Inter-Autonomous-System Routing: Border Gateway Protocol

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

December 19, 2016
Hierarchical routing

BGP
Goal: each router u must be able to compute, for each other router v, the next-hop neighbor x that is on the least-cost path from u to v
Goal: each router u must be able to compute, for each other router v, the next-hop neighbor x that is on the least-cost path from u to v
Network Model
So far we have studied routing over a “flat” network model.
So far we have studied routing over a “flat” network model.
So far we have studied routing over a “flat” network model.

Also, our objective has been to find the least-cost paths between sources and destinations.
More Realistic Topologies
More Realistic Topologies
An Internet Map

©1999 Lucent Technologies
Higher-Level Objectives

- **Scalability**
 - hundreds of millions of hosts in today’s Internet
Higher-Level Objectives

- Scalability
 - hundreds of millions of hosts in today’s Internet
 - transmitting routing information (e.g., LSAs) would be too expensive
Higher-Level Objectives

- **Scalability**
 - hundreds of millions of hosts in today’s Internet
 - transmitting routing information (e.g., LSAs) would be too expensive
 - forwarding would also be too expensive
Higher-Level Objectives

- **Scalability**
 - hundreds of millions of hosts in today’s Internet
 - transmitting routing information (e.g., LSAs) would be too expensive
 - forwarding would also be too expensive

- **Administrative autonomy**
Higher-Level Objectives

Scalability
- hundreds of millions of hosts in today’s Internet
- transmitting routing information (e.g., LSAs) would be too expensive
- forwarding would also be too expensive

Administrative autonomy
- one organization might want to run a distance-vector routing protocol, while another might want to run a link-state protocol
Higher-Level Objectives

■ **Scalability**
 - hundreds of millions of hosts in today’s Internet
 - transmitting routing information (e.g., LSAs) would be too expensive
 - forwarding would also be too expensive

■ **Administrative autonomy**
 - one organization might want to run a distance-vector routing protocol, while another might want to run a link-state protocol
 - an organization might not want to expose its internal network structure
Today’s Internet is organized in autonomous systems (ASs)

- independent administrative domains
Today’s Internet is organized in **autonomous systems (ASs)**

- independent administrative domains

Gateway routers connect an autonomous system with other autonomous systems
Today’s Internet is organized in **autonomous systems (ASs)**

- independent administrative domains

Gateway routers connect an autonomous system with other autonomous systems

An *intra-autonomous system routing protocol* runs within an autonomous system (e.g., OSPF)

- this protocol determines internal routes
 - internal router ↔ internal router
 - internal router ↔ gateway router
 - gateway router ↔ gateway router
Hierarchical Structure

AS1

AS2

AS3

AS4
Hierarchical Structure
An *inter-autonomous system routing protocol* determines routing at the autonomous-system level.
An *inter-autonomous system routing protocol* determines routing at the autonomous-system level.

At AS3:
AS1 \rightarrow
An inter-autonomous system routing protocol determines routing at the autonomous-system level.

At AS3:
AS1 → AS1;
An *inter-autonomous system routing protocol* determines routing at the autonomous-system level.
An *inter-autonomous system routing protocol* determines routing at the autonomous-system level.

At AS3:
AS1 → AS1; AS2 → AS2;
An *inter-autonomous system routing protocol* determines routing at the autonomous-system level.

At AS3:
AS1 → AS1; AS2 → AS2; AS4 →
An inter-autonomous system routing protocol determines routing at the autonomous-system level.

At AS3:
AS1 → AS1; AS2 → AS2; AS4 → AS1.
All routers within an AS compute their *intra-AS* routing information

- using an *intra-domain* routing protocol
Hierarchical Routing

- All routers within an AS compute their *intra-AS* routing information
 - using an *intra-domain* routing protocol

- Gateway routers figure out *inter-AS* routing information
 - using an *inter-domain* routing protocol
Hierarchical Routing

- All routers within an AS compute their *intra-AS* routing information
 - using an *intra-domain* routing protocol

- Gateway routers figure out *inter-AS* routing information
 - using an *inter-domain* routing protocol

- *Inter-AS* routing information is propagated within an AS
 - using an appropriate protocol
Hierarchical Routing

- All routers within an AS compute their *intra-AS* routing information
 - using an *intra-domain* routing protocol

- Gateway routers figure out *inter-AS* routing information
 - using an *inter-domain* routing protocol

- *inter-AS* routing information is propagated within an AS
 - using an appropriate protocol

- Both *inter-AS* and *intra-AS* routing information is used to compile the forwarding tables
Destinations within the same autonomous system are reached as usual
Destinations within the same autonomous system are reached as usual.

