
Introduction to Systems Programming

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

September 20, 2021

General Information

https://www.inf.usi.ch/carzaniga/edu/sysprog/

on iCorsi: INF.B.SA21-22.09

Announcements
I https://www.inf.usi.ch/carzaniga/edu/sysprog/news.html
I or through iCorsi

you are responsible for reading the announcements page or reading the
announcements sent through iCorsi

Office hours
I Antonio Carzaniga: by appointment
I Eliã Rafael De Lima Batista: by appointment
I Riccardo Felici: by appointment

https://www.inf.usi.ch/carzaniga/edu/sysprog/
https://www.icorsi.ch/course/view.php?id=12602
https://www.inf.usi.ch/carzaniga/edu/sysprog/news.html

General Information

https://www.inf.usi.ch/carzaniga/edu/sysprog/

on iCorsi: INF.B.SA21-22.09

Announcements
I https://www.inf.usi.ch/carzaniga/edu/sysprog/news.html
I or through iCorsi

you are responsible for reading the announcements page or reading the
announcements sent through iCorsi

Office hours
I Antonio Carzaniga: by appointment
I Eliã Rafael De Lima Batista: by appointment
I Riccardo Felici: by appointment

https://www.inf.usi.ch/carzaniga/edu/sysprog/
https://www.icorsi.ch/course/view.php?id=12602
https://www.inf.usi.ch/carzaniga/edu/sysprog/news.html

General Information

https://www.inf.usi.ch/carzaniga/edu/sysprog/

on iCorsi: INF.B.SA21-22.09

Announcements
I https://www.inf.usi.ch/carzaniga/edu/sysprog/news.html
I or through iCorsi

you are responsible for reading the announcements page or reading the
announcements sent through iCorsi

Office hours
I Antonio Carzaniga: by appointment
I Eliã Rafael De Lima Batista: by appointment
I Riccardo Felici: by appointment

https://www.inf.usi.ch/carzaniga/edu/sysprog/
https://www.icorsi.ch/course/view.php?id=12602
https://www.inf.usi.ch/carzaniga/edu/sysprog/news.html

Focus and Structure

Focus: concrete and practical systems programming
I without forgetting good software engineering practices

Structure: lecture+ in-class exercises+ homework
Lectures
I interactive lectures
I in-class exercises
I so, you should have your computer handy (and charged)

Homework assignments
I a programming assignment every week
I a few assignments will be graded (we’ll tell you which ones)
I most will not be graded
I all assignments will be discussed in class

Focus and Structure

Focus: concrete and practical systems programming
I without forgetting good software engineering practices

Structure: lecture + in-class exercises + weekly assignments

Lectures
I interactive lectures
I in-class exercises
I so, you should have your computer handy (and charged)

Homework assignments
I a programming assignment every week
I a few assignments will be graded (we’ll tell you which ones)
I most will not be graded
I all assignments will be discussed in class

Focus and Structure

Focus: concrete and practical systems programming
I without forgetting good software engineering practices

Structure: lecture+ in-class exercises+ homework

Lectures
I interactive lectures
I in-class exercises
I so, you should have your computer handy (and charged)

Homework assignments
I a programming assignment every week
I a few assignments will be graded (we’ll tell you which ones)
I most will not be graded
I all assignments will be discussed in class

Focus and Structure

Focus: concrete and practical systems programming
I without forgetting good software engineering practices

Structure: lecture+ in-class exercises+ homework
Lectures
I interactive lectures
I in-class exercises
I so, you should have your computer handy (and charged)

Homework assignments
I a programming assignment every week
I a few assignments will be graded (we’ll tell you which ones)
I most will not be graded
I all assignments will be discussed in class

Focus and Structure

Focus: concrete and practical systems programming
I without forgetting good software engineering practices

Structure: lecture+ in-class exercises+ homework
Lectures
I interactive lectures
I in-class exercises
I so, you should have your computer handy (and charged)

Homework assignments
I a programming assignment every week
I a few assignments will be graded (we’ll tell you which ones)
I most will not be graded
I all assignments will be discussed in class

