Automatic Recovery from Runtime Failures

Antonio Carzaniga* Alessandra Gorla'
*University of Lugano
Faculty of Informatics

Lugano, Switzerland

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).! The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

Uhttps://bugzilla.mozilla.org/show_bug.cgi?id=3655

978-1-4673-3076-3/13 © 2013 IEEE

Andrea Mattavelli*

782

*

Nicolo Perino* Mauro Pezze
fSaarland University

Computer Science
Saarbriicken, Germany

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

In this paper we present a technique to apply automatic
workarounds to general-purpose, possibly long-running appli-
cations. The technique is implemented for Java applications
but makes little or no assumptions about the nature of the
application. We make the very reasonable assumption that
the application uses components taken from libraries, and for
simplicity in the following discussion we consider one such
library per application. The only two significant assumptions
we make are that the library comes with a specification of
the equivalence between the operations it supports, and that
failures are somehow detected and reported.

The equivalence specifications may be written by the pro-
grammer of the library or by a knowledgeable user of the
library. In any case, they need to be written only once for
each library. (In Section III we briefly discuss the possibility
of deriving these specifications automatically.) As in our prior
work, we express those specifications with code-rewriting rules
that are supposed to produce semantically equivalent code.

As for failure detection, our technique is almost completely
independent of the particular detection and reporting mecha-
nism. In practice we use exceptions as a reporting mechanism,
and we experimented with implicit failure detectors such
as run-time exceptions, as well as with more sophisticated
detectors based on derived application-specific invariants.

At a high-level, the technique works as follows: when a
failure is detected, the state of the application is restored to
a previous checkpoint, then the code of the application is
dynamically changed to replace a chosen code fragment that
contains a call to the library with a potential workaround, and
then the execution is restarted from the checkpoint with that
new code.

A bit more in detail, the technique consists of an off-line
preprocessing that also instruments the application with the
necessary machinery to apply workarounds at runtime. The
preprocessor identifies (through static analysis) those sections
of the application code in which the application calls the
library in ways that could potentially be rewritten and in
which failures may be detected. We refer to those sections of
application code as roll-back areas (RBAs). The preprocessor
then produces alternative versions of each RBA using all the
applicable rewriting rules. These versions are then compiled
and stored for possible use at runtime. The preprocessor also
instruments the application code by wrapping each RBA in
a loop. The loop starts with a checkpoint of the state of the
application, then proceeds with the execution of the RBA code,
and then iterates in case of failures. The iteration restores the
state to the initial checkpoint, replaces the code of the RBA
with one of the alternative versions, and resumes the execution
with the new version.

We demonstrate and evaluate our technique by applying it
to two popular libraries and four applications that use those
libraries. The first library is Guava, Google’s “core” library for
collections, caching, string processing, and more; the second
library is JodaTime, a utility to process and convert dates and
time across multiple and diverse calendar systems. The appli-
cations are an e-book converter called Fb2pdf, a framework

for Java microbenchmarks called Caliper, a search results
clustering engine called Carrot2, and a JavaScript source-to-
source compiler called Closure. We evaluate the effectiveness
of our technique by measuring its ability to handle real as
well as injected faults and also by measuring its runtime
overhead. In summary, our experiments demonstrate that the
technique is effective while incurring an acceptable overhead.
In particular, the technique maintains the applications fully
functional with between 19% (Fb2pdf) and 48% (Carrot2) of
the failure-inducing faults with a run-time overhead of between
2% (Caliper) and 194% (Closure).

II. A MOTIVATING EXAMPLE

JodaTime is an open-source Java library of utilities to
deal with dates and time. It provides full support for several
calendars, it allows to easily represent dates and intervals, and
to easily parse and format dates.

In May 2011 a developer reported issue n. 3304757 with
the JodaTime library.2 As it turns out, that issue was fixed
within a short period of time, but the issue is still interesting
because of the nature of the fault and the resulting failure.

Issue n. 3304757 reported a failure resulting in an exception
when trying to get the instant corresponding to the beginning
of the day on certain dates in countries that observe daylight
saving time (DST). This failure could not be easily obtained
in testing since it is triggered only under particular conditions,
namely in regions where the DST leap occurs over midnight
(e.g., America/Sao_Paulo every year, some years in US regions
and some Latin America regions).

DateTimeZone tz = DateTimeZone.forID("America/Sao_Paulo”);
DateTimeZone.setDefault(tz);

// Gets a new instance of datetime with

// the current date and time

DateTime dt = new DateTime();

// Method call causing an exception in specific

// days and time zones.

DateTime startDay = dt.millisOfDay (). withMinimumValue();

Listing 1. Code failing on 2011-10-16 due to issue n. 3304757

e e R S S e

Due to this issue, the code in Listing 1 would fail with an
exception on the day when daylight saving starts (for instance,
2011-10-16). The reason of the failure is that the invocation of
dt.millisOfDay().withMinimumValue(), which is a way to get the
representation of the beginning of the day, would return 2011-
10-16 00:00:00.000 on 2011-10-16, but that instant does not
exist on 2011-10-16 because that day begins at 01:00:00.000
due to the DST leap.

Thus issue n. 3304757 would cause any Java application
using JodaTime in similar ways to fail, unless the developer
had also put in place a proper and specific exception-handling
procedure. However, that is unlikely because the failure sce-
nario is somewhat obscure and hard to anticipate and test for.
One might argue that cases like this one are rare, but while

Zhttp://sourceforge.net/tracker/?func=detail &aid=3304757 &group_id=
97367&atid=617889

783

this specific case is in and of itself rare, it is also indicative of
many similar “special” cases or features whose implications
are not fully understood and therefore not properly handled.

