
Network Applications and the Web

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

February 26, 2020



Outline

General concepts for network applications

Client/server architecture

The world-wide web

Basics of the HTTP protocol



Examples of Network Applications



Examples of Network Applications

The world-wide web



Examples of Network Applications

The world-wide web

Electronic mail



Examples of Network Applications

The world-wide web

Electronic mail

Instant messaging



Examples of Network Applications

The world-wide web

Electronic mail

Instant messaging

Peer-to-peer file sharing



Examples of Network Applications

The world-wide web

Electronic mail

Instant messaging

Peer-to-peer file sharing

Video streaming



Examples of Network Applications

The world-wide web

Electronic mail

Instant messaging

Peer-to-peer file sharing

Video streaming

Multi-user networked games



Examples of Network Applications

The world-wide web

Electronic mail

Instant messaging

Peer-to-peer file sharing

Video streaming

Multi-user networked games

. . .

Remote login

. . .



Examples of Network Applications

The world-wide web

Electronic mail

Instant messaging

Peer-to-peer file sharing

Video streaming

Multi-user networked games

. . .

Remote login

. . .

Remote on-line banking

Network telephony

. . .



End System Applications

Internet applications are end system applications

Internet



End System Applications

Internet applications are end system applications

Internet



End System Applications

Internet applications are end system applications

Internet



Processes

A process is an execution of a program



Processes

A process is an execution of a program

A single sequential program

◮ i.e., a single thread



Processes

A process is an execution of a program

A single sequential program

◮ i.e., a single thread

Processes may exchange messages

◮ obviously, received messages can be considered as input to a process (program)



Processes

A process is an execution of a program

A single sequential program

◮ i.e., a single thread

Processes may exchange messages

◮ obviously, received messages can be considered as input to a process (program)

Different processes may be running on different end systems

◮ possibly on different computers

◮ running different operating systems

◮ a process must be able to address another specific process



Example

while(browsing) {

url = read_url(keyboard);

page = get_web_page(url);

display_web_page(page);

}

while(serving_pages) {

page_name = read_web_request(network);

page = read_file(page_name, disk);

write_page(page, network);

}



Example

while(chatting) {

msg = read_message(keyboard);

write_message(msg, network);

msg = read_message(network);

write_message(msg, screen);

}

while(chatting) {

msg = read_message(network);

write_message(msg, screen);

msg = read_message(keyboard);

write_message(msg, network);

}



Clients and Servers

For each pair of communicating processes, we distinguish two roles



Clients and Servers

For each pair of communicating processes, we distinguish two roles

Client: process that initiates the communication
◮ specifically, if the communication is carried over a connection-oriented service,
then the client is the process that establishes the connection



Clients and Servers

For each pair of communicating processes, we distinguish two roles

Client: process that initiates the communication
◮ specifically, if the communication is carried over a connection-oriented service,
then the client is the process that establishes the connection

Server: process that waits to be contacted
◮ specifically, if the communication is carried over a connection-oriented service,
then the server is the process that passively accepts the connection



Clients and Servers

For each pair of communicating processes, we distinguish two roles

Client: process that initiates the communication
◮ specifically, if the communication is carried over a connection-oriented service,
then the client is the process that establishes the connection

Server: process that waits to be contacted
◮ specifically, if the communication is carried over a connection-oriented service,
then the server is the process that passively accepts the connection

Some applications have processes that act both as clients and servers. This is
often called peer-to-peer architecture



Clients and Servers

For each pair of communicating processes, we distinguish two roles

Client: process that initiates the communication
◮ specifically, if the communication is carried over a connection-oriented service,
then the client is the process that establishes the connection

Server: process that waits to be contacted
◮ specifically, if the communication is carried over a connection-oriented service,
then the server is the process that passively accepts the connection

Some applications have processes that act both as clients and servers. This is
often called peer-to-peer architecture

Caveat: this classification is useful, but it is little more than nomenclature. Some
applications and protocols mix and confuse those terms (e.g., FTP)