How to Learn Systems Programming

1. Solve a programming problem

2. If you are stuck, ask somebody to help you—ask me (Antonio) to help you!
. . .but do not simply copy code!

3. When you’re done—when your own solution is complete—analyze other
solutions, such as Antonio’s solutions presented in class

4. Go to step 1

How to Learn Systems Programming

1. Solve a programming problem

2. If you are stuck, ask somebody to help you—ask me (Antonio) to help you!
. . .but do not simply copy code!

3. When you’re done—when your own solution is complete—analyze other
solutions, such as Antonio’s solutions presented in class

4. Go to step 1

Evaluation

+40% homework: programming assignments
I grades added together, thus resulting in a weighted average

+30%midterm exam
I in-class programming using your computer

+30% final exam
I in-class programming using your computer

±10% instructor’s discretionary evaluation
I participation
I extra credits
I trajectory
I . . .

−100% plagiarism penalties

Evaluation

+40% homework: programming assignments
I grades added together, thus resulting in a weighted average

+30%midterm exam
I in-class programming using your computer

+30% final exam
I in-class programming using your computer

±10% instructor’s discretionary evaluation
I participation
I extra credits
I trajectory
I . . .

−100% plagiarism penalties

Evaluation

+40% homework: programming assignments
I grades added together, thus resulting in a weighted average

+30%midterm exam
I in-class programming using your computer

+30% final exam
I in-class programming using your computer

±10% instructor’s discretionary evaluation
I participation
I extra credits
I trajectory
I . . .

−100% plagiarism penalties

Plagiarism

A student should never take someone else’s material and present it as his or her
own. Doing so means committing plagiarism.

You know what I mean. . .

Committing plagiarism on an assignment or an exam will result in
I failing that assignment or that exam
I loosing one or more points in the final note!

Penalties may be escalated. . .

Plagiarism

A student should never take someone else’s material and present it as his or her
own. Doing so means committing plagiarism.

You know what I mean. . .

Committing plagiarism on an assignment or an exam will result in
I failing that assignment or that exam
I loosing one or more points in the final note!

Penalties may be escalated. . .

Plagiarism

A student should never take someone else’s material and present it as his or her
own. Doing so means committing plagiarism.

You know what I mean. . .

Committing plagiarism on an assignment or an exam will result in
I failing that assignment or that exam
I loosing one or more points in the final note!

Penalties may be escalated. . .

Plagiarism

A student should never take someone else’s material and present it as his or her
own. Doing so means committing plagiarism.

You know what I mean. . .

Committing plagiarism on an assignment or an exam will result in
I failing that assignment or that exam
I loosing one or more points in the final note!

Penalties may be escalated. . .

Deadlines

Deadlines are firm.

You know what I mean. . .

Usual three-days-and-you’re-out rule applies here. . .

Deadlines

Deadlines are firm.

You know what I mean. . .

Usual three-days-and-you’re-out rule applies here. . .

Deadlines

Deadlines are firm.

You know what I mean. . .

Usual three-days-and-you’re-out rule applies here. . .

Now on to Systems Programming!

What is Systems Programming?

Interfacing with a “system” (as opposed to a user)
I rigid interfaces
I complex interfaces

Engineering for a non trivial platform
I non-trivial performance profiles
I going beyond algorithmic complexity

What is Systems Programming?

Interfacing with a “system” (as opposed to a user)
I rigid interfaces
I complex interfaces

Engineering for a non trivial platform
I non-trivial performance profiles
I going beyond algorithmic complexity

What is Systems Programming?

Interfacing with a “system” (as opposed to a user)
I rigid interfaces
I complex interfaces

Engineering for a non trivial platform
I non-trivial performance profiles
I going beyond algorithmic complexity

The Language(s) of Systems Programming

Mostly C, and a bit of C++

A lot of software is written in C (or C++)
I the vast majority of the programs running on your computer
I including the operating system
I a lot more new software will be written in C/C++

Available on virtually every computer platform
I from embedded controllers to supercomputers

System programming
I “low-level” programming (e.g., a device driver)
I “high-level” programming (e.g., the Firefox web browser)

Relatively simple but powerful language
I C++ is definitely not that simple
I like any serious tool, C and C++ have hidden complexities. . .