// failing operation

DateTime beginDay = dt.millisOfDay().withMinimumValue();
// workaround 1

DateTime beginDay = dt.toDateMidnight().toDateTime();

// workaround 2

DateTime beginDay = dt.withTimeAtStartOfDay();

Listing 2. Workarounds for issue n. 3304757 of JodaTime

QNN BN~

Fortunately however, JodaTime offers several different ways
to get the instant representing the beginning of the day. As
shown in Listing 2, there are at least two alternative ways to
obtain the same expected result that do not suffer from that
failure. Such alternative operations could be easily documented
and therefore be used as automatic workarounds at runtime.

ITII. INTRINSIC REDUNDANCY IN REUSABLE COMPONENTS

The foundational idea of our technique is that failures
might be avoided with workarounds consisting of operations or
sequences of operations that are equivalent to the failing ones
but that do not suffer from the same failures. More specifically,
a workaround consists of operations whose effect is equivalent
to the intended effect of the original failing sequence, but
whose implementation does not fail and therefore must be
to some extent different. In other words, workarounds require
redundancy: different code to do the same thing. Moreover,
contrary to classic N-version programming, we expect this
redundancy to be available at no cost, since we argue that
this redundancy is an intrinsic property of modular software.

It is therefore natural or even necessary to ask whether
modern software is indeed intrinsically redundant, and if so
to what extent. And if the extent is significant, it would also
be interesting to find out why. In this section we provide
some qualitative arguments, with references to other studies
(including our own), that, together with the direct evidence
assembled during the experimentation we carried out for this
work, lead us to believe that intrinsic redundancy exists and is
significant enough to be exploited. A more thorough study of
the prevalence and nature of intrinsic redundancy is the subject
of another research we are currently pursuing.

Redundancy in software has been already studied, especially
to identify and remove code clones. These are code fragments
that are syntactically similar or even identical to other frag-
ments in the same application. Code clones are considered
harmful for maintenance [14], [15] and are not exactly the
kind of redundancy we expect to find. However, more recent
studies in this and related areas also reveal more or less
directly that semantic equivalence is also present and natural
in software. Hindle et al. show that even with today’s rich
programming languages, developers tend to write simple and
repetitive code [16]. More importantly, Jiang and Su found
that several code fragments are semantically equivalent even
though they are syntactically different [17].

There are also plausible qualitative explanations for the
intrinsic redundancy of software, especially in the case of
libraries of reusable components. One is that a library might
maintain various versions of the same components for back-
ward compatibility. For example, the Java-6 standard library
contains 45 classes and 365 methods that are deprecated and
that duplicate exactly or almost exactly the same functionality
of newer classes and methods. Another one is that modern
libraries are designed to offer many flavors of the same or
very similar functionalities. For example, the popular library
JQuery for Web applications offers many methods to display
elements in a Web page: fadeln(), show(), fadeTo(), animate(),
etc. These differ in some details, but are essentially equivalent
in terms of the end result. Another example is when the
same functionality is duplicated in different libraries. For
example, the logging functionality of the Apache library log4J
implements the same logging functions of the standard Java
library (java.util.Logging), and several other similar examples
of replicated functionality are found in the Apache Ant project.
Yet another reason to have different variants of the same func-
tionality is to address different non-functional requirements
or different use cases. For example, the GNU Standard C++
Library implements its basic (stable) sorting function using
the insertion-sort algorithm for small sequences, and merge-
sort for the general case. Similarly, other functions may be
implemented in two or more variants, each one optimized for
a specific case (for instance, memory vs. time).

In our own prior work we also found that redundancy exists
and is usable in some very popular libraries for Web applica-
tions [13]. With this paper we add more evidence of that kind
for other types of libraries and applications. As shown in the
example of Section II, the JodaTime library offers a number
of redundant methods to obtain the time of the beginning of a
day. However, that is by no means the only case of a redundant
functionality in JodaTime. For instance, the DateTimeFormat-
ter class provides several methods to parse dates and time
(parseDateTime, parseLocalDateTime, parseLocalTime, and
parseLocalDate). Most of these operations are equivalent only
under special conditions (for instance, parseLocalDateTime
and parseLocalDate can be used interchangeably only if the
time is not specified) but it is still usually possible to find at
least an alternative method to execute in many conditions.

Beyond these exemplary cases, we methodically studied
and documented the redundancy of the JodaTime and Guava
libraries, which we use as the basis for the experimental
evaluation presented in Section V, as well as the widely used
SWT graphical user interface library. We identified equiva-
lences between sequences of library calls by first reading the
documentation and later by testing each equivalence experi-
mentally. We did not examine the code of the libraries, but
instead we manually validated each rule by considering its
observable effects.

Notice that this manual derivation and validation can be
aided by some form of automation, for example by selecting
equivalent operations based on their behavior under the avail-
able tests. However, a full automation would be counter to the

784

TABLE I
EQUIVALENT SEQUENCES FOUND IN REPRESENTATIVE JAVA LIBRARIES
Library Guava | SWT | JodaTime
Classes considered 116 252 12
Total equivalences found 1715 1494 135
Average per class 14.78 5.93 11.25

notion of workarounds that we seek to support. Recall in fact
that we are interested in finding operations that are equivalent
in their intended behavior, but not exactly equivalent in their
actual observable behavior.

Table I shows the results of our analysis. We report the
number of classes analyzed for each library (all SWT classes,
a selected set for Guava and JodaTime) and the number of
equivalent sequences that we found at the method level, in
total and on average per class.

