow architecture are considerable—sensor information

has to be transmitted from nodes to the analysis components of the control loops, reconfiguration

commands have to be transmitted from the analysis components to the nodes, replacement software

components have to be transmitted from Software Depots, and so on. This would not be a significant

challenge but for the fact that one of the targets of the Willow architecture is very large networks, i.e.,

networks with many nodes.

The approach to communication that Willow takes is to reduce as much of the communication as

possible to event notification and then to use a highly efficient wide-area event notification service as the

communications substrate. The specific event notification service that Willow uses is Siena [4]. Siena uses

a broad range of techniques to maximize the efficiency of its communication service including: (1) a high-

level router structure to link its various servers; and (2) routing only a single copy of a notification a far as



13

possible, only replicating it when necessary. Siena avoids explicitely a solution based on a central database

since such an approach would not scale to the degree that Willow requires and would severely limit

applicability.

The major communication service that cannot be reduced to event notification is the transmission of

files associated with software or bulk data distribution. This is handled by using events to define and

initiated file transfers and then allowing the actual transfers from Software Depots to take place via other

network communications services.

5.6 Security

Given the pervasive notion of control in the architecture, there is the risk that an adversary might

exploit the Willow infra-structure itself to cripple the distributed application. The defensive measures in

the Willow architecture deal with two major concerns. The first is securing the mechanisms of the

architecture itself, and the second is ensuring that the information used by the system is current, accurate,

and intact. Thus we defend against two types of adversaries—those that seek to directly subvert the control

mechanisms, and those who try to do that indirectly by tampering with the data used by the control

mechanisms.

Securing the mechanisms of the architecture breaks down into the following three technical problems:

• Protecting the Willow servers that conduct the analysis.

• Protecting the sensors and actuators that reside on application nodes.

• Protecting the communication between the various Willow components.

The first of these three problems can be solved using conventional techniques such as physical

security, personnel authentication (via passwords, bio-metrics, etc), and cryptography.

The second problem is much harder to solve. Sensors and actuators operate on a large, heterogeneous

collection of nodes located in a variety of administrative domains. We must, therefore, require that trusted

components (the sensors and the actuators) operate correctly and continuously on untrustworthy hosts (the

application nodes). If the sensor code could be either tampered with or replaced, for example, an adversary

could arrange for the transmission of erroneous data for analysis and thereby force malicious control
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actions.

Protecting the trusted components is achieved using a combination of several approaches. The

possibility of an adversary understanding the software by analyzing the binary statically is reduced by code

obfuscation. Tamper resistance is further improved by using randomization in the observable behavior of

software, and by employing temporal and spatial diversity of the trusted code. By temporal diversity we

mean the intentional replacement of the software at periodic interval, with a new version that has different

observable behavior. A randomization technique [23] is used to produce the various versions of the

software such that only trusted components know the randomization that was used. By spatial diversity we

mean the use of intentionally diverse versions of the software whose functionality is nominally identical

(the sensors, for example) throughout the system. Production of the diverse versions can be achieved using

specially modified compilers that generate the necessary diversity.

The third problem in the list above (securing the communication between the various Willow compo-

nents) is solved partially by encryption but a new challenge is raised by the Willow architecture—securing

the publish/subscribe communication service that underlies the infrastructure [4]. For Willow, the wide-

area publish/subscribe service must handle information dissemination across distinct authoritative

domains, heterogeneous platforms, and a large, dynamic population of publishers and subscribers. Such an

environment raises serious security concerns. The general security needs of the client of a publish/

subscribe service include confidentiality, integrity, and availability, while the security concerns of the

publish/subscribe infrastructure itself focus primarily on system integrity and availability. A detailed

discussion of how some aspects of the problem can be solved is available in a separate publication [23].

The second broad category of security issues (security services to allow the latest, most accurate and

most trusted information to be used) is effected by a secure mediator infrastructure (SMI). There are two

design goals for the SMI. First, administrators can precisely control and coordinate where and how data are

obtained, via a centralized trust broker that gathers and disperses meta-data on the trustworthiness of data

sources. Second, the SMI allows authentic data distribution [5] without the use of on-line signing keys.

