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A finite-state machine (FSM) is a mathematical abstraction

◮ a.k.a., finite-state automaton (FSA), deterministic finite-state automaton (DFA),
non-deterministic finite-state automaton (NFA)

FSMs are a very useful formalism to specify and implement network protocols

Ubiquitous in computer science

◮ theory of formal languages

◮ compiler design

◮ theory of computation

◮ text processing

◮ behavior specification

◮ . . .
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FSMs to Specify Protocols

States represent the state of a protocol

Transitions are characterized by an event/action label

◮ event: typically consists of an input message or a timeout

◮ action: typically consists of an output message

E.g., here’s a specification of a “simple conversation protocol”

input (or event)

output (or action)

S C

“Hello!”
“Yo”

“Bye.”
“Okay. Bye.”

30s
“Gotta go. Bye.”

“bla”
“aha”



Example

E.g., a subset of a server-side, SMTP-like protocol

S A

accept
“220 Ok”

60sec
close

R

“RCPT TO”
“250 Ok”

T

“MAIL FROM”
“250 Ok”

D

“MAIL FROM”
“250 Ok”

“RCPT TO”
“250 Ok”

30sec
close

30sec
close

M

“DATA”
“354 end with .”

line

60s
close

“.”
“250 accepted”

“QUIT”
“221 bye”,close
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sender receiver

reliable-transfer
protocol
(sender)

r_send()

u_send() u_recv()

network

r_recv()

reliable-transfer
protocol
(receiver)

u_send() u_recv()
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Baseline Protocol

Reliable transport protocol that uses a reliable network
(obviously a contrived example)

sender

S
r_send(data)

u_send(data)

receiver

R
u_recv(data)

r_recv(data)
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Noisy Channel

Reliable transport protocol over a network with bit errors

◮ every so often, a bit will be modified during transmission
◮ that is, a bit will be “flipped”

◮ however, no packets will be lost

How do people deal with such situations?
(Think of a phone call over a noisy line)

◮ error detection: the receiver must be able to know when a received packet is
corrupted (i.e., when it contains flipped bits)

◮ receiver feedback: the receiver must be able to alert the sender that a corrupted
packet was received

◮ retransmission: the sender retransmits corrupted packets
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Error Detection

Key idea: sending redundant information

◮ e.g., the sender could repeat the message twice

◮ error when the receiver hears two different messages

◮ not very efficient (uses twice the number of bits) but there are better
error-detection codes

Error-detection codes

◮ e.g., the parity bit

◮ sender adds one bit that is the xor of all the bits in the message

◮ receiver computes the xor of all the bits and concludes that there was an error if the
result is not 0 (i.e., if it is 1)

Sender:
message is 1001011011101000 ⇒ send 10010110111010000

Receiver:
receives 10010110101010000 ⇒ error!
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Sender
◮ [data]∗ indicates a packet containing data plus an error-detection code (i.e., a
checksum)

S ACK

r_send(data)

data_pkt = [data]∗

u_send(data_pkt)

u_recv(pkt)
and pkt is NACK

u_send(data_pkt)

u_recv(pkt)
and pkt is ACK

Receiver

R

u_recv(pkt)
and pkt is corrupted

u_send(NACK)

u_recv(pkt)
and pkt is good

u_send(ACK)
r_recv(pkt)
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Noisy Channel

This protocol is “synchronous” or “stop-and-wait” for each packet

◮ i.e., the sender must receive a (positive) acknowledgment before it can take more
data from the application layer

Does the protocol really work?

What happens if an error occurs within an ACK/NACK packet?
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Dealing With Bad ACKs/NACKs

Negative acknowledgments for ACKs and NACKs

1. sender says: “let’s go see Taxi Driver”
2. receiver hears: “let’s . . . Taxi . . . ”
3. receiver says: “Repeat message!”
4. sender hears: “. . .noise . . . ”
5. sender says: “Repeat your ACK please!”
6. . . .

Not Good: this protocol doesn’t seem to end

Make ACK/NACK packets so redundant that the sender can always figure out
what the message is, even if a few bits are corrupted

◮ good enough for channels that do not loose messages

Assume a NACK and simply retransmit the packet

◮ good idea, but it introduces duplicate packets (why?)
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Dealing With Duplicate Packets

The sender adds a sequence number to each packet so that the receiver can
determine whether a packet is a retransmission

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver passes “let’s go see Taxi Driver” to application layer
4. receiver says: “Got it!” (i.e., ACK)
5. sender hears: “. . .noise . . . ”
6. sender (assuming a NACK) says: “7: let’s go see Taxi Driver”
7. receiver hears: “7: let’s go see Taxi Driver”
8. receiver ignores the packet

How many bits do we need for the sequence number?

◮ this is a “stop-and-wait” protocol for each packet, so the receiver needs to
distinguish between (1) the next packet and (2) the retransmission of the current
packet

◮ so, one bit is sufficient
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Better Use of ACKs

Do we really need both ACKs and NACKs?

Idea: now that we have sequence numbers, the receiver can convey the
semantics of a NACK by sending an ACK for the last good packet it received

1. sender says: “7: let’s go see Taxi Driver”
2. receiver hears: “7: let’s go see Taxi Driver”
3. receiver says: “Got it!”
4. sender hears: “Got it!”
5. sender says: “8: let’s meet at 8:00PM”
6. receiver hears: “. . .noise . . . ”
7. receiver now says: “Got 7” (instead of saying “Please, resend”)
8. sender hears: “Got 7”
9. sender knows that the current message is 8, and therefore repeats: “8: let’s meet

at 8:00PM”
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Summary of Principles and Techniques

Error detection codes (checksums) can be used to detect transmission errors

Retransmission allow us to recover from transmission errors

ACKs and NACKs give feedback to the sender

◮ ACKs and NACKs are also “protected” with an error-detection code

◮ corrupted ACKs are interpreded as NACKs, possibly generating duplicate segments

Sequence numbers allow the receiver to ignore duplicate data segments
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Lossy And Noisy Channel

Reliable transport protocol over a network that may

◮ introduce bit errors

◮ loose packets

How do people deal with such situations?
(Think of radio transmissions over a noisy and shared medium. Also, think
about what we just did for noisy channels)

Detection: the receiver and/or the sender must be able to determine that a
packet was lost (how?)

ACKs, retransmission, and sequence numbers: lost packets can be easily treated as
corrupted packets
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