Notice that having many equivalences does not necessarily
imply that a system is highly redundant. In fact, several
equivalences may correspond to a shallow redundancy that
exists only at the interface level, with different calls executing
the same code after an initial veneer of interface code. Still,
our experience with Web applications [13] and even more so
the experiments presented in this paper in Section V show
that a significant number of equivalent sequences do indeed
correspond to redundant behaviors that can be harnessed and
used productively to avoid failures.

IV. IMPLEMENTATION

We now present the architecture of ARMOR, a system that
implements our automatic-workaround technique.’ ARMOR
works in the following general scenario: a Java application
fails because of faults in one of the libraries it uses. Such faults
may trigger a failure in the library code or in the application
code. ARMOR, which is embedded within the application and
is notified of the failure, reacts to the failure by first restoring
the state of the application to a previously set checkpoint,
and then by selecting and executing an equivalent sequence of
operations that might avoid the failure. If multiple equivalent
sequences are available, ARMOR selects the one that was most
successful for past failures. ARMOR iterates this process until
it obtains a valid workaround (i.e., a failure-free execution) or
until there are no more equivalent sequences left to try. In
the first case the execution of the application proceeds as if
no failure occurred. In the second case ARMOR forwards the
failure (an exception) to the application code as if ARMOR
did not exist.

ARMOR works in two phases and with two main com-
ponents. In a first off-line phase, a preprocessor component
analyzes the application to identify where workarounds might
be applied, pre-compiles all alternative sequences, and instru-
ments the application with the necessary code to select those
alternative sequences at runtime in response to a failure. At
runtime, ARMOR records the state of the application at chosen
checkpoints set before potential workarounds, and then reacts

3http://star.inf.usi.ch/armor/

to failures by selecting and activating workarounds. We now
detail all these preprocessing and runtime activities.

A. Preprocessing

The preprocessor starts with the source code of the applica-
tion, the binary distribution of the libraries, and the specifica-
tion of the rewriting rules for each library. The preprocessor
(1) identifies the units of code to which workarounds might be
applied, which we call roll-back areas (RBAs), (2) instruments
them with the necessary code to set checkpoints and to react
to failures, and (3) compiles and stores the RBA variants to
be used as potential workarounds at runtime.

1) Identifying Roll-Back Areas: A roll-back area (RBA) is
the primary structural element of the application upon which
ARMOR operates. We define a roll-back area as a segment
of the application code within which (1) the application calls
one or more operations of any one of the libraries, and (2) a
failure can be detected and reported. Ideally, a roll-back area
should also be minimal in the sense that it should be confined
to operations that might fail and that could be replaced with a
workaround. This is because the execution of any other code,
before or after the library calls, might invalidate the checkpoint
(for instance, with I/O operations, see Section IV-B1) and in
any case would increase its runtime overhead.

In principle, a roll-back area may extend over sections of
the application code at any level of granularity, from a single
statement to a basic block to an entire method, and conceivably
also across methods. However, our current implementation of
ARMOR supports two types of extents for roll-back areas:
a whole method body and a single initialization expression
for a field (static or not). The extent of a roll-back area
is constrained by the mechanism that ARMOR implements
to dynamically replace the code of the RBA with one of
its variants. This mechanism that we describe in detail in
Section IV-B2 is capable of replacing only entire methods and
thus requires every RBA to be encapsulated as a method. Thus
the ARMOR preprocessor identifies RBAs consisting of a
method body, which do not need additional encapsulation, and
field initialization expressions, which need to be encapsulated
through an ad-hoc additional method.

It is also conceivable to encapsulate RBAs consisting of
blocks of instructions. However, the encapsulation of such
RBAs poses a number of technical problems that we ultimately
decided to avoid. Among these problems, the most significant
one is the handling of local variables along with the application
state that those variables might refer to.

Listing 3 shows a simple application intended to illustrate
the preprocessing performed by ARMOR. This application
uses the JodaTime library to get the instant corresponding to
midnight of the current date, and would fail on specific dates
and time zones because of the issue described in Section II. In
this example, in the first step of preprocessing, ARMOR would
identify three roll-back areas. These are the initialization of
field tz on line 2, the initDayAndZone method on line 5, and
the setMidnight method on line 12, since they all contain at
least one invocation to the JodaTime library.

785

—_

class CurrentMidnight {
DateTimeZone tz = DateTimeZone.forID("America/Sao_Paulo”);
DateTime midnight;

W N

public void initDayAndZone(){
DateTimeZone.setDefault(tz);
DateTime dt = new DateTime();

setMidnight(dt);

12| private void setMidnight(DateTime dt){
13 midnight = dt.millisOfDay (). withMinimumValue();

16| public DateTime getMidnight(){
17 return midnight;

18] }

19] }

21| class Main {
22| public static void main(String args|]){

24 éﬁrrentMidnight cm = new CurrentMidnight();
25 cm.initDayAndZone();

27| em.getMidnight();

29| }
30| }

Listing 3. Example application code

Notice that ARMOR supports nested RBAs, that is, RBAs
that invoke other RBAs. Method initDayAndZone is an example
of a nested RBA, since it uses JodaTime directly, and invokes
setMidnight, which is itself an RBA.

2) RBA Encapsulation and Proxy Methods: Once the RBAs
have been identified, the preprocessor encapsulates and instru-
ments them to allow them to be dynamically replaced with
alternative variants at runtime. The encapsulation applies only
to RBAs consisting of initialization expressions, which must
be rewritten as methods. Once each RBA is encapsulated as
a method, the preprocessor creates a proxy method for each
RBA method. The role of the proxy is to set the checkpoint and
then call the original RBA method and to respond to potential
failures.

