
Self-Healing by Means of Automatic Workarounds

Antonio Carzaniga
University of Lugano
Faculty of Informatics

via Buffi 13
CH-6904 Lugano, Switzerland
antonio.carzaniga@unisi.ch

Alessandra Gorla
University of Lugano
Faculty of Informatics

via Buffi 13
CH-6904 Lugano, Switzerland

gorlaa@lu.unisi.ch

Mauro Pezzè
∗

University of Lugano
Faculty of Informatics

via Buffi 13
CH-6904 Lugano, Switzerland
mauro.pezze@unisi.ch

ABSTRACT
We propose to use automatic workarounds to achieve self-
healing in software systems. We observe that software sys-
tems of significant complexity, especially those made of com-
ponents, are often redundant, in the sense that the same
functionality and the same state-transition can be obtained
through multiple sequences of operations. This redundancy
is the basis to construct effective workarounds for compo-
nent failures. In particular, we assume that failures can
be detected and intercepted together with a trace of the
operations that lead to the failure. Given the failing se-
quence, the system autonomically executes one or more al-
ternative sequences that are known to have an equivalent
behavior. We argue that such workarounds can be derived
with reasonable effort from many forms of specifications,
that they can be effectively prioritized either statically or
dynamically, and that they can be deployed at run time in a
completely automated way, and therefore that they amount
to a valid self-healing mechanism. We develop this notion of
self-healing by detailing a method to represent, derive, and
deploy workarounds. We validate our method in two case
studies.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability ; D.2.5 [Software Engineering]: Test-
ing and Debugging—Error Handling and Recovery

General Terms
Reliability

Keywords
Self-healing, autonomic computing, workarounds, equivalent
behaviors, system redundancy, fault healing

∗Mauro Pezzè is also professor at the University of Milano
Bicocca, Department of Informatics, Systems and Commu-
nication, 20126 Milan, Italy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS’08, May 12–13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-037-1/08/05 ...$5.00.

1. INTRODUCTION
We use the term self-healing to refer to the ability of a

software system to autonomically detect and overcome a sig-
nificant class of failures of internal as well as external com-
ponents. For the purpose of this paper, we consider a two-
phase self-healing process whereby a failure is first detected
and then dealt with by means of an appropriate corrective
action. In particular, we focus on the second phase, and as-
sume the availability of a failure-detection mechanism that,
in addition to signaling a failure, provides some contextual
information regarding the failure.

In response to a failure, we propose to identify and exe-
cute one or more automatic workarounds. Like most fault-
tolerance techniques, what we propose to do with automatic
workarounds amounts to exploiting redundancy. However,
the kind of redundancy and the methods to exploit it dif-
fer from those of traditional fault-tolerance. We discuss this
difference in detail in Section 2. The main intuition behind
automatic workarounds is that software systems are inher-
ently redundant by virtue of common modularization princi-
ples. This means that the interfaces of software components
are often designed so as to admit specification-equivalent se-
quences of operations. That is, sequences that have the
same intended effect according to the component specifica-
tion, and therefore that are interchangeable at run-time. No-
tice that, while the sequences may be equivalent according
to the specification, they may not be equivalent in the actual
implementation. In fact, the intuition is precisely that, when
one particular sequence fails due to a fault, there might be
another specification-equivalent sequence that succeeds be-
cause it is not affected by the fault or because it avoids the
fault completely.

Thus, an automatic workaround is a non-failing alternate
sequence of operations that is equivalent (in the sense of the
specification) to a failing sequence, and that can be auto-
matically identified and selected at run-time.

As an example, consider a component of a GUI toolkit
that implements a “panel” container. Such a component
would most likely have a redundant interface that would ad-
mit multiple equivalent sequences of interface method calls.
For example, one could add a resizable GUI widget, say a
button, through a single call to a specialized add-resizable
method, or perhaps by first using a more generic add method
and then by making the object resizable through a reconfig-
ure method. Yet another option could be to add two objects
and then immediately remove one of them.