The Language(s) of Systems Programming

Mostly C, and a bit of C++

A lot of software is written in C (or C++)
I the vast majority of the programs running on your computer
I including the operating system
I a lot more new software will be written in C/C++

Available on virtually every computer platform
I from embedded controllers to supercomputers

System programming
I “low-level” programming (e.g., a device driver)
I “high-level” programming (e.g., the Firefox web browser)

Relatively simple but powerful language
I C++ is definitely not that simple
I like any serious tool, C and C++ have hidden complexities. . .

The Language(s) of Systems Programming

Mostly C, and a bit of C++

A lot of software is written in C (or C++)
I the vast majority of the programs running on your computer
I including the operating system
I a lot more new software will be written in C/C++

Available on virtually every computer platform
I from embedded controllers to supercomputers

System programming
I “low-level” programming (e.g., a device driver)
I “high-level” programming (e.g., the Firefox web browser)

Relatively simple but powerful language
I C++ is definitely not that simple
I like any serious tool, C and C++ have hidden complexities. . .

The Language(s) of Systems Programming

Mostly C, and a bit of C++

A lot of software is written in C (or C++)
I the vast majority of the programs running on your computer
I including the operating system
I a lot more new software will be written in C/C++

Available on virtually every computer platform
I from embedded controllers to supercomputers

System programming
I “low-level” programming (e.g., a device driver)
I “high-level” programming (e.g., the Firefox web browser)

Relatively simple but powerful language
I C++ is definitely not that simple
I like any serious tool, C and C++ have hidden complexities. . .

The Language(s) of Systems Programming

Mostly C, and a bit of C++

A lot of software is written in C (or C++)
I the vast majority of the programs running on your computer
I including the operating system
I a lot more new software will be written in C/C++

Available on virtually every computer platform
I from embedded controllers to supercomputers

System programming
I “low-level” programming (e.g., a device driver)
I “high-level” programming (e.g., the Firefox web browser)

Relatively simple but powerful language
I C++ is definitely not that simple
I like any serious tool, C and C++ have hidden complexities. . .

The Language(s) of Systems Programming

Mostly C, and a bit of C++

A lot of software is written in C (or C++)
I the vast majority of the programs running on your computer
I including the operating system
I a lot more new software will be written in C/C++

Available on virtually every computer platform
I from embedded controllers to supercomputers

System programming
I “low-level” programming (e.g., a device driver)
I “high-level” programming (e.g., the Firefox web browser)

Relatively simple but powerful language
I C++ is definitely not that simple
I like any serious tool, C and C++ have hidden complexities. . .

Getting Started: One, Two, Three!

1. Edit the program ciao.c

#include <stdio.h>

int main () {
printf("Ciao!\n");

return 0;
}

2. Compile the program (i.e., run the compiler)
% cc ciao.c -o ciao

3. Run the program
% ./ciao

Getting Started: One, Two, Three!

1. Edit the program ciao.c

#include <stdio.h>

int main () {
printf("Ciao!\n");

return 0;
}

2. Compile the program (i.e., run the compiler)
% cc ciao.c -o ciao

3. Run the program
% ./ciao

Getting Started: One, Two, Three!

1. Edit the program ciao.c

#include <stdio.h>

int main () {
printf("Ciao!\n");

return 0;
}

2. Compile the program (i.e., run the compiler)
% cc ciao.c -o ciao

3. Run the program
% ./ciao

Getting Started: One, Two, Three!