Listing 4 shows the encapsulation of initialization expres-
sions (method tz_init_original on line 3) and the proxy methods
created for two of the three RBAs identified in the example
of Listing 3. For the sale of readability, we omit some details
and show a simpler code than what is produced by ARMOR.

Let us consider the RBA that consists of the original
method setMidnight. ARMOR renames this method to set-
Midnight_original and then creates a proxy method called
setMidnight with the same signature as the original method. In
particular, the proxy method must also declare and handle the
same exceptions declared and handled by the original method.
In this respect, ARMOR distinguishes between checked and
unchecked exceptions. (In Java, exceptions can be either
checked or unchecked.) Checked exceptions are invalid or sim-
ply special conditions that are explicitly declared as potential

1| class CurrentMidnight {

2| DateTimeZone tz = tz_init();

3| public DateTimeZone tz_init_original() {

4 return DateTimeZone.forID("America/Sao_Paulo”);
5|}

6| public DateTimeZone tz_init() {

7 try {

8 create_checkpoint();

9 return tz_init_original ();

10 } catch (Exception ex) {

11 while (more_rba_variants_available) {
12 try {

13 restore_checkpoint();

14 load_new_rba_variant();

15 return tz_init_original ();

16 } catch (Exception ex1) {

17 // record variant failure and adjust priorities
18

19 1
20 }
21 throw ex;
22 } finally {
23 discard_checkpoint();
24 }
25
26| DateTime midnight;
27
28| // initDayAndZone proxy method not shown
29

30| public void setMidnight_original(DateTime dt) {
31 midnight = dt.millisOfDay (). withMinimumValue();

}
33| public void setMidnight(DateTime dt) {

34 try {

35 create_checkpoint();

36 setMidnight_original (dt);

37 } catch (Exception ex) {

38 boolean success = false;

39 while (!success && more_rba_variants_available) {
40 try {

41 restore_checkpoint();

42 load_new_rba_variant();
43 setMidnight_original (dt);
44 success = true;

45 } catch (Exception ex1) {
46 // record variant failure and adjust priorities
47

43 }

49

50 if (!success) throw ex;

51 } finally {

52 discard_checkpoint();

53 1

541}

55 .

56| }

Listing 4. Result of preprocessing (simplified)

outcomes of the calls to library functions. These are exceptions
that the application code must deal with explicitly, either by
handling them or by passing them up the stack. By contrast,
unchecked (or runtime) exceptions are unexpected conditions
that may or may not be handled explicitly by the application.

ARMOR ignores checked exceptions, since it is the re-
sponsibility of the programmer to handle those, and in many
cases those may well represent a normal path of execution
for the application. Therefore, masking those exceptions may
interfere with the correct behavior of the application. On the

786

other hand, unchecked exceptions typically represent failures,
and therefore ARMOR catches them and responds to them.
In practice, the proxy method catches all exceptions with a
generic catch statement, but must also explicitly catch all the
specific exceptions thrown by the original method only to
immediately re-throw them to the application.

In addition to handling the exceptions thrown by the original
RBA method, the proxy handles the state of the application
(and the library) in the execution of the original RBA and
of potential workarounds. In particular, the proxy sets a
checkpoint for the state of the application immediately before
the execution of the RBA (line 35). Then, in case of failure,
the proxy restores the state to that checkpoint (line 41) before
trying an alternative variant. Before terminating, the proxy
discards the checkpoint.

3) RBA Variants: For each identified roll-back area, the
ARMOR preprocessor produces a series of alternative variants
of the application code by applying the rewriting rules of each
library used within that roll-back area. These are variants of the
original application methods as well as of the ad-hoc methods
produced by ARMOR to encapsulate initialization expressions.
In practice, referring to the example of Listing 4, these are all
the methods with the _original name suffix. The preprocessor
produces one variant for each application of a single rewriting
rule. The preprocessor then pre-compiles all the RBA variants
and stores the bytecode in a database for potential retrieval
and use at runtime.

B. Runtime Operations

After the preprocessing phase, the application can be
compiled and deployed. ARMOR does not run any special
component alongside the application, so the execution of the
instrumented application differs from the original one only in
the execution of the proxy methods. ARMOR assumes the
existence of a failure detector, which may be implemented as
a separate autonomous component. However, for the purpose
of this paper we assume a typical lightweight failure detection
based on assertions or at a minimum on runtime exceptions.

In practice, the most significant difference in the execution
of the instrumented application is the checkpointing of the
application state performed within the proxy methods. In the
case of successful execution, this is also the only difference.

1) Checkpointing and Restoring Application State: AR-
MOR implements an ad-hoc mechanism to checkpoint and
restore the state of the application during execution. The
high-level semantics of this mechanism is that of a classic
checkpointing mechanism: a checkpoint can be set during the
execution of the application, then later the checkpoint may be
restored, in which case the state of the application is brought
back to what it was at the time the checkpoint was set. The
same checkpoint may be restored multiple times.

Since RBAs may be nested and several workarounds might
be tried at different levels of the execution of the application,
ARMOR maintains a thread-local stack of active checkpoints.
Every time a proxy method sets a checkpoint, for instance

line 35 in Listing 4, ARMOR pushes a new checkpoint handle
on the stack.

ARMOR implements two interchangeable types of check-
points, one based on a snapshot taken before the execution of
the RBA code, and one based on a lazy change-log recorded
during the execution of the RBA code.

The first mechanism takes a snapshot of the portion of the
application state that might be modified by the execution of
a roll-back area at the time the checkpoint is set. In its basic
form, the snapshot consists of the transitive closure of all the
objects reachable from the object on which the RBA method is
called (i.e., this object) plus the parameters to the RBA method
and all the static fields that are accessible by the RBA method.
The second mechanism uses a change-log whereby the first
time a field is written (static or not, primitive values as well
as references) the previous value of that field is recorded in
the change-log, so that it can be restored later.