Keyless hashing primitives are used to validate the distributed data, with the data signed infrequently using

off-line keys. By avoiding on-line keys, which might be stolen by an attacker, we enhance security and
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reduce the administrative burden. Finally, data mediation allows translation of data from different sources,

and selection of data sources based on different criteria over the trust meta-data This SMI design provides

scaleability, delegation and separation of concerns, so that the Willow infrastructure can obtain the best

information from the widest possible set of sources with good security and low administrative overhead.

6. Evaluation

The Willow architecture is designed to provide a sophisticated service to critical applications operating on

large and complex networks. Evaluating the architecture is difficult because of the scales of the parameters

involved. Typically, the numbers of nodes in a network will be large, there might be several node types, the

functions provided by the application will be sophisticated and there will be many of them, the number of

users of the system will be large, and data maintained in databases will generally be extensive.

Ideally, experimental evaluation of the Willow architecture would be conducted on a full-scale

implementation that was supporting representative applications with the system characteristics just noted.

Clearly this is infeasible and another approach has to be taken. Our approach to evaluation is in two parts.

In the first part, the major elements of the architecture have been studied individually using a combination

of analysis, small-scale implementation, and simulation. In the second part, a laboratory-scale Willow

system has been developed as a case study and to evaluate feasibility. In this section, we summarize briefly

the various evaluation efforts of the major elements, and review the laboratory-scale case study.

6.1 Evaluation and status of components

The reconfiguration component of the Willow architecture is derived from the Software Dock system [10].

A prototype Software Dock was implemented as part of a previous research project and its performance

evaluated.

The proactive control component—the Administrator’s Workbench—has been developed as a layer on

top of the existing Software Dock. It connects to the internal event communication mechanism used by the

Software Dock to provide network level control of one or more Field Docks. Since its operation is directly

tied to that of the Software Dock, we expect that the Software Dock performance carries over to the

Workbench.
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The RAPTOR reactive reconfiguration mechanism has been evaluated using two models of critical

infrastructure applications. The first model was of the nation’s financial system and the second was of the

nation’s electric power grid. In both cases, models were built that implemented abstract versions of the

application, including only essential functionality, along with a complete implementation of the error

detection and error recovery mechanisms. Both models were of realistic size, each involving thousands of

application nodes. These two models were executed using a network simulation system and faults injected.

Details of the results can be found elsewhere [6] but the overall conclusion was that the RAPTOR

mechanism as modified to operate in the Willow system will provide the desired fault-tolerance capability.

The ANDREA workflow system is the only major component of the Willow architecture that cannot

be evaluated easily outside the context of a full-scale implementation. Its performance in real time is the

most important aspect of evaluation but this is difficult to measure because it depends on so many elements

of a complete implementation. Informal assessment of the performance of the current implementation has

been completed and one significant conclusion has been reached—as presently designed, the ANDREA

system is not well suited for scaling to large networks because the workflow specifications are not location

transparent. The next generation ANDREA system (currently being implemented) will allow scaling of

compact workflow specifications to networks of a much larger scale because it will allow run-time,

multicast binding of workflow commands to actuation sites rather than requiring explicit location

specification.

Many aspects of Siena, our wide-area event notification system, have been studied. A prototype

implementation has been built and used in a number of trials by ourselves and by others who have

downloaded the implementation. In addition, we have carried out extensive simulation studies to assess

how the system performs in terms of scale, throughout, etc. Detailed reports of these assessments have

been reported by Carzaniga et al [4]. We conclude from these studies that the anticipated workload

imposed upon Siena by the expected operating circumstances of a production Willow implementation are

well within its capacity provided the required time bounds on response dictated by the application are

within the scope of the system.
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6.2 Case study

A prototype Willow system has been developed that implements all the different aspects of the architecture

mentioned above except certain aspects of the security mechanism. The system includes an adminstrator’s

workbench, a RAPTOR error detection mechanism, and a communications infrastructure based on the

Siena publish/subscribe system. The application that we have chosen is a very simple prototype

implementation of the U.S. Air Force’s Joint Battlespace Infosphere (JBI) concept [22].