1. Edit the program ciao.c

#include <stdio.h>

int main () {
printf("Ciao!\n");

return 0;
}

2. Compile the program (i.e., run the compiler)
% cc ciao.c -o ciao

3. Run the program
% ./ciao

Getting Started with C++

1. Edit the program ciao2.cc

#include <iostream>

int main () {
std::cout << "Ciao!\n";

}

2. Compile the program (i.e., run the compiler)
% c++ ciao2.cc -o ciao2

3. Run the program
% ./ciao2

Getting Started with C++

1. Edit the program ciao2.cc

#include <iostream>

int main () {
std::cout << "Ciao!\n";

}

2. Compile the program (i.e., run the compiler)
% c++ ciao2.cc -o ciao2

3. Run the program
% ./ciao2

Getting Started with C++

1. Edit the program ciao2.cc

#include <iostream>

int main () {
std::cout << "Ciao!\n";

}

2. Compile the program (i.e., run the compiler)
% c++ ciao2.cc -o ciao2

3. Run the program
% ./ciao2

Getting Started with C++

1. Edit the program ciao2.cc

#include <iostream>

int main () {
std::cout << "Ciao!\n";

}

2. Compile the program (i.e., run the compiler)
% c++ ciao2.cc -o ciao2

3. Run the program
% ./ciao2

Getting Started with Make

1. Edit the program ciao3.cc

#include <iostream>
int main() {

std::cout << "I said Ciao already!\n";
}

2. Compile the program usingmake
% make ciao3

3. Run the program
% ./ciao3

Getting Started with Make

1. Edit the program ciao3.cc

#include <iostream>
int main() {

std::cout << "I said Ciao already!\n";
}

2. Compile the program usingmake
% make ciao3

3. Run the program
% ./ciao3

Getting Started with Make

1. Edit the program ciao3.cc

#include <iostream>
int main() {

std::cout << "I said Ciao already!\n";
}

2. Compile the program usingmake
% make ciao3

3. Run the program
% ./ciao3

Getting Started with Make

1. Edit the program ciao3.cc

#include <iostream>
int main() {

std::cout << "I said Ciao already!\n";
}

2. Compile the program usingmake
% make ciao3

3. Run the program
% ./ciao3

Errors

Try compiling the program:

#include <iostream>

int main() {
cout << "I said Ciao already!\n";

}

You should get some errors:
% g++ errors.cc -o errors

errors.cc: In function ‘int main()’:

errors.cc:4:5: error: ‘cout’ was not declared in this scope

...

Errors

Try compiling the program:

#include <iostream>

int main() {
cout << "I said Ciao already!\n";

}

You should get some errors:
% g++ errors.cc -o errors

errors.cc: In function ‘int main()’:

errors.cc:4:5: error: ‘cout’ was not declared in this scope

...

Errors

Try compiling the program:

#include <iostream>

int main() {
cout << "I said Ciao already!\n";

}

You should get some errors:
% g++ errors.cc -o errors

errors.cc: In function ‘int main()’:

errors.cc:4:5: error: ‘cout’ was not declared in this scope

...

Printing

The function you will use to print data in C is printf:

#include <stdio.h>

int main() {
printf("My name is %s.\nI was %d in the year 2000.\n",

"Antonio", 2000 - 1969);
}

The first argument is a format string that includes conversion specifications,
begining with a % sign, that tell printf how to interpret its other arguments:

%d prints an integer in decimal notation
%c prints an integer as a character
%g prints a float in decimal notation
. . . see the documentation of printf()

Printing

The function you will use to print data in C is printf:

#include <stdio.h>

int main() {
printf("My name is %s.\nI was %d in the year 2000.\n",

"Antonio", 2000 - 1969);
}

The first argument is a format string that includes conversion specifications,
begining with a % sign, that tell printf how to interpret its other arguments:

%d prints an integer in decimal notation
%c prints an integer as a character
%g prints a float in decimal notation
. . . see the documentation of printf()

Printing in C++

Printing is quite different (simpler?) in C++:

#include <iostream>

int main() {
std::cout

<< "My name is " << "Antonio"
<< ".\nI was " << 2000 - 1969
<< " in the year 2000.\n";

}

Digression: How does this really work?