The two mechanisms have complementary advantages and
disadvantages. The snapshot saves every value that is part of
the application state and that is accessible by the RBA at
the checkpoint, regardless of whether it is actually modified
by the execution of the RBA. The change-log saves every
value that is actually modified, regardless of whether that
value is part of the application state at the checkpoint. So,
the snapshot incurs a potentially high cost at the time the
checkpoint is set, but then incurs no cost during the execution
of the RBA. Conversely, the change-log incurs no initial cost
when the checkpoint is set but may incur a high cost during
the execution of the RBA. Both mechanism may be improved
through static analysis, although in our current implementation
of ARMOR we only applied such analysis to the snapshot
method, in order to exclude from the transitive closure those
objects that are for sure never modified in the execution of
the RBA. In Section V we analyze the performance of both
mechanism in all our experiments.

2) Replacing Code: When a failure occurs within an RBA,
the proxy method replaces the code of the RBA with a
variant of that RBA. ARMOR implements this dynamic code
replacement by substituting the code of the whole class that
contains the RBA, since this is the only way that code can
be dynamically redefined in Java. This is done using the
redefineClasses method of the java.lang.instrument package.

ARMOR selects one of the pre-compiled classes produced
by the preprocessor for that RBA. Each pre-compiled class
is derived from the original instrumented class (with proxy
and original methods) with only the original method changed.
The effect of reloading such a class is to change the original
method of the present RBA, and in particular all future calls to
that method. This redefinition does not affect the execution of
methods of the class that are active (on the current stack). In
particular, it does not affect the execution of the proxy method,
which is in fact the one that initiates the class redefinition.
In practice, referring to the example of Listing 4, after the
replacement of the RBA code (line 42), the call to the RBA
method (line 43) will execute the new RBA variant, different
from that executed previously (line 36 or line 43).

787

V. EXPERIMENTAL EVALUATION

We now present the results of the experimental evaluation of
the ARMOR system and the technique it embodies. The objec-
tive of this evaluation is to determine whether the technique
is effective in making applications more resilient to faults,
and efficient enough to be practically usable. In answering the
first question, we also indirectly provide evidence that modular
software is to some significant extent intrinsically redundant.

We conducted this evaluation with four non-trivial applica-
tions and two non-trivial libraries affected by real and seeded
faults. The two libraries are

o JodaTime:* a library of utility functions to represent and
manipulate dates and time.

o Guava:> the Google “core” library for collections, 1/O,
caching, concurrency, string processing, etc.

The four applications are

o Fb2pdf:° a command-line utility to convert files from
the FB2 e-book format into PDF. Fb2pdf uses the Java
date/time library but we changed it to use the fully
compatible JodaTime library.

e Carrot2:7 a search results clustering engine. Carrot2 uses
the Guava library.

o Caliper:® a framework for writing, running and viewing
the results of Java microbenchmarks. Caliper uses the
Guava library.

e Closure:® a source-to-source optimizing JavaScript com-
piler. Closure uses the Guava library.

As a first preliminary step in our experiments, we wrote
the equivalence specifications for Guava and JodaTime based
on their respective API documentation. Of the 1000+ classes
of the Guava v.12 library, we analyzed the 116 classes in the
collections package that also come with an API documenta-
tion, including all the classes used in Carrot2, Caliper, and
Closure. Of the 149 classes of the JodaTime v.2.1 library, we
analyzed 12 classes, including all the ones used in Fb2pdf.
For both libraries we identified several equivalences between
sequences of calls (see Table I). Then, focusing on the
relevant equivalences for our experiments, we abstracted and
formalized those equivalences through code-rewriting rules. In
total, we compiled 63 rewriting rules for Guava, and 100 for
JodaTime. With these rewriting rules, we ran the ARMOR
preprocessor to identify the roll-back areas and to produce
their variants.

TABLE I
RESULTS OF THE PREPROCESSING ON THE SELECTED APPLICATIONS
Application Caliper | Carrot2 | Closure | Fb2pdf
Total RBAs 130 139 2099 17
RBAs with variants 60 106 687 17

“http://joda-time.sourceforge.net/
Shttp://code.google.com/p/guava-libraries/
Shttp://code.google.com/p/fb2pdf/
http://project.carrot2.org/
Shttp://code.google.com/p/caliper/
http://code.google.com/p/closure-compiler/

The results of the preprocessing are reported in Table II.
Notice that not every identified RBA (for example, a method
that uses the library) would have multiple valid variants.
This is because there might be no applicable equivalences,
or because the application of the rewriting rules, which are
simple textual pattern-substitution rules, sometimes produces
invalid code.

We first conducted an evaluation of ARMOR on a limited
number of real faults affecting the JodaTime library and the
Fb2pdf application, and then we conducted a more extensive
evaluation using seeded faults with both libraries and all four
applications.

A. Real Faults in JodaTime

We analyzed three real faults reported for JodaTime.

o Issue n. 1375249 reports that if a YearMonthDate (Joda-
Time class) is created with a Calendar (java.util.Calendar
class) as a parameter, the method plusDays() (part of
the class YearMonthDate) throws an lllegalArgumentEx-
ception when the resulting date is in the next year. A
workaround exists for this fault: YearMonthDay must be
constructed from a Calendar by explicitly specifying an
ISOChronology.

o Issue n. 3072758 reports that the method parseDateTime
of the class DateTimeFormatter (JodaTime class) fails to
parse a DST leaping date even if the LenientChronology
is specified (which means it should be tolerant to DST
leaps). A workaround exists: by using parselLocalDate-
Time instead of parseDateTime.

o Issue n. 3304757: see Section II.