In this example, the first sequence (a single add-resizable)
may fail, and the second or third sequences could serve as au-

17



tomatic workarounds. The specialized add-resizable method
may execute an optimized but faulty insertion algorithm,
while the generic add method may be correct in that respect.
In turn, the add method may contain a faulty initialization
procedure in the case of an empty container that would re-
sult in an incorrect internal state, which could be corrected
by the execution of the remove method.

In this paper we develop the idea of automatic workarounds.
We propose a general architecture for the deployment of
automatic workarounds and examine its essential require-
ments. We then elaborate a method to represent workarounds
and to use them at run time, and we review a few methods
to derive workarounds from formal specifications. We also
discuss possible strategies to prioritize workarounds in order
to improve their effectiveness.

We illustrate our ideas through two examples in which we
apply automatic workarounds to two popular applications
to handle a total of three failures. The results of our study
are preliminary in two ways. First, we have used an ad-hoc,
manual process to derive equivalent sequences from informal
specifications of the components. Second, we did not cover
the failing executions through a complete coverage of the
component functionality. Instead, we started with a-priori
knowledge of some specific failures, and then focused only
on the specification of equivalent sequences only for those
failures. Nevertheless, the study offers an initial positive
validation of the idea of automatic workarounds, and opens
a promising line of research, which we plan to pursue in the
future.

2. CONTEXT AND PRELIMINARIES
The idea of self-healing and the concept of automatic

workaround are clearly related to the vast and mature re-
search area of fault-tolerance. Magee and Maibum [11] state
that self-healing systems are similar to fault tolerant sys-
tems, and they can be modeled using the same techniques.
Admittedly, like most fault-tolerance techniques, the idea of
self-healing through automatic workarounds amounts to ex-
ploiting a form of redundancy in a software system [2]. How-
ever, there is a fundamental difference between the kind of
redundancy used in the automatic workarounds proposed
in this paper compared to that one used in classic soft-
ware fault-tolerance. Also, research in fault-tolerant and
self-healing uses similar terms with slightly different mean-
ing. So, before moving forward with the design of automatic
workarounds, it is worth pausing to define some fundamen-
tal notions, and also to frame automatic workarounds in the
context of classic fault-tolerance techniques.

In this paper, we use the terms fault and failure with their
standard software engineering connotation [9]. So, a failure
is a behavior of a software component that deviates from
the specified, normal behavior (e.g., an infinite loop). When
a failure is caused directly or indirectly by the execution
of a certain code fragment, we say that the code fragment
contains a fault (e.g., wrong end-of-loop condition). A fault,
in turn, is caused by a programming error. Thus, the term
fault refers to the software artifact, while the term error
refers to the process of producing that artifact, and the term
failure refers to their run-time manifestations.1

1In the fault-tolerance literature, the term error refers to
the run-time state of the system that is caused by a fault
and that may lead to a failure [12].

A fault-tolerant software system is one that avoids fail-
ures despite the presence of faults. Software fault-tolerance
techniques can be broadly classified as N-version program-
ming or single-version techniques. N-version programming
exploits redundancy in the code by using multiple, indepen-
dently designed and implemented versions of a system. The
diversity in the designs and implementations should guar-
antee that fault occurrences do not correlate across the dif-
ferent versions, making it unlikely that two versions would
fail on the same input. Therefore faults can be detected and
possibly masked by executing the multiple versions of the
system on the same input, and by comparing their outputs.
The high cost of producing truly independent implementa-
tions limit the scope of applicability of N-version program-
ming.

By contrast, single-version fault-tolerance operates on a
single design and implementation, and typically exploits re-
dundancy in the time dimension. Specifically, the system
can be augmented with “wrappers” to perform additional
run-time sanity checks on the parameters and results of some
components. A similar use of wrappers has been naturally
applied in the area of self-healing systems [4, 5, 6]. Also,
the system can be treated with regular preventive actions
intended to restore the system or some of its components
to a consistent state. This technique is also called software
rejuvenation, and is implemented, for example, by so-called
microreboots [1, 13]. Single-version techniques mask only
some classes of faults.

Automatic workarounds can be seen as a hybrid of the
two techniques: they operate on a single version of a system,
so they do not incur the heavy cost of the development of
multiple versions, and yet attempt to exploit redundancy
and diversity in the code, which allows them to cover a wider
range of faults.