What about a destination x outside the autonomous system?
Destinations within the same autonomous system are reached as usual.

What about a destination x outside the autonomous system?

- *inter-AS* information is used to figure out that x is reachable through gateway G_x.
Destinations within the same autonomous system are reached as usual.

What about a destination x outside the autonomous system?

- *inter-AS* information is used to figure out that x is reachable through gateway G_x
- *intra-AS* information is used to figure out how to reach G_x within the AS
Destinations within the same autonomous system are reached as usual

What about a destination x outside the autonomous system?

- *inter-AS* information is used to figure out that x is reachable through gateway G_x
- *intra-AS* information is used to figure out how to reach G_x within the AS
- what if x is reachable through multiple gateway routers G_x, G'_x, \ldots?
Destinations within the same autonomous system are reached as usual.

What about a destination x outside the autonomous system?

- **inter-AS** information is used to figure out that x is reachable through gateway G_x.
- **intra-AS** information is used to figure out how to reach G_x within the AS.
- what if x is reachable through multiple gateway routers G_x, G'_x, \ldots?
 - use **intra-AS** routing information to determine the costs of the (least-cost) paths to G_x, G'_x, \ldots
 - “hot-potato” routing: send it through the closest gateway.
Benefits of Hierarchical Routing

- Administrative autonomy
Benefits of Hierarchical Routing

- **Administrative autonomy**
 - each autonomous system decides what intra-AS routing to use
Benefits of Hierarchical Routing

- **Administrative autonomy**
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses
Benefits of Hierarchical Routing

- **Administrative autonomy**
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses

- **Scalability**
Benefits of Hierarchical Routing

- **Administrative autonomy**
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses

- **Scalability**
 - routers within an autonomous system need to know very little about the internal structure of other autonomous systems
Benefits of Hierarchical Routing

Administrative autonomy

- each autonomous system decides what intra-AS routing to use
- an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses

Scalability

- routers within an autonomous system need to know very little about the internal structure of other autonomous systems
 - essentially only (sub)net addresses
Benefits of Hierarchical Routing

- **Administrative autonomy**
 - each autonomous system decides what intra-AS routing to use
 - an autonomous system needs to expose only minimal information about the internal structure of its network
 - essentially only (sub)net addresses

- **Scalability**
 - routers within an autonomous system need to know very little about the internal structure of other autonomous systems
 - essentially only (sub)net addresses

- External subnet addresses are likely to “aggregate” in groups that admit compact representations
 - this process is called *supernetting*
Inter-AS Routing in the Internet
The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today’s Internet.
The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today’s Internet

- provides reachability information from neighbor ASs
The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today’s Internet:

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS
The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today’s Internet

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS
- determines good routes to all outside subnets
The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today's Internet.

- Provides reachability information from neighbor ASs.
- Transmits reachability information to all internal routers within an AS.
- Determines good routes to all outside subnets.
 - Based on reachability information.
The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today’s Internet

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS
- determines good routes to all outside subnets
 - based on reachability information
 - based on policies
The **Border Gateway Protocol (BGP)** is the inter-AS routing protocol in today's Internet

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS
- determines good routes to all outside subnets
 - based on reachability information
 - based on *policies*
- BGP is a *path-vector* protocol
BGP session: a semi-permanent connection between two routers
BGP Architecture and Terminology

- **BGP session**: a semi-permanent connection between two routers

- **BGP peers**: two routers engaged in a BGP session
 - BGP sessions are established over TCP
BGP session: a semi-permanent connection between two routers

BGP peers: two routers engaged in a BGP session
 - BGP sessions are established over TCP

BGP external session (eBGP): a session across two autonomous systems
BGP Architecture and Terminology