Basic Types

C has pretty much the set of basic types you would expect

#include <stdio.h>

int main() {
int i;
char c;
float x;

i = 10;
c = 'a';
x = 1.2;

printf("i=%d, c=%c, x=%f\n", i, c, x);
}

Integer Types

Typically two’s complement; ranges defined in <limits.h>

type min value max value size in bits typical
char CHAR_MIN SCHAR_MAX

CHAR_BIT 8signed char SCHAR_MIN SCHAR_MAX
unsigned char 0 UCHAR_MAX
short SHRT_MIN SHRT_MAX ≥CHAR_BIT 16
unsigned short 0 USHRT_MAX
int INT_MIN INT_MAX ≥short 32
unsigned int 0 UINT_MAX
long LONG_MIN LONG_MAX ≥int 64
unsigned long 0 ULONG_MAX
long long LLONG_MIN LLONG_MAX ≥long 64
unsigned long long 0 ULLONG_MAX

Integer Types

Typically two’s complement; ranges defined in <limits.h>

type min value max value size in bits typical
char CHAR_MIN SCHAR_MAX

CHAR_BIT 8signed char SCHAR_MIN SCHAR_MAX
unsigned char 0 UCHAR_MAX
short SHRT_MIN SHRT_MAX ≥CHAR_BIT 16
unsigned short 0 USHRT_MAX
int INT_MIN INT_MAX ≥short 32
unsigned int 0 UINT_MAX
long LONG_MIN LONG_MAX ≥int 64
unsigned long 0 ULONG_MAX
long long LLONG_MIN LLONG_MAX ≥long 64
unsigned long long 0 ULLONG_MAX

Bit Sizes

Test your platform with this C program:

#include <stdio.h>

int main() {
printf("char: %zu\n", sizeof(char));
printf("short: %zu\n", sizeof(short));
printf("int: %zu\n", sizeof(int));
printf("long: %zu\n", sizeof(long));
printf("long long: %zu\n", sizeof(long long));

return 0;
}

Limits

Test your platform with this C++ program:

#include <limits>
#include <iostream>

int main() {
std::cout

<< "short: " << std::numeric_limits<short>::min()
<< ' ' << std::numeric_limits<short>::max() << '\n'
<< "int: " << std::numeric_limits<int>::min()
<< ' ' << std::numeric_limits<int>::max() << '\n'
<< "long: " << std::numeric_limits<long>::min()
<< ' ' << std::numeric_limits<long>::max() << '\n'
<< "long long: "
<< std::numeric_limits<long long>::min() << ' '
<< std::numeric_limits<long long>::max() << '\n';

}

Literal Values

C and C++ have the usual literal values:
int i = -1;
char c = 'A';
float f = 0.2;
double pi = 3.14159265358979323846;
unsigned long N = 0xffffffff;
unsigned long M = 1UL;
int diff = '9' - '4';

Warning: char values aren’t really characters
I Characters are things like ℵ,ψ , ♠, ñ, a, A, <, È, . . .
I How would you represent characters on a computer?
I Basic characters: latin alphabet: A. . .Z a. . .z, decimal digits: 0. . .9, graphic

characters: !;"<#=%>&?’[](). . .

Literal Values

C and C++ have the usual literal values:
int i = -1;
char c = 'A';
float f = 0.2;
double pi = 3.14159265358979323846;
unsigned long N = 0xffffffff;
unsigned long M = 1UL;
int diff = '9' - '4';

Warning: char values aren’t really characters
I Characters are things like ℵ,ψ , ♠, ñ, a, A, <, È, . . .
I How would you represent characters on a computer?

I Basic characters: latin alphabet: A. . .Z a. . .z, decimal digits: 0. . .9, graphic
characters: !;"<#=%>&?’[](). . .

Literal Values

C and C++ have the usual literal values:
int i = -1;
char c = 'A';
float f = 0.2;
double pi = 3.14159265358979323846;
unsigned long N = 0xffffffff;
unsigned long M = 1UL;
int diff = '9' - '4';

Warning: char values aren’t really characters
I Characters are things like ℵ,ψ , ♠, ñ, a, A, <, È, . . .
I How would you represent characters on a computer?
I Basic characters: latin alphabet: A. . .Z a. . .z, decimal digits: 0. . .9, graphic

characters: !;"<#=%>&?’[](). . .