3. AUTOMATIC WORKAROUNDS
We focus on systems made of components, in which com-

ponents encapsulate state and access-methods, and in which
they interact through calls to the methods of their public in-
terfaces. Automatic workarounds are managed within this
component-based architecture by a layer that mediates the
interactions between components.

In addition to this very general architectural model, we
make three fundamental assumptions.

• First, we require that a failure-detection mechanism
be present and available within the system. Such a
mechanism may be implemented by the components
themselves, by component wrappers, or as a general
system-wide service. Regardless of the specific archi-
tecture of the failure detector, we assume that failures
are signaled in the form of exceptions (or an equivalent
language device).

• Second, we require that the failure detector be coupled
with a basic recovery mechanism that can bring the
component back to a consistent state right after the
occurrence of a failure.

• Third, we assume that the behavior of components is
specified formally so as to allow the synthesis of au-
tomatic workarounds. We discuss this requirement in
Section 3.1.

18



Figure 1 illustrates the position of automatic workarounds
in a component-based architecture. The figure shows a caller
(client) component, at the top of the diagram, calling a
method on a called (server) component, at the bottom of
the diagram. The self-healing layer monitors the calls and
maintains a partial history of calls. As we will see later, this
history would be typically represented by a finite model,
and is intended to abstract the state of the component. In
addition to monitoring calls, the self-healing layer intercepts
failure signals, and in response to those, selects and executes
workarounds. The occurrence of a failure and the execution
of one or more workarounds are invisible to the caller com-
ponent. However, in case all workarounds fail, the failure is
reported up to the caller component.

The selection of workarounds is guided by the combina-
tion of the call history maintained by the self-healing layer,
and the context of the failure and recovery reported by the
failure signal. In particular, the history and the recovery
information identify the failing sequence, which consists of
a sequence of calls of which some have been successful while
others (typically the suffix of the sequence) have failed or
have been rolled-back.

This execution of a workaround is illustrated in Figure 2.
The sequences of letters symbolize sequences of method calls.
The figure shows an initial sequence of calls which results in
a failure. The automatic recovery executed in response to
the failure restores the system by rolling back some calls.
The self-healing starts from that point, selects an appropri-
ate workaround that matches the intended semantics of the
failing sequence, and executes the workaround to comple-
tion.

3.1 Finding Workarounds
Automatic workarounds are sequences of operations that,

starting from the state of the component restored by the
automatic recovery, have the same effect as the failing se-
quence. More specifically, workarounds must have the same
intended effect as the failing sequence, as opposed to the
same actual effect (which would be a failure). Thus, the
equivalence relation between a failing sequence and a work-
around must be verified with respect to the component spec-
ification. To avoid ambiguity, we call these specification-
equivalent sequences.

For the purpose of this paper, we do not formalize the
derivation of specification-equivalent sequences for any par-
ticular type of specification. Rather, we observe that a num-
ber of such derivations are already known for some com-
mon specifications, and that it is also simple to generate
specification-equivalent sequences by inserting no-op opera-
tions.

Caller (client) component

Self-healing layer

Called (server) component

automatic
workaround

failure

no workaround
monitor

Figure 1: Workarounds in a component-based architecture.

failurea b c a b a b c c 
normal execution

workaround
selection

rollback

a b c a b c equivalent sequence ✔

✘

Figure 2: Execution of a workaround.

There are two types of formal specifications that natu-
rally provide a method to derive equivalent sequences. One
is algebraic specifications. This kind of specifications is par-
ticularly good to model components that implement con-
tainers as well as data structures with rich access meth-
ods such as a complex query language. Algebraic specifi-
cations can easily be used to generate equivalent sequence
through term-rewriting. For example, Henkel and Diwan
use term-rewriting to simulate algebraic specifications, ef-
fectively finding equivalent sequences [8]. Also, Doong and
Frankl propose the use of equivalent behavior derived from
algebraic specifications to implement test oracles [3]. Their
verification technique (for equivalent behaviors) can be used
to generate specification-equivalent sequences.