- **BGP session**: a semi-permanent connection between two routers
 - BGP sessions are established over TCP

- **BGP peers**: two routers engaged in a BGP session
 - BGP sessions are established over TCP

- **BGP external session (eBGP)**: a session across two autonomous systems

- **BGP internal session (iBGP)**: a session within an autonomous system
 - note that internal sessions carry *inter*-AS information
 - *intra*-AS routing uses a separate protocol (e.g., OSPF)
Gateway Routers and eBGP

AS1

AS2

AS3

AS4
- **BGP advertisement**: a router advertises routes to networks, much like an entry in a distance-vector
 - destinations are denoted by address *prefixes*
BGP advertisement: a router advertises routes to networks, much like an entry in a distance-vector

- destinations are denoted by address *prefixes*
- an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
BGP Advertisement: a router advertises routes to networks, much like an entry in a distance-vector

- destinations are denoted by address prefixes
- an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
- this is where a router may aggregate prefixes (a.k.a., “supernetting”)

E.g.,

\[
\begin{align*}
128.138.242.0/24 \\
128.138.243.0/24
\end{align*}
\] → 128.138.242.0/23
BGP advertisement: a router advertises routes to networks, much like an entry in a distance-vector

- destinations are denoted by address *prefixes*
- an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
- this is where a router may aggregate prefixes (a.k.a., "supernetting")

E.g.,

\[
\begin{align*}
128.138.242.0/24 & \quad 128.138.243.0/24 \\
191.224.128.0/22 & \quad 191.224.136.0/21 \\
191.224.132.0/22 &
\end{align*}
\]

\[\rightarrow 128.138.242.0/23 \quad \rightarrow \]

\[\rightarrow \]

\[\rightarrow \]
BGP advertisement: a router advertises routes to networks, much like an entry in a distance-vector

- destinations are denoted by address prefixes
- an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
- this is where a router may aggregate prefixes (a.k.a., "supernetting")

E.g.,

\[
\begin{align*}
128.138.242.0/24 & \quad 128.138.243.0/24 \\
\{ & \rightarrow 128.138.242.0/23 \\
191.224.128.0/22 & \quad 191.224.136.0/21 \\
\{ & \rightarrow 191.224.128.0/20 \\
191.224.132.0/22 & \\
\end{align*}
\]
Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)
Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)

BGP attributes: a route advertisement includes a number of attributes

- AS-PATH: sequence of ASNs through which the advertisement has been sent
- **Autonomous system number (ASN):** a unique identifier for each AS (with more than one gateway)

- **BGP attributes:** a route advertisement includes a number of attributes
 - **AS-PATH:** sequence of ASNs through which the advertisement has been sent
 - **NEXT-HOP:** specifies the interface (IP address) to use to forward packets towards the advertised destination
 - used to resolve ambiguous cases where an AS can be reached through multiple gateways (interfaces)
Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)

BGP attributes: a route advertisement includes a number of attributes

- AS-PATH: sequence of ASNs through which the advertisement has been sent
- NEXT-HOP: specifies the interface (IP address) to use to forward packets towards the advertised destination
 - used to resolve ambiguous cases where an AS can be reached through multiple gateways (interfaces)

BGP import policy: used to decide whether to accept or reject the route advertisement

- e.g., a router may not want to send its traffic through one of the AS listed in AS-PATH
1. Router preference: routes are ranked according to a *preference* value
 - configured at the router
 - or learned from another router within the same AS
 - essentially a configuration parameter for the AS
1. Router preference: routes are ranked according to a preference value
 - configured at the router
 - or learned from another router within the same AS
 - essentially a configuration parameter for the AS

2. Shortest AS-PATH
1. Router preference: routes are ranked according to a preference value
 - configured at the router
 - or learned from another router within the same AS
 - essentially a configuration parameter for the AS

2. Shortest AS-PATH

3. Closest NEXT-HOP router
1. Router preference: routes are ranked according to a *preference* value
 - configured at the router
 - or learned from another router within the same AS
 - essentially a configuration parameter for the AS

2. Shortest AS-PATH

3. Closest NEXT-HOP router

4. ...