
Reliable Data Transfer

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

March 23, 2020

Outline

Finite-state machines

Using FSMs to specify protocols

Principles of reliable data transfer

Reliability over noisy channels

ACKs/NACKs

Finite-State Machines

Finite-State Machines

A finite-state machine (FSM) is a mathematical abstraction

◮ a.k.a., finite-state automaton (FSA), deterministic finite-state automaton (DFA),
non-deterministic finite-state automaton (NFA)

Finite-State Machines

A finite-state machine (FSM) is a mathematical abstraction

◮ a.k.a., finite-state automaton (FSA), deterministic finite-state automaton (DFA),
non-deterministic finite-state automaton (NFA)

FSMs are a very useful formalism to specify and implement network protocols

Finite-State Machines

A finite-state machine (FSM) is a mathematical abstraction

◮ a.k.a., finite-state automaton (FSA), deterministic finite-state automaton (DFA),
non-deterministic finite-state automaton (NFA)

FSMs are a very useful formalism to specify and implement network protocols

Ubiquitous in computer science

◮ theory of formal languages

◮ compiler design

◮ theory of computation

◮ text processing

◮ behavior specification

◮ . . .

Finite-State Machines

S1 S2

x

x

Finite-State Machines

S1 S2

x

x

States are represented as nodes in a graph

Finite-State Machines

S1 S2

x

x

States are represented as nodes in a graph

Transitions are represented as directed edges in the graph

Finite-State Machines

S1 S2

x

x

States are represented as nodes in a graph

Transitions are represented as directed edges in the graph

◮ an edge labeled x going from state S1 to state S2 says that when the machine is in
state S1 and event x occurs, the machine switches to state S2

Finite-State Machines

S1 S2

x

x

States are represented as nodes in a graph

Transitions are represented as directed edges in the graph

◮ an edge labeled x going from state S1 to state S2 says that when the machine is in
state S1 and event x occurs, the machine switches to state S2

On Off

button-pushed

button-pushed

Finite-State Machines

1 0

reset

reset

set

set

Finite-State Machines

1 0

reset

reset

set

set

unlockedlocked

try-unlock

1s timeout

button-1 button-2

30s timeout

Finite-State Machines

0/0

15/0

0/15

30/0

0/30

40/0

0/40

15/15

30/15

15/30

30/30

40/15

15/40

40/30

30/40

game A

game B

deuce

adv. A

adv. B

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
b

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a
b

b

FSMs to Specify Protocols

FSMs to Specify Protocols

States represent the state of a protocol

FSMs to Specify Protocols

States represent the state of a protocol

Transitions are characterized by an event/action label

◮ event: typically consists of an input message or a timeout

◮ action: typically consists of an output message

FSMs to Specify Protocols

States represent the state of a protocol

Transitions are characterized by an event/action label

◮ event: typically consists of an input message or a timeout

◮ action: typically consists of an output message

E.g., here’s a specification of a “simple conversation protocol”

input (or event)

output (or action)

S C

“Hello!”
“Yo”

“Bye.”
“Okay. Bye.”

30s
“Gotta go. Bye.”

“bla”
“aha”

Example

E.g., a subset of a server-side, SMTP-like protocol

S A

accept
“220 Ok”

60sec
close

R

“RCPT TO”
“250 Ok”

T

“MAIL FROM”
“250 Ok”

D

“MAIL FROM”
“250 Ok”

“RCPT TO”
“250 Ok”

30sec
close

30sec
close

M

“DATA”
“354 end with .”

line

60s
close

“.”
“250 accepted”

“QUIT”
“221 bye”,close

Back to Reliable Data Transfer

a
p
p
li
ca
ti
o
n

Web
browser

Web
server

Back to Reliable Data Transfer

a
p
p
li
ca
ti
o
n

Web
browser

Web
server

n
et
w
o
rk

best-effort (i.e., unreliable) network

Back to Reliable Data Transfer

a
p
p
li
ca
ti
o
n

Web
browser

Web
server

n
et
w
o
rk

best-effort (i.e., unreliable) network

tr
a
n
sp
o
rt

reliable-transfer
protocol

reliable-transfer
protocol

Back to Reliable Data Transfer

a
p
p
li
ca
ti
o
n

Web
browser

Web
server

n
et
w
o
rk

best-effort (i.e., unreliable) network

tr
a
n
sp
o
rt

reliable-transfer
protocol

reliable-transfer
protocol

r_send() r_recv()