Another class of specifications that lend themselves nat-
urally to the generation of equivalent sequences are various
forms of state-based specifications. Examples are finite-state
machines and Statecharts [7]. As a general strategy, state-
based specifications can generate equivalent sequences when-
ever they admit different paths from the same starting state
to the same end state.

In the absence of a complete specification, it might still
be possible to generate automatic workarounds by inserting
no-op operations into the original sequence. As the name
implies, no-op operations are sequences that should have no
visible effect on the component. The following is a list of
general no-op sequences.

• Do/undo: these are a pairs of operations in which the
second operation reverses the effect of the first. For
example, push/pop in a stack (assuming enough stack
space) or creating and immediately destroying an ob-
ject (again, assuming enough resources).

• Timing and scheduling: these are operations that con-
trol the scheduling of the execution of the component,
for example by introducing a small delay or by yield-
ing control to the scheduler. Other than potentially
delaying the execution of the sequence, these opera-
tions should have no visible effect.

• Environment maintenance: these are operations on
the environment that have absolutely no direct func-
tional effect on the component. Examples are running
a garbage collector or clearing a temporary cache.

The idea here is that while a complete or usable specifica-
tion may not be available, the specification that is available
might admit one or more easily identifiable no-op sequences.
Notice that the identification of specification-equivalent se-
quences is a process that takes place off-line, typically at
design time or at the time the components are assembled.

19



3.2 Using Workarounds
Once identified, the sets of equivalent sequences must be

somehow packaged and deployed into the self-healing lay-
ers of the running system. In our current architecture (see
Figure 1) workarounds are triggered by a run-time system
that must be able to recognize and select equivalent se-
quences. The run-time system consists of a wrapper for
each component, in which the component is abstracted by
a finite-state machine model where each state enables a set
of specification-equivalent sequences, and therefore a set of
workarounds. State transitions are determined by the calls
to the methods of the component interface, and by failure
signals. More specifically by the information transmitted by
the failure detector along with a failure signal.

So far, we have modeled workarounds in the form of ex-
plicit replacement rules. The left side of the rule matches
the missing suffix of the failed sequence, and the right side of
the rule indicates a possible equivalent sequence. For each
state, the same failed sequence could select zero, one, or
more workarounds.

This method raises two issues. The first one is how to best
represent equivalent sequences within component wrappers
for the purpose of using them at run-time. We realize that
enumerating explicitly every sequence is impractical and ul-
timately not scalable. Therefore, we envision a more expres-
sive representation based on a generative model (a grammar)
that would provide a compact representation of potentially
several equivalent sequences. Although we have not studied
this problem in detail, we do not foresee any serious problem
in developing an effective grammar for workarounds.

The second question is more fundamental in nature. The
issue is that there may be several selectable workarounds
for each failure—potentially infinitely many. Therefore, the
effectiveness of the whole system depends crucially on a good
prioritization of workarounds. This is again an area we have
not studied in great detail, but we can nevertheless list a set
of heuristic methods that seem worth exploring.

• Distance: one way to choose a workaround is to prefer
sequences that are as far away as possible from the fail-
ing sequence. The intuition is that a good way to avoid
failures is to avoid executing the same faulty code.
From the perspective of the self-healing layer, the only
information available to decide what might execute dif-
ferent code segments, is the sequence of method calls
(and their parameters). So, one strategy is to choose a
workaround that has the maximum hamming-distance
from the failing sequence.

• Fault classification: a more informed way to proceed
is to rely on a classification of faults. Each sequence
could be associated with a distribution of likely classes
of faults. The priority of a workaround would then be
inversely proportional to the number (or total proba-
bility) of faults that are common between the failing
sequence and the workaround. Notice that this dis-
tance metric, like the previous one, can be computed
statically at the time that all the equivalent sequences
are identified.

• History: another simple idea is to keep track of the
history of failures and workarounds, and to give higher
priority to those workarounds that were used success-
fully more often in the past.

• Fault localization: yet another approach is to weight
method calls by the probability of being faulty, as re-
cently suggested by Lorenzoli et al. [10], and choose
workarounds that do not call likely faulty methods.