Processes and Hosts

An end system (host) may run multiple processes



Processes and Hosts

An end system (host) may run multiple processes

process X

process Y

process Z

Network Application Programmer Interface
Operating System



Processes and Hosts

An end system (host) may run multiple processes

process X

process Y

process Z

Network Application Programmer Interface
Operating System

A process is addressed (within its host) by its port number



Sockets

The operating systemmanages the network interfaces



Sockets

The operating systemmanages the network interfaces

Applications use the network through sockets



Sockets

The operating systemmanages the network interfaces

Applications use the network through sockets

client
host

server
host



Sockets

The operating systemmanages the network interfaces

Applications use the network through sockets

client
host

server
host



Sockets

The operating systemmanages the network interfaces

Applications use the network through sockets

client
host

server
host

operating
system

operating
system



Sockets

The operating systemmanages the network interfaces

Applications use the network through sockets

client
host

server
host

operating
system

operating
system

client
application

server
application



Sockets

The operating systemmanages the network interfaces

Applications use the network through sockets

client
host

server
host

operating
system

operating
system

client
application

server
application

socket socket



Sockets

The operating systemmanages the network interfaces

Applications use the network through sockets

client
host

server
host

operating
system

operating
system

client
application

server
application

socket socket



Application Programs

Client application



Application Programs

Client application

1. create a socket C by “connecting” to the server application
◮ i.e., connect to host H on port P



Application Programs

Client application

1. create a socket C by “connecting” to the server application
◮ i.e., connect to host H on port P

2. use socket C by reading and writing data into it
◮ this is the body of the client application protocol



Application Programs

Client application

1. create a socket C by “connecting” to the server application
◮ i.e., connect to host H on port P

2. use socket C by reading and writing data into it
◮ this is the body of the client application protocol

3. disconnect and destroy C



Application Programs

Client application

1. create a socket C by “connecting” to the server application
◮ i.e., connect to host H on port P

2. use socket C by reading and writing data into it
◮ this is the body of the client application protocol

3. disconnect and destroy C

Server application (running on host H)



Application Programs

Client application

1. create a socket C by “connecting” to the server application
◮ i.e., connect to host H on port P

2. use socket C by reading and writing data into it
◮ this is the body of the client application protocol

3. disconnect and destroy C

Server application (running on host H)

1. create a socket S by “accepting” a connection on port P
◮ a port is often called a “server socket”



Application Programs

Client application

1. create a socket C by “connecting” to the server application
◮ i.e., connect to host H on port P

2. use socket C by reading and writing data into it
◮ this is the body of the client application protocol

3. disconnect and destroy C

Server application (running on host H)

1. create a socket S by “accepting” a connection on port P
◮ a port is often called a “server socket”

2. use socket S by reading and writing data into it
◮ this is the body of the server application protocol



Application Programs

Client application

1. create a socket C by “connecting” to the server application
◮ i.e., connect to host H on port P

2. use socket C by reading and writing data into it
◮ this is the body of the client application protocol

3. disconnect and destroy C

Server application (running on host H)

1. create a socket S by “accepting” a connection on port P
◮ a port is often called a “server socket”

2. use socket S by reading and writing data into it
◮ this is the body of the server application protocol

3. disconnect and destroy S



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



Example 3 (HTTP)

while(browsing) {

url = read_url(keyboard);

socket = open_connection(url);

request = compose_http_request(url);

write_message(request, socket);

reply = read_message(socket);

display_web_page(reply); }

while(serving_http) {

socket = accept_connection();

request = read_message(socket);

reply = serve_http_request(request);

write_message(reply, socket); }



The World-Wide Web



The World-Wide Web

Developed in the early 1990s

Based on the idea of hypertext and links



The World-Wide Web

Developed in the early 1990s

Based on the idea of hypertext and links

Extremely successful, even though. . .

◮ the HyperText Transfer Protocol (HTTP) is just a glorified file transfer protocol

◮ the idea of hypertext and links was already quite old at the time HTTP was
developed



The World-Wide Web

Developed in the early 1990s

Based on the idea of hypertext and links

Extremely successful, even though. . .

◮ the HyperText Transfer Protocol (HTTP) is just a glorified file transfer protocol

◮ the idea of hypertext and links was already quite old at the time HTTP was
developed

Success factors

◮ simplicity (openness) of the HTML language and

◮ simplicity of HTTP (a stateless protocol)

◮ low entry barrier for “publishers”

◮ GUI browsers (remember Netscape? Or Mosaic?!), search engines (AltaVista?!), etc.



Web Terminology



Web Terminology

document—a web page is also called a document



Web Terminology

document—a web page is also called a document

objects—a document may contain several objects (images, applets, etc.). An
object is simply a file



Web Terminology

document—a web page is also called a document

objects—a document may contain several objects (images, applets, etc.). An
object is simply a file

URL—or Uniform Resource Locator specifies the address of an object



Web Terminology

document—a web page is also called a document

objects—a document may contain several objects (images, applets, etc.). An
object is simply a file

URL—or Uniform Resource Locator specifies the address of an object

browser—also called user agent is the program that users run to get and display
documents



Web Terminology

document—a web page is also called a document

objects—a document may contain several objects (images, applets, etc.). An
object is simply a file