Back to Reliable Data Transfer

a
p
p
li
ca
ti
o
n

Web
browser

Web
server

n
et
w
o
rk

best-effort (i.e., unreliable) network

tr
a
n
sp
o
rt

reliable-transfer
protocol

reliable-transfer
protocol

r_send() r_recv()

u_send() u_recv()

Back to Reliable Data Transfer

a
p
p
li
ca
ti
o
n

Web
browser

Web
server

n
et
w
o
rk

best-effort (i.e., unreliable) network

tr
a
n
sp
o
rt

reliable-transfer
protocol

reliable-transfer
protocol

r_send() r_recv()

u_send() u_recv()

r_send() r_recv()

u_send() u_recv()

Reliable Data Transfer Model

sender receiver

Reliable Data Transfer Model

sender receiver

reliable-transfer
protocol
(sender)

Reliable Data Transfer Model

sender receiver

reliable-transfer
protocol
(sender)

r_send()

Reliable Data Transfer Model

sender receiver

reliable-transfer
protocol
(sender)

r_send()

u_send() u_recv()

network

Reliable Data Transfer Model

sender receiver

reliable-transfer
protocol
(sender)

r_send()

u_send() u_recv()

network

r_recv()

reliable-transfer
protocol
(receiver)

u_send() u_recv()

Baseline Protocol

Reliable transport protocol that uses a reliable network
(obviously a contrived example)

sender

S
r_send(data)

u_send(data)

Baseline Protocol

Reliable transport protocol that uses a reliable network
(obviously a contrived example)

sender

S
r_send(data)

u_send(data)

receiver

R
u_recv(data)

r_recv(data)

Baseline Protocol

Reliable transport protocol that uses a reliable network
(obviously a contrived example)

sender

S
r_send(data)

u_send(data)

receiver

R
u_recv(data)

r_recv(data)

Noisy Channel

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?
(Think of a phone call over a noisy line)

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?
(Think of a phone call over a noisy line)

◮ error detection: the receiver must be able to know when a received packet is
corrupted (i.e., when it contains flipped bits)

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?
(Think of a phone call over a noisy line)

◮ error detection: the receiver must be able to know when a received packet is
corrupted (i.e., when it contains flipped bits)

◮ receiver feedback: the receiver must be able to alert the sender that a corrupted
packet was received

Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?
(Think of a phone call over a noisy line)

◮ error detection: the receiver must be able to know when a received packet is
corrupted (i.e., when it contains flipped bits)

◮ receiver feedback: the receiver must be able to alert the sender that a corrupted
packet was received

◮ retransmission: the sender retransmits corrupted packets

Error Detection

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

◮ e.g., the parity bit

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that there was an error if the
result is not 0 (i.e., if it is 1)

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that there was an error if the
result is not 0 (i.e., if it is 1)

Sender:
message is 1001011011101000

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that there was an error if the
result is not 0 (i.e., if it is 1)

Sender:
message is 1001011011101000 ⇒ send 10010110111010000

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that there was an error if the
result is not 0 (i.e., if it is 1)

Sender:
message is 1001011011101000 ⇒ send 10010110111010000

Receiver:
receives 10010110101010000

Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that there was an error if the
result is not 0 (i.e., if it is 1)

Sender:
message is 1001011011101000 ⇒ send 10010110111010000

Receiver:
receives 10010110101010000 ⇒ error!

Noisy Channel

Sender
◮ [data]∗ indicates a packet containing data plus an error-detection code (i.e., a
checksum)

Noisy Channel

Sender
◮ [data]∗ indicates a packet containing data plus an error-detection code (i.e., a
checksum)

S ACK

r_send(data)

data_pkt = [data]∗

u_send(data_pkt)

u_recv(pkt)
and pkt is NACK

u_send(data_pkt)

u_recv(pkt)
and pkt is ACK

Noisy Channel

Sender
◮ [data]∗ indicates a packet containing data plus an error-detection code (i.e., a
checksum)

S ACK

r_send(data)

data_pkt = [data]∗

u_send(data_pkt)

u_recv(pkt)
and pkt is NACK

u_send(data_pkt)

u_recv(pkt)
and pkt is ACK

Receiver

R

u_recv(pkt)
and pkt is corrupted

u_send(NACK)

u_recv(pkt)
and pkt is good

u_send(ACK)
r_recv(pkt)

Noisy Channel

Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each packet

◮ i.e., the sender must receive a (positive) acknowledgment before it can take more
data from the application layer

Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each packet

◮ i.e., the sender must receive a (positive) acknowledgment before it can take more
data from the application layer

Does the protocol really work?

Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each packet

◮ i.e., the sender must receive a (positive) acknowledgment before it can take more
data from the application layer

Does the protocol really work?

What happens if an error occurs within an ACK/NACK packet?

Dealing With Bad ACKs/NACKs

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . .noise . . . ”

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . .noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . .noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Not Good: this protocol doesn’t seem to end

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . .noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can always figure out
what the message is, even if a few bits are corrupted

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . .noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can always figure out
what the message is, even if a few bits are corrupted

◮ good enough for channels that do not loose messages

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . .noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can always figure out
what the message is, even if a few bits are corrupted

◮ good enough for channels that do not loose messages

Assume a NACK and simply retransmit the packet

Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . .noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can always figure out
what the message is, even if a few bits are corrupted

◮ good enough for channels that do not loose messages

Assume a NACK and simply retransmit the packet

◮ good idea, but it introduces duplicate packets (why?)

Dealing With Duplicate Packets

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . .noise . . . ”

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . .noise . . . ”
6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . .noise . . . ”
6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”
7. receiver hears: “7: let’s go see Taxi Driver”
8. receiver ignores the packet

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . .noise . . . ”
6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”
7. receiver hears: “7: let’s go see Taxi Driver”
8. receiver ignores the packet

How many bits do we need for the sequence number?

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . .noise . . . ”
6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”
7. receiver hears: “7: let’s go see Taxi Driver”
8. receiver ignores the packet

How many bits do we need for the sequence number?

◮ this is a “stop-and-wait” protocol for each packet, so the receiver needs to
distinguish between (1) the next packet and (2) the retransmission of the current
packet

Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . .noise . . . ”
6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”
7. receiver hears: “7: let’s go see Taxi Driver”
8. receiver ignores the packet

How many bits do we need for the sequence number?

◮ this is a “stop-and-wait” protocol for each packet, so the receiver needs to
distinguish between (1) the next packet and (2) the retransmission of the current
packet

◮ so, one bit is sufficient

Using Sequence Numbers: Sender

Using Sequence Numbers: Sender

S0

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
u_recv(pkt)
and (pkt is NACK
or pkt is corrupted)

u_send(data_pkt)

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
u_recv(pkt)
and (pkt is NACK
or pkt is corrupted)

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt is ACK

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
u_recv(pkt)
and (pkt is NACK
or pkt is corrupted)

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt is ACK

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
u_recv(pkt)
and (pkt is NACK
or pkt is corrupted)

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt is ACK

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)

u_recv(pkt)
and (pkt is NACK
or pkt is corrupted)

u_send(data_pkt)

Using Sequence Numbers: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
u_recv(pkt)
and (pkt is NACK
or pkt is corrupted)

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt is ACK

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)

u_recv(pkt)
and (pkt is NACK
or pkt is corrupted)

u_send(data_pkt)

u_recv(pkt)
and pkt is good
and pkt is ACK

Using Sequence Numbers: Receiver

R0

Using Sequence Numbers: Receiver

R0

u_recv(pkt)
and pkt is corrupted

u_send([NACK]∗)

Using Sequence Numbers: Receiver

R0

u_recv(pkt)
and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK]∗)

Using Sequence Numbers: Receiver

R0

u_recv(pkt)
and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK]∗)

R1

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK]∗)
r_recv(pkt)

Using Sequence Numbers: Receiver

R0

u_recv(pkt)
and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK]∗)

R1

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK]∗)
r_recv(pkt)

u_recv(pkt)
and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK]∗)

Using Sequence Numbers: Receiver

R0

u_recv(pkt)
and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK]∗)

R1

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK]∗)
r_recv(pkt)

u_recv(pkt)
and pkt is corrupted

u_send([NACK]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK]∗)
r_recv(pkt)

Better Use of ACKs

Do we really need both ACKs and NACKs?

Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can convey the
semantics of a NACK by sending an ACK for the last good packet it received

Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can convey the
semantics of a NACK by sending an ACK for the last good packet it received

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver says: “Got it!”
4. sender hears: “Got it!”
5. sender says: “8: let’s meet at 8:00PM”
6. receiver hears: “. . .noise . . . ”

Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can convey the
semantics of a NACK by sending an ACK for the last good packet it received

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver says: “Got it!”
4. sender hears: “Got it!”
5. sender says: “8: let’s meet at 8:00PM”
6. receiver hears: “. . .noise . . . ”
7. receiver now says: “Got 7” (instead of saying “Please, resend”)
8. sender hears: “Got 7”

Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can convey the
semantics of a NACK by sending an ACK for the last good packet it received

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver says: “Got it!”
4. sender hears: “Got it!”
5. sender says: “8: let’s meet at 8:00PM”
6. receiver hears: “. . .noise . . . ”
7. receiver now says: “Got 7” (instead of saying “Please, resend”)
8. sender hears: “Got 7”
9. sender knows that the current message is 8, and therefore repeats: “8: let’s meet

at 8:00PM”

ACK-Only Protocol: Sender

S0

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)

u_send(data_pkt)

ACK-Only Protocol: Sender

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

u_recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)

u_send(data_pkt)

u_recv(pkt)
and (pkt = (ACK, 0)
or pkt is corrupted)

u_send(data_pkt)

ACK-Only Protocol: Receiver

R0

ACK-Only Protocol: Receiver

R0

R1

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK,0]∗)
r_recv(pkt)

ACK-Only Protocol: Receiver

R0

R1

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK,0]∗)
r_recv(pkt)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK,1]∗)
r_recv(pkt)

ACK-Only Protocol: Receiver

R0

R1

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK,0]∗)
r_recv(pkt)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK,1]∗)
r_recv(pkt)

u_recv(pkt)
and pkt is corrupted

u_send([ACK,1]∗)

u_recv(pkt)
and pkt is corrupted

u_send([ACK,0]∗)

ACK-Only Protocol: Receiver

R0

R1

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK,0]∗)
r_recv(pkt)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK,1]∗)
r_recv(pkt)

u_recv(pkt)
and pkt is corrupted

u_send([ACK,1]∗)

u_recv(pkt)
and pkt is corrupted

u_send([ACK,0]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 0

u_send([ACK,0]∗)

u_recv(pkt)
and pkt is good
and seq_num(pkt) is 1

u_send([ACK,1]∗)

Summary of Principles and Techniques

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect transmission errors

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect transmission errors

Retransmission allow us to recover from transmission errors

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect transmission errors

Retransmission allow us to recover from transmission errors

ACKs and NACKs give feedback to the sender

◮ ACKs and NACKs are also “protected” with an error-detection code

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect transmission errors

Retransmission allow us to recover from transmission errors

ACKs and NACKs give feedback to the sender

◮ ACKs and NACKs are also “protected” with an error-detection code

◮ corrupted ACKs are interpreded as NACKs, possibly generating duplicate segments

Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect transmission errors

Retransmission allow us to recover from transmission errors

ACKs and NACKs give feedback to the sender

◮ ACKs and NACKs are also “protected” with an error-detection code

◮ corrupted ACKs are interpreded as NACKs, possibly generating duplicate segments

Sequence numbers allow the receiver to ignore duplicate data segments

Lossy And Noisy Channel

Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

How do people deal with such situations?
(Think of radio transmissions over a noisy and shared medium. Also, think
about what we just did for noisy channels)

Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

How do people deal with such situations?
(Think of radio transmissions over a noisy and shared medium. Also, think
about what we just did for noisy channels)

Detection: the receiver and/or the sender must be able to determine that a
packet was lost (how?)

Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

How do people deal with such situations?
(Think of radio transmissions over a noisy and shared medium. Also, think
about what we just did for noisy channels)

Detection: the receiver and/or the sender must be able to determine that a
packet was lost (how?)

ACKs, retransmission, and sequence numbers: lost packets can be easily treated as
corrupted packets

Sender Using Timeouts

S0

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)

u_send(data_pkt)
start_timer()

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)

u_send(data_pkt)
start_timer()

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)

u_send(data_pkt)
start_timer()

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)

u_send(data_pkt)
start_timer()

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)

u_send(data_pkt)
start_timer()

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt = (ACK, 0)
or pkt is corrupted)

u_send(data_pkt)
start_timer()

Sender Using Timeouts

S0 ACK0

r_send(data)

data_pkt = [0, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt = (ACK, 1)
or pkt is corrupted)

u_send(data_pkt)
start_timer()

S1

u_recv(pkt)
and pkt is good
and pkt = (ACK, 0)

ACK1

r_send(data)

data_pkt = [1, data]∗

u_send(data_pkt)
start_timer()

timeout

u_send(data_pkt)
start_timer()

u_recv(pkt)
and (pkt = (ACK, 0)
or pkt is corrupted)

u_send(data_pkt)
start_timer()

u_recv(pkt)
and pkt is good
and pkt = (ACK, 1)