4. PRELIMINARY EXPERIENCE
We are validating our approach by identifying equivalent

sequences for representative applications, and by checking
the effectiveness of the identified sequences to avoid failures.
In this section we present preliminary experience with Tom-
cat,2 a popular open source servlet container, and Flickr3

a web application to manage and share photos on line. In
this preliminary experience, we started with known failures
and responsible faults, we isolated the specifications corre-
sponding to the faulty components, we derived equivalent
sequences, and we looked for sequences that can serve as
workaround for the faults.

In all the cases considered so far and reported in this sec-
tion, we found many equivalent sequences, some of which
provided workarounds that can effectively avoid known fail-
ures.

4.1 Tomcat
Versions 6.0.x of Tomcat fail when attempting to load web

applications that contain JSP files, and are deployed before
starting the Tomcat server.4 The failure produces the er-
ror message JspFactory.getDefaultFactory()= null, and
is caused by a missing variable initialization fault. When
pointing the browser to any of these web applications, Tom-
cat returns a “503” HTTP error (“the application is not cur-
rently available”). However, the exception does not affect
the behavior of the servlet container: Tomcat runs correctly
and succeeds in loading the other deployed applications. The
failure occurs when invoking the sequence of operations

deployApp(appWithJSP),
startTomcat()

that does not correctly load the appWithJSP application.

Figure 3 shows the Statechart specification of the Tomcat
Web application loader, which is responsible for loading web
applications. Web applications can be deployed either before
or after the Tomcat startup. Under default loading options,
applications deployed before the startup are loaded during
startup, while applications deployed after startup must be
loaded with an explicit load command. Web applications
can be stopped and restarted while Tomcat is running with-
out affecting the server behavior (no-op sequences).

As discussed on Section 3.1, sequences of operations from
the same starting state to the same end state are equivalent
from the viewpoint of their intended effect. We can easily
derive many equivalent sequences from Figure 3. Figure 4
shows some examples.

The equivalences in Figure 4 provide effective workarounds
that can avoid the null-pointer exception failure of versions
6.0.x described above. The equivalence

startTomcat()

≡
startTomcat(), loadApp()

2http://tomcat.apache.org/
3http://www.flickr.com/services/api/
4Failure reported in October 2006, see
http://issues.apache.org/bugzilla/show bug.cgi?id=40820

20



TC stopped

TC running

startTomcat()

stopTomcat()

restartTomcat()

restartTomcat()

WA deployed

WA loaded

WA stopped

WA not 
deployed

undeployApp()

undeployApp()

[TC running] loadApp()
[TC running] loadAllApps()
[TC stopped] startTomcat()

restartTomcat()

[TC running] stopApp()
[TC running] stopAllApps()
[TC running] stopTomcat()

 deployApp()

startTomcat() Start the servlet container. All deployed web applications are loaded
stopTomcat() Stop the servlet container. All running web applications are stopped
restartTomcat() The servlet container is stopped and started
deployApp(app) Deploy a web application
undeployApp(app) Undeploy a web application
loadApp(app) Load a web application
stopApp(app) Stop a web application
loadAllApps() Load all deployed web applications
stopAllApps() Stop all running web applications

Figure 3: Statechart specification of the Tomcat Web application loader.

Tomcat stopped and Web Application not deployed
startTomcat() ≡ restartTomcat()
startTomcat() ≡ startTomcat(), stopTomcat(), startTomcat()
startTomcat() ≡ startTomcat(), restartTomcat()
startTomcat() ≡ startTomcat(), restartTomcat(), stopTomcat(), startTomcat()
restartTomcat() ≡ startTomcat()
restartTomcat() ≡ startTomcat(), stopTomcat(), startTomcat()
deployApp() ≡ deployApp(), undeployApp(), deployApp()
deployApp(), startTomcat() ≡ startTomcat(), deployApp(), loadApp()
. . . . . .

Tomcat running and Web Application not deployed
restartTomcat() ≡ stopTomcat(), startTomcat()
restartTomcat() ≡ stopTomcat(), restartTomcat()
restartTomcat() ≡ restartTomcat(), stopTomcat(), startTomcat()
deployApp() ≡ deployApp(), undeployApp(), deployApp()
deployApp() ≡ deployApp(), loadApp(), stopApp()
deployApp(), loadApp() ≡ deployApp(), stopApp(), loadApp()
. . . . . .