For all three of these faults, ARMOR was able to find and

execute a valid workaround.

B. Mutation Analysis

In order to obtain a more extensive coverage of the features
of the libraries and of ARMOR itself, and also to obtain
more statistically significant results, we turned to a systematic
mutation analysis. We proceeded as follows:

1) We used the Major mutation analysis framework [18] to
inject faults in the two libraries. We did that by activating
all types of mutations supported by Major.

2) We then ran all the applications with the mutated ver-
sions of their respective libraries, and we traced those
executions. For each application we obtained an input
that we deemed representative for the application. For
Fb2pdf we used a third-party e-book file, for Carrot2
and Caliper we used inputs provided by the developers
for demonstration purposes, for Closure we used a large
and popular JavaScript library (jQuery). Based on the
execution traces, we then discarded the mutants that
were never executed.

3) We activated each remaining mutant individually and
executed all applications in the presence of each mutant.
For each application and mutant, we observed and cate-
gorized the outcome of the execution as error, loop, and
success, when the execution led to an error or exception,

788

an infinite loop, or a normal termination, respectively. Of
the mutants in the success categories we further analyzed
and distinguished mutants whose execution produced the
expected output, which we classified as equivalent and
that we discarded, and mutants whose execution failed
to produce the expected result, which we classified as
non-equivalent.

4) We then executed all applications instrumented with
ARMOR on all error, loop, and non-equivalent suc-
cess mutants. For the error mutants we simply relied
on the implicit failure detection (i.e., exceptions). For
the mutants in the loop and non-equivalent success
categories, we augmented the application with specific
failure detectors that we obtained as follows:

e We used Daikon [19] to derive invariants from
repeated executions of the original program (without
mutations).

o We used Daikon on each mutant (same application,
same input) and selected those invariants found
within roll-back areas that were valid for the original
program but not for the mutant program.

o We inserted those invariants as assertions in the
application code, within the RBA where they were
found.

C. Effectiveness

We first evaluate the effectiveness of ARMOR. We measure
that by counting the cases in which ARMOR could recover
from one or more failures caused by a mutant and allow the
application to run to completion with a correct output.

These results are displayed in Table III. The top part of the
table summarizes the selection and classification of mutants
for each application. The last row shows the effectiveness
of ARMOR. These results are very encouraging, since they
demonstrate that ARMOR is successful with between 19%
and 48% of the mutants. These are cases in which ARMOR is
completely successful, meaning that the application terminates
successfully and with the correct output despite the presence
of a failure-inducing fault.

D. Runtime Overhead

We then measure the runtime overhead of ARMOR to verify
that the execution of an instrumented application would not
suffer an unreasonable penalty due to the instrumentation. We
measure the overhead of ARMOR in terms of total execution
time and in terms of allocated memory in a normal (non-
failing) run, and we compare those measurements with the
execution of the original application code.

Table IV summarizes the results of this analysis. At a high-
level, the results demonstrate that ARMOR (with the change-
log-based checkpoint) incurs a noticeable but also seemingly
reasonable overhead in all cases. In particular, the running time
overhead ranges from 2% to 194%. Interestingly, we initially
assumed that the runtime overhead would be attributable to
the checkpoint mechanism, since that is essentially the only
active code executed by ARMOR in normal (non-failing) runs.

However, a further analysis shows that a significant portion of
the total overhead is instead due to the instrumentation alone,
which in practice consists of the time needed to execute a
try-block in the proxy method.

The somewhat extreme case of the Closure compiler in
which RBAs are executed in very hot loops, as evidenced by
the high number of recorded checkpoints, also shows that the
checkpoint mechanism is quite efficient, since the execution
of over 1.2 million checkpoints incurs only a relatively low
99% overhead, corresponding to a bit more than 5 seconds of
execution time (on a 2.53GHz Intel Xeon E5630 CPU).

E. Analysis and Discussion

For each mutant and each application, we manually ana-
lyzed the results of the execution with ARMOR to identify
the causes of the successes and failures of our technique. Here
we report some highlights of this analysis.

An interesting case is Fb2pdf. Fb2pdf is the application with
the fewest number of RBAs but also with the largest set of
mutants affecting the execution, and it is also the application
with the lowest success rate. What we found is in fact that
Fb2pdf uses the library quite extensively, but it does that
through a few access points and, therefore, at a greater depth
than other applications. We draw two conclusions from this
analysis: first, there is little hope to avoid the effects of a
fault whenever a few calls use a large portion of the library
code, since that would require a large amount of redundancy.
Second, workarounds are likely to be more effective when
the fault (in the library) is somewhat closer to the application
code, and therefore when the alternative use of the library
would have a more direct control in steering the execution
away from the fault.

Another interesting and related case is that of a failure in
Carrot2 which ARMOR could not avoid. This failure turned
out to be caused by a use of the (mutated) Guava library
from within another library used by Carrot2, which means
that ARMOR was not even involved in that particular use.
We do not know whether ARMOR could have prevented the
failure, but once again we observe that faults at a greater depth
in the call stack have less chances of being avoided through
workarounds at the interface between application and library.

The case of Carrot2 is also interesting because it is char-
acterized by several active and also nested RBAs. One of
the RBAs of Carrot2 is in fact in its main method, and
several others are nested up to a depth of 7. Nested RBAs
are expensive because they involve more checkpoints and also
because they might induce several nested iterations to look
for a valid workaround, especially when no workarounds are
found for lower-level RBAs. This complexity might explain
the overhead incurred by ARMOR with Carrot2.