Instantiations of the JBI concept, once fully developed, will provide advanced information systems for

military use. At the heart of the JBI concept is the notion of publish/subscribe semantics in which different

military information sources publish their data to a network and those interested in the information

subscribe to those parts which they wish to see. The expectation is that very large amounst of military

information will be published to a JBI and large numbers of consumers (commanders at all levels) will

tailor the information they receive by subscribing appropriately. Our JBI implementation is based on Siena

and so the feasibilty study implementation uses two entirely separate publish/subscribe systems—one

provides the Willow architecture’s own essential communication and the second implements the core

functionality of our JBI.

A production JBI system will require proper initial deployment, configuration and maintenance of all

of its software elements, and will have to be updated quickly and efficiently if defects in the system are

observed. In addition, a JBI will be an attractive target to an adversary for many reasons. Such a system

might be attacked in various ways by hackers or disabled by battle damage, physical terrorism, software

faults, and so on. It is essential, therefore, that a JBI be survivable, and the Willow architecture is a

candidate implementation platform.

Our Siena-based JBI implementation includes several information-processing modules (known as

fuselets) and synthetic publishers and subscribers. All of the components of the system have been

enhanced to allow them to respond appropriately to reconfigration actions. In addition, the different

elements of the implementation have been extended deliberately with vulnerabilities so as to permit

demonstration and evaluation of the reconfiguration capabilities of Willow.

Operating on the Willow architecture, our JBI implementation has been subjected to a preliminary
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evaluation by fault injection. The initial deployment of the system to a test network is entirely automatic,

and the system has been shown to adopt new postures under operator control as desired. The system has

also been shown to reconfigure automatically when network faults were injected.

7. Related Work

All of the component technologies used in in the Willow architecture have been the subject of research

although no research has been conducted with the our goal of integrating the components to provide a

comprehensive approach to dealing with faults.

Software deployment and configuration management have been studied by numerous researchers.

Detailed information on related technologies has been presented by Hall [7]. System-level approaches to

fault tolerance are described by several authors [1, 3, 2]. While these efforts are significant in their own

right, they do not address non-local faults, and they tend not to address systems as large and complex as

critical informations systems.

Reconfiguration has also been studied by others in systems such as CONIC and Darwin [15, 16].

Purtilo and Hofmeister studied the types of reconfiguration possible within applications and the

requirements for supporting reconfiguration [11]. Details of related work on event notification services can

be found in the paper by Carzaniga et al [4].

8. Conclusion

In this paper we have summarized the major elements of the Willow architecture. The architecture is

designed to improve the survivability of critical distributed information systems by providing a range of

mechanisms to deal with faults. The unique contribution of the architecture is the combination of fault

avoidance, fault elimination and fault tolerance into one integrated system. The benefits of this approach

include assurance that: (1) certain types of fault will not be present; (2) certain types will be removed

properly once they are found; (3) certain types of faults will be tolerated during execution; and (4) all these

activities will be properly coordinated within the system.

In some cases, the way in which faults are handled might require intentional changes in the service

supplied to the system’s users but such changes are part of the notion of survivability. The damage that
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large distributed applications experience or anticipate that they might experience frequently will not permit

complete functionality to be maintained. It is essential, therefore, that when dealing with faults provision

be made for these different functionalities.

The Willow architecture cannot be evaluated as part of this research in a typical, large-scale,

production environment because such environments cannot be studied in a typical laboratory context.

Thus, development and analysis of the different components of Willow have been carried out separately

with some analysis carried out analytically, some using small-scale implementations, and some using

simulation. A laboratory-scale Willow system has been developed as a case study. All of the results todate

indicate that the Willow architecture will perform entirely satisfactorily in a production implementation.
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