Tomcat stopped and Web Application deployed
startTomcat() ≡ restartTomcat()
startTomcat() ≡ startTomcat(), stopTomcat(), startTomcat()
startTomcat() ≡ startTomcat(), restartTomcat()
startTomcat() ≡ startTomcat(), restartTomcat(), stopTomcat(), startTomcat()
startTomcat() ≡ startTomcat(), loadApp()
startTomcat() ≡ startTomcat(), loadAllApps()
. . . . . .

Tomcat running and Web Application deployed
restartTomcat() ≡ stopTomcat(), startTomcat()
restartTomcat() ≡ stopTomcat(), restartTomcat()
restartTomcat() ≡ restartTomcat(), stopTomcat(), startTomcat()
loadApp() ≡ stopApp(), loadApp()
stopApp() ≡ stopAllApp()
stopApp() ≡ loadAllApp(), stopAllApp()

Figure 4: Some equivalent sequences derived from the Statechart in Figure 3.

21



Photo not 
on Flickr

Photo on Flickr

Photo can 
not be 

commented Photo can be commented

Photo has 
comments

Photo has 
no 

comments

upload()

setPerms(permComm_OFF)

setPerms(permComm_ON)

addComment()

setPerms(permComm_ON)

setPerms(permComm_OFF)

[comm=1]
deleteComment()

addComment()
[comm>1]

deleteComment()

delete()

(a) Comment Manager

Photo not 
on Flickr

Photo on Flickr

private
family

public

upload()upload(isPublic_OFF)
upload(isFamily_ON)

setPerms(isPublic_ON)setPerms(isPublic_OFF)
setPerms(isFamily_OFF)

setPerms(isFamily_ON)

(b) Permission Manager

upload() Upload a photo to Flickr. Several optional parameters can be passed to this method. Among others,
is_Public (ON to make it public, OFF for private), and is_Family (ON to make it visible to family)

delete() Delete a photo from Flickr
setPerms() Set permissions for a photo. Several permissions can be set. Among others, isPublic, isFamily and

permComm (ON to allow comments on a photo)
addComment() Add comment to a photo
deleteComment() Delete comment from a photo

Figure 5: Settings in Flickr.

Photo not on Flickr
upload(isPublic OFF) ≡ upload(), setPerms(isPublic OFF)
upload(isFamily ON) ≡ upload(), setPerms(isFamily ON)
upload() ≡ upload(isPublic OFF), setPerms(isPublic ON)
upload() ≡ upload(), setPerms(isPublic ON)
upload() ≡ upload(), setPerms(permComm ON)
upload() ≡ upload(), setPerms(permComm OFF), setPerms(permComm ON)
. . . . . .

Photo on Flickr
setPerms(isPublic OFF) ≡ setPerms(isFamily OFF)
setPerms(isFamily ON) ≡ setPerms(isPublic OFF), setPerms(isFamily ON)
setPerms(isFamily ON) ≡ setPerms(isPublic ON), setPerms(isPublic OFF), setPerms(isFamily ON)
setPerms(isPublic ON) ≡ setPerms(isPublic OFF), setPerms(isPublic ON)
setPerms(permComm ON) ≡ setPerms(permComm OFF), setPerms(permComm ON)
setPerms(permComm OFF) ≡ setPerms(permComm ON), setPerms(permComm OFF)
. . . . . .

Photo can not be commented
setPerms(permComm ON) ≡ setPerms(permComm OFF), setPerms(permComm ON)

Photo can be commented
setPerms(permComm OFF) ≡ setPerms(permComm ON), setPerms(permComm OFF)
addComment() ≡ setPerms(permComm OFF), setPerms(permComm ON), addComment()
addComment() ≡ setPerms(permComm ON), addComment()
addComment() ≡ addComment(), deleteComment(), addComment()
. . . . . .

Figure 6: Some equivalent sequences derived from the Statecharts in Figures 5a and 5b.