VI. RELATED WORK

The idea of relying on some form of redundancy to make
applications more robust to faults is not new. Some of the
most well known (but also disputed) software fault toler-
ance techniques require the availability of several variants of

789

TABLE I
MUTATION ANALYSIS AND EFFECTIVENESS OF ARMOR

Caliper Carrot2 Closure Fb2pdf

Total mutants 21297 21297 21297 16858

Relevant mutants 309 187 344 2200

equivalent 210 120 177 1805

£ | success non-eauivalent detected 0 2 0 0

g 4 not detected 0 8 3 1

i loo detected 0 1 0 [

5 P not detected 12 9 15 47

error 87 47 149 347

Total mutants run with ARMOR 87 50 149 347

Mutants where ARMOR is successful (28%) 24 | (48%) 24 | (47%) 70 | (19%) 67

TABLE IV
OVERHEAD INCURRED BY ARMOR IN NORMAL NON-FAILING EXECUTIONS (MEDIAN OVER 10 RUNS)
Caliper Carrot2 Closure Fb2pdf

Original total running time 30.13 2.43 5.40 2.26
Time Exception-handling only (no checkpoints) (1%) 30.41 (69%) 4.15 (95%) 10.53 (68%) 3.79
(seconds) | Snapshot-based checkpoints 5%) 31.78 | (117%) 5.32 >1h | (121%) 4.99
Change-log-based checkpoints (2%) 30.87 94%) 4.75 | (194%) 15.90 | (114%) 4.70
Memory Original total memory a!located 1.40 8.87 30.56 17.90
(MB) Snapshot-based checkpoints 12.30 23.78 — 90.94
Change-log-based checkpoints 10.18 11.37 120.58 25.93
Number of recorded checkpoints (approx.) 30 2,350 1,255,000 4
Values saved in change-log-based checkpoints (approx.) 26,000 270,000 1,880,000 9,000

the same components developed independently by different
teams [2], [3], [20]. Diversity in the design and development
limits the number of correlated faults and therefore increases
fault tolerance, but it also increases the development costs. Our
technique is similar in that it exploits redundancy, but it is also
different in that it exploits redundancy that is already present in
libraries and therefore does not incur additional design costs.

Similarly, data diversity exploits redundancy to tolerate
faults, but without incurring higher development costs [21].
Instead of executing several variants of the same component,
the execution involves the original component with several re-
expressions of the input. Other classic software fault tolerance
techniques, such as wrappers and exception handling, require
the development of additional code to deal with specific
failures [22], [23]. Our technique automatically creates proxy
methods, which are equivalent to wrappers, to execute alterna-
tive code, and it relies on exception handling to automatically
deal with failures.

Software fault tolerance also comprises several techniques
that specifically deal with non-deterministic failures. Such
techniques, including software rejuvenation, microreboots, and
checkpoint-and-retry, are complementary to our technique,
since they would all fail in avoiding deterministic failures that
our technique can instead avoid [24], [9], [25]. Rx extends
these techniques by dealing with some deterministic failures.
However, it is effective only on failures that are caused by
problematic interactions with the environment [10].

Most of the recent techniques to avoid or mitigate the
effects of field failures address specific problems, such as
repairing inconsistencies in data structures [4], [5], [26], avoid-
ing infinite loops [7], fixing configuration issues [6], fixing

invalid HTML code generated by PHP applications [27], and
making applications more robust to malicious inputs [28] and
malicious attacks in general [8]. Our technique does not target
specific faults and instead is intended as a general-purpose
solution to avoid failures at runtime.

Other general techniques like ours require a more intense
manual intervention. For instance, Chang et al. can automati-
cally deploy patches for integration problems, but they require
library developers to manually write the patches first [11].
Moreover, they assume the applications to be stateless, since
they do not offer any mechanism to handle the state after a fail-
ure. Cabral et al. instead can automatically deploy applications
with exception handlers that can deal with general problems
(e.g., /O exceptions) but they still require developers to write
the exception handlers for application-specific exceptions [12].
Finally, Harmanci et al. propose new Java constructs to execute
alternative blocks of code in case of exceptions [29]. However,
it is up to the developers to code the alternative blocks. Our
technique requires some manual effort too, since we assume
to have a list of rewriting rules for each library. However, this
information can be reused with different applications.

Our work is also very related to some recent state-of-the-
art automated debugging techniques. These techniques can
automatically find patches to fix faults identified either by
failures in test suites or by contract violations [30], [31], [32],
[33]. Differently from these techniques, we do not aim to fix
the faulty statements in the application, but instead we only
aim to avoid their effects at runtime. In fact, our technique is
designed to work on deployed applications, whereas automated
debugging techniques are still costly and at the moment are
best applied only to an off-line debugging process.

790

VII. CONCLUSIONS

We presented a technique to improve the reliability of
applications. This technique is based on and extends the
notion of automatic workarounds that we developed in prior
work. In particular, we now support general-purpose (Java)
applications with workarounds that can be deployed at runtime
without interrupting the execution flow of the application
and without restarting its components. We demonstrate the
effectiveness and usability of this technique through a concrete
implementation called ARMOR, with which we obtain very
positive results. As part of our evaluation we also evidence and
document the intrinsic redundancy of some software systems,
which is an interesting result of independent value.

Our future research plans include the further development
and refinement of ARMOR on the basis of the experience
gained with this study. We plan to work on new methods to
deal with faults and failures that are deep in the library code
and therefore that are unlikely to be solved by a workaround
at the application level. We also plan to conduct more and
more thorough experiments with ARMOR by applying it to
yet more libraries and applications.