Minimal (One-Byte) I/O

getchar() reads the next character (byte) from the “standard input”
I returns an int value
I returns EOF at the end of file

Example:

#include <stdio.h>

int main() {
int i = 0;
while(getchar() != EOF)

++i;
printf("%d characters\n", i);
return 0;

}

Minimal (One-Byte) I/O

getchar() reads the next character (byte) from the “standard input”

I returns an int value
I returns EOF at the end of file

Example:

#include <stdio.h>

int main() {
int i = 0;
while(getchar() != EOF)

++i;
printf("%d characters\n", i);
return 0;

}

Minimal (One-Byte) I/O

getchar() reads the next character (byte) from the “standard input”
I returns an int value
I returns EOF at the end of file

Example:

#include <stdio.h>

int main() {
int i = 0;
while(getchar() != EOF)

++i;
printf("%d characters\n", i);
return 0;

}

Minimal (One-Byte) I/O

getchar() reads the next character (byte) from the “standard input”
I returns an int value
I returns EOF at the end of file

Example:

#include <stdio.h>

int main() {
int i = 0;
while(getchar() != EOF)

++i;
printf("%d characters\n", i);
return 0;

}

Minimal (One-Byte) I/O

putchar(int c) writes one byte to the “standard output”

Example:

#include <stdio.h>
#include <limits.h>

int main() {
int c;
while((c = getchar()) != EOF) {

c += 3;
if (c > CHAR_MAX)

c = CHAR_MIN + (c - CHAR_MAX);
putchar(c);

}
}

Minimal (One-Byte) I/O

putchar(int c) writes one byte to the “standard output”

Example:

#include <stdio.h>
#include <limits.h>

int main() {
int c;
while((c = getchar()) != EOF) {

c += 3;
if (c > CHAR_MAX)

c = CHAR_MIN + (c - CHAR_MAX);
putchar(c);

}
}

Minimal (One-Byte) I/O

putchar(int c) writes one byte to the “standard output”

Example:

#include <stdio.h>
#include <limits.h>

int main() {
int c;
while((c = getchar()) != EOF) {

c += 3;
if (c > CHAR_MAX)

c = CHAR_MIN + (c - CHAR_MAX);
putchar(c);

}
}

Control Structures

C and C++ have the usual control structures:
for

while

do. . .while

switch

if. . .else. . .

break

continue

return

int f(int n) {
int p, pp, r;
switch(n) {
case 0:
case 1: return n;
default:

p = 1;
pp = 0;
do {

r = p + pp;
pp = p;
p = r;

} while (--n > 1);
return r;

}
}

Control Structures: Exercise 1

Write a program called diamond.c that, given a number n, prints (on the
terminal) an n × n diamond like this one (6 × 6):

#
###
#####
#######
#########
###########
#########
#######
#####
###
#

Control Structures: Exercise 2

Rewrite without using the switch statement

int main () {
int c;
while ((c = getchar()) != EOF) {

switch (c) {
case ' ': putchar('\n'); break;
case '\n': putchar('\n'); putchar('\n'); break;
case 'a':
case 'e':
case 'i':
case 'o':
case 'u': putchar(c); putchar('s');
default: putchar(c);
}

}
}

Control Structures: Exercise 3

Write a program that reverts this input/output transformation:

int main () {
int c;
while ((c = getchar()) != EOF) {

switch (c) {
case ' ': putchar('\n'); break;
case '\n': putchar('\n'); putchar('\n'); break;
case 'a':
case 'e':
case 'i':
case 'o':
case 'u': putchar(c); putchar('s');
default: putchar(c);
}

}
}

Homework Assignment: wordcount

Write a program called wordcount that counts the words in the standard input.
A word is a sequence of one or more characters delimited by white space.
I the output should be the same as the command:

% wc -w