22



in state “Tomcat stopped and Web Application deployed”
suggests a first alternative to the faulty sequence: The se-
quence

deployApp(appWithJSP),
startTomcat(),
loadApp(appWithJSP)

obtained by substituting startTomcat() with the equiva-
lent sequence startTomcat(), loadApp() provides a valid
workaround that avoids the failure.

The equivalence

deployApp(), startTomcat()
≡

startTomcat(), deployApp(), loadApp()

in state“Tomcat stopped and Web Application not deployed”
produces the sequence

startTomcat(),
deployApp(appWithJSP),
loadApp(appWithJSP)

which is another valid workaround that avoids the failure.
This test indicates that we can easily identify many equiv-

alent sequences from state-based specifications (Statecharts
in this case), and that equivalent sequences can help avoid
some failures.

4.2 Flickr
Flickr is a popular web application to share photos. Within

Flickr, photos can be public, if visible to all users, private,
if visible only to the user who uploaded them, or family, if
visible to the family group of the user who uploaded them.
Photos can be associated with descriptions, comments and
tags to simplify indexing and searching. Photos can be or-
ganized in sets, which can be associated with descriptions
and comments.

The Flickr forum reports some failures in early versions
of the software distributions. Here, we consider two two of
them. The first failure was reported in December 2005, and
occurred while uploading photos.5 The sequence of opera-
tions

upload(photo),
addComment(photo_id,comment)

would correctly upload photo as public, but with no com-
ment box that generic users could use to add comments,
differently from what expected for public photos. The fail-
ure was probably caused by the incorrect management of
comments permission in the default setting.6

The second failure was reported in March 2007, and oc-
curred when trying to change the status of photos uploaded
as private to family.7 The sequence of operations

upload(photo,isPublic_OFF),
setPerms(photo_id, isFamily_ON)

would correctly upload photo as private, but would not mod-
ify the status to family.

5http://www.flickr.com/help/forum/15259
6Since Flickr does not have a public fault report system,
it is difficult to obtain detailed information about faults.
Developers usually report only fault presence and fixing, but
do not provide further information.
7http://www.flickr.com/help/forum/36212/ and
http://www.flickr.com/help/forum/46985/

Figures 5a and 5b show the Statechart specifications of
the Flickr modules responsible for the faults: comment and
permission managers, respectively. Figure 6 shows a subset
of equivalences for the comment and the permission man-
agers. The equivalence

addComment()

≡
setPerms(permComm_OFF), setPerms(permComm_ON),
addComment()

in state “Photo can be commented” provides an effective
workaround for the first failure, by replacing the sequence

upload(photo),
addComment(photo_id, comment)

with

upload(photo),
setPerms(photo_id, perm_commentOFF),
setPerms(photo_id, perm_commentON),
addComment(photo_id, comment)

The equivalence

setPerms(isFamily_ON)

≡
setPerms(isPublic_ON), setPerms(isPublic_OFF),
setPerms(isFamily_ON)

in state “Photo on Flickr” provides an effective workaround
for the second failure by substituting the failing sequence

upload(photo,isPublic_OFF),
setPerms(photo_id, isFamily_ON)

with

upload(photo,isPublic_OFF),
setPerms(photo_id, isPublic_ON),
setPerms(photo_id, isPublic_OFF),
setPerms(photo_id, isFamily_ON)

These test cases confirm the possibility of deriving many
equivalent sequences from Statechart specifications, and their
effectiveness in providing workarounds that avoid known
failures.

5. CONCLUSIONS
In this paper we introduced the idea of automatic work-

arounds as a form of self-healing for component-based sys-
tems. The main intuition behind automatic workarounds
is to exploit code redundancy present in component-based
systems, where components export many inter-related func-
tions as well as many specializations and variants of the
same function. These versatile component interfaces admit
several functionally equivalent sequences of method invoca-
tions, which in turn are the basis of automatic workarounds,
since a failing sequence could be replaced by an equivalent
non-failing one.

Following this original intuition, we developed the idea of
automatic workarounds by formulating their general archi-
tecture and requirements, and by applying them in a few
examples. These examples gave us an initial evidence that
automatic workarounds exist and can be effective for some
real systems. However, more work needs to be done to vali-
date the idea completely and to refine its implementation.