Departing from ARMOR and automatic workarounds, and
moving forward towards a more broad and somewhat ambi-
tious research objective, we also intend to formalize the notion
of intrinsic redundancy and to study its prevalence and its
origin in modern software.

Acknowledgments

This work was supported in part by the Swiss National
Science Foundation with project SHADE (n. 200021-138006)
and by the European Research Coucil with ERC Advanced
Grant SPECMATE (n. 290914).

REFERENCES

[1] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays
of inexpensive disks (RAID),” SIGMOD Record, vol. 17, no. 3, 1988.

[2] A. Avizienis, “The N-version approach to fault-tolerant software,” IEEE
Transactions on Software Engineering, vol. 11, no. 12, 1985.

[3] B. Randell, “System structure for software fault tolerance,” in Proceed-
ings of the International Conference on Reliable software, 1975.

[4] B. Demsky and M. Rinard, “Automatic detection and repair of errors
in data structures,” in Proceedings of the 18th Conference on Object-
oriented Programming, Systems, Languages, and Applications, 2003.

[5] I Hussain and C. Csallner, “DSDSR: a tool that uses dynamic symbolic
execution for data structure repair,” in Proceedings of the Sth Interna-
tional Workshop on Dynamic Analysis, 2010.

[6] B.J. Garvin, M. B. Cohen, and M. B. Dwyer, “Using feature locality:
can we leverage history to avoid failures during reconfiguration?” in
Proceedings of the Sth Workshop on Assurances for Self-Adaptive
Systems, 2011.

[71 M. Carbin, S. Misailovic, and M. Kling, “Detecting and escaping infinite
loops with Jolt,” in Proceedings of the 25th European Conference on
Object-Oriented Programming, 2011.

[8] J. H. Perkins, G. Sullivan, W.-f. Wong, Y. Zibin, M. D. Ernst, M. Rinard,
S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, and S. Sidiroglou, “Automatically patching errors in
deployed software,” in Proceedings of the 22nd International Symposium
on Operating Systems Principles, 2009.

[91 G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot—a technique for cheap recovery,” in Proceedings of the
6th Symposium on Operating Systems Design & Implementation, 2004.

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

[28]

[29]

[30]

(31]

(32]

(33]

791

F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan, “Rx: Treating bugs as
allergies—a safe method to survive software failures,” ACM Transac-
tions on Computer Systems, vol. 25, no. 3, 2007.

H. Chang, L. Mariani, and M. Pezze, “In-field healing of integration
problems with COTS components,” in Proceedings of the 31st Interna-
tional Conference on Software Engineering, 2009.

B. Cabral and P. Marques, “A transactional model for automatic excep-
tion handling,” Computer Languages, Systems and Structures, vol. 37,
no. 1, 2011.

A. Carzaniga, A. Gorla, N. Perino, and M. Pezze¢, “Automatic
workarounds for Web applications,” in Proceedings of the 18th Interna-
tional Symposium on the Foundations of Software Engineering, 2010.
M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” in Proceedings of the 10th Conference on
the Foundations of Software Engineering, 2005.

T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, 2002.

A. Hindle, E. Barr, Z. Su, P. Devanbu, and M. Gabel, “On the
“naturalness” of software,” in Proceedings of the 34th International
Conference on Software Engineering, 2012.

L. Jiang and Z. Su, “Automatic mining of functionally equivalent code
fragments via random testing,” in Proceedings of the 18th International
Symposium on Software testing and analysis, 2009.

R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An efficient
and extensible tool for mutation analysis in a java compiler,” in 2011
26th International Conference on Automated Software Engineering,
2011.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, no. 2, 2001.
J.-C. Laprie, C. Béounes, and K. Kanoun, “Definition and analysis of
hardware- and software-fault-tolerant architectures,” Computer, vol. 23,
no. 7, 1990.

P. E. Ammann and J. C. Knight, “Data diversity: An approach to
software fault tolerance,” IEEE Transactions on Computers, vol. 37,
no. 4, 1988.

P. Popov, S. Riddle, A. Romanovsky, and L. Strigini, “On systematic
design of protectors for employing OTS items,” in Proceedings of the
27th Euromicro Conference, 2001.

F. Cristian, “Exception handling and software fault tolerance,” IEEE
Transactions on Computers, vol. 31, no. 6, 1982.

Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software rejuve-
nation: analysis, module and applications,” in Proceedings of the 25th
International Symposium on Fault-Tolerant Computing, 1995.

M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Comput-
ing Surveys, vol. 34, no. 3, 2002.

B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid, “Assertion-based
repair of complex data structures,” in Proceedings of the 22th IEEE
Conference on Automated Software Engineering, 2007.

H. Samimi, M. Schifer, S. Artzi, T. Millstein, F. Tip, and L. Hendren,
“Automated repair of HTML generation errors in PHP applications
using string constraint solving,” in Proceedings of the 34th International
Conference on Software Engineering, 2012.

F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard, “Au-
tomatic input rectification,” in Proceedings of the 34th International
Conference on Software Engineering, 2012.

D. Harmanci, V. Gramoli, and P. Felber, “Atomic boxes: coordinated
exception handling with transactional memory,” in Proceedings of the
25th European Conference on Object-Oriented Programming, 2011.

V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from object be-
havior anomalies,” in Proceedings of the 24th International Conference
on Automated Software Engineering, 2009.

W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the 31st
International Conference on Software Engineering, 2009.

A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic
software bug fixing,” in Proceedings of 11th IEEE Congress on Evolu-
tionary Computation, 2008.

Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller, “Automated fixing of programs with contracts,” in Proceedings
of the 19th International Symposium on Software Testing and Analysis,
2010.