There are two main directions in which we intend to con-
tinue our research. First, we will conduct more extensive
case-studies to prove that workarounds are feasible and ef-
fective for a significant class of systems and failures. This

23



amounts to studying common failures in component-based
systems to evaluate the applicability of automatic work-
arounds, and can be done by examining some of the many
databases of failure reports that are fortunately available in
the open-source community. This study starts from the fail-
ures and then attempts to derive and model effective work-
arounds. So, while it can be good to prove the existence of
effective workarounds, it would not necessarily prove that
such workarounds can be found without prior knowledge of
any failure. To prove that, we must show that (1) work-
arounds can be indeed derived with a reasonable effort and
with as much automation as possible from some form of spec-
ifications, and that (2) such workarounds can be deployed at
run-time, and that (3) failures are indeed avoided by a sys-
tematic use of automatic workarounds. We plan to research
these questions by developing a complete method and per-
haps a tool to support it, and by applying the method to
systems of a significant complexity.

6. ACKNOWLEDGMENTS
This work has been partially funded by the Swiss National

Fund with the project PerSeoS.

7. REFERENCES
[1] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and

A. Fox. Microreboot - a technique for cheap recovery.
In OSDI’04: Proceedings of the 6th Symposium on
Operating Systems Design & Implementation,
Berkeley, CA, USA, 2004. USENIX Association.

[2] R. de Lemos, C. Gacek, and A. Romanovsky.
Architectural mismatch tolerance. In Architecting
Dependable Systems, volume 2677 of Lecture Notes in
Computer Science, pages 175–194. Springer, 2003.

[3] R.-K. Doong and P. G. Frankl. The ASTOOT
approach to testing object-oriented programs. ACM
Transactions on Software Engineering and
Methodology, 3(2):101–130, 1994.

[4] M. M. Fuad, D. Deb, and M. J. Oudshoorn. Adding
self-healing capabilities into legacy object oriented
application. In ICAS ‘06: Proceedings of the
International Conference on Autonomic and
Autonomous Systems, Washington, DC, USA, 2006.
IEEE Computer Society.

[5] M. M. Fuad and M. J. Oudshoorn. Transformation of
existing programs into autonomic and self-healing
entities. In ECBS ‘07: Proceedings of the 14th Annual
IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, pages
133–144, Washington, DC, USA, 2007. IEEE
Computer Society.

[6] R. Griffith and G. Kaiser. Manipulating managed
execution runtimes to support self-healing systems. In
DEAS ’05: Proceedings of the 2005 workshop on
Design and evolution of autonomic application
software, pages 1–7, New York, NY, USA, 2005. ACM
Press.

[7] D. Harel and E. Gery. Executable object modeling
with statecharts. In ICSE ’96: Proceedings of the 18th
international conference on Software engineering,
pages 246–257, Washington, DC, USA, 1996. IEEE
Computer Society.

[8] J. Henkel and A. Diwan. A tool for writing and
debugging algebraic specifications. In ICSE ’04:
Proceedings of the 26th International Conference on
Software Engineering, pages 449–458, Edinburgh,
Scotland, May 2004.

[9] IEEE Computer Society. IEEE Std. 610.12-1990 IEEE
Standard Glossary of Software Engineering
Terminology, sep 1990.

[10] D. Lorenzoli, L. Mariani, and M. Pezzè. Towards
self-protecting enterprise applications. In ISSRE ’07:
Proceedings of the 18th IEEE International Symposium
on Software Reliability Engineering, pages 39–48, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[11] J. Magee and T. Maibaum. Towards specification,
modelling and analysis of fault tolerance in self
managed systems. In SEAMS ‘06: Proceedings of the
2006 International Workshop on Self-adaptation and
Self-managing Systems, pages 30–36, New York, NY,
USA, 2006. ACM Press.

[12] L. L. Pullum. Software Fault Tolerance Techniques
and Implementation. Artech House, Inc., Norwood,
MA, USA, 2001.

[13] R. Zhang. Modeling autonomic recovery in web
services with multi-tier reboots. In ICWS’07:
Proceedings of the IEEE International Conference on
Web Services, 2007.

24