URL—or Uniform Resource Locator specifies the address of an object

browser—also called user agent is the program that users run to get and display
documents

Web server—is an application that houses objects, and makes them available
through the HTTP protocol



Overview HTTP



Overview HTTP

The main purpose of HTTP is to provide access to Web objects



Overview HTTP

The main purpose of HTTP is to provide access to Web objects

Uses a connection-oriented transport mechanism (i.e., TCP)

◮ alhough it can also work on UDP



Overview HTTP

The main purpose of HTTP is to provide access to Web objects

Uses a connection-oriented transport mechanism (i.e., TCP)

◮ alhough it can also work on UDP

Consists of a sequence of requests issued by the client, and responses issued
by the server, each one in response to a single request



Overview HTTP

The main purpose of HTTP is to provide access to Web objects

Uses a connection-oriented transport mechanism (i.e., TCP)

◮ alhough it can also work on UDP

Consists of a sequence of requests issued by the client, and responses issued
by the server, each one in response to a single request

HTTP is stateless



Overview HTTP

The main purpose of HTTP is to provide access to Web objects

Uses a connection-oriented transport mechanism (i.e., TCP)

◮ alhough it can also work on UDP

Consists of a sequence of requests issued by the client, and responses issued
by the server, each one in response to a single request

HTTP is stateless

◮ the behavior (semantics) of an HTTP request does not depend on any previous
request



Example: Request



Example: Request

Client request

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it



Example: Reply



Example: Reply

Server reply

HTTP/1.1 200 OK

Connection: close

Date: Tue, 15 Mar 2005 10:00:01 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Tue, 8 Mar 2005 16:44:00 GMT

Content-Length: 2557

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-/W3C//DTD HTML 4.01//EN"

. . .



Protocol Features



Protocol Features

Request

◮ protocol version

◮ URL specification

◮ connection attributes

◮ content/feature negotiation



Protocol Features

Request

◮ protocol version

◮ URL specification

◮ connection attributes

◮ content/feature negotiation

Reply

◮ protocol version

◮ reply status/value

◮ connection attributes

◮ object attributes

◮ content specification (type, length)

◮ content



Protocol Version

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

HTTP/1.1 200 OK

Connection: close

Date: Tue, 15 Mar 2005 10:00:01 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Tue, 8 Mar 2005 16:44:00 GMT

Content-Length: 2557

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-/W3C//DTD HTML 4.01//EN"

. . .



Protocol Version

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

HTTP/1.1 200 OK

Connection: close

Date: Tue, 15 Mar 2005 10:00:01 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Tue, 8 Mar 2005 16:44:00 GMT

Content-Length: 2557

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-/W3C//DTD HTML 4.01//EN"

. . .



Protocol Version



Protocol Version

Principle: a protocol should always include a version number

◮ usually in the very first bits of the protocol (negotiation messages)



Protocol Version

Principle: a protocol should always include a version number

◮ usually in the very first bits of the protocol (negotiation messages)

A mechanism to negotiate the protocol version allows the protocol design to
change

◮ design for change



URL

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

HTTP/1.1 200 OK

Connection: close

Date: Tue, 15 Mar 2005 10:00:01 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Tue, 8 Mar 2005 16:44:00 GMT

Content-Length: 2557

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-/W3C//DTD HTML 4.01//EN"

. . .



URL

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

HTTP/1.1 200 OK

Connection: close

Date: Tue, 15 Mar 2005 10:00:01 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Tue, 8 Mar 2005 16:44:00 GMT

Content-Length: 2557

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-/W3C//DTD HTML 4.01//EN"

. . .



The Host Header

http://www.inf.usi.ch/carzaniga/index.html

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it



The Host Header

http://www.inf.usi.ch/carzaniga/index.html

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

The host name in the URL determines where the request goes
◮ host name maps to a network address



The Host Header

http://www.inf.usi.ch/carzaniga/index.html

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

The host name in the URL determines where the request goes
◮ host name maps to a network address

The host name is also passed as a parameter within the request, so that the
server knows the full URL



The Host Header

http://www.inf.usi.ch/carzaniga/index.html

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

The host name in the URL determines where the request goes
◮ host name maps to a network address

The host name is also passed as a parameter within the request, so that the
server knows the full URL

◮ this is to allow a single server to serve multiple “virtual” sites (e.g., atelier.inf.usi.ch
and www.inf.usi.ch)



Connection

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

HTTP/1.1 200 OK

Connection: close

Date: Tue, 15 Mar 2005 10:00:01 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Tue, 8 Mar 2005 16:44:00 GMT

Content-Length: 2557

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-/W3C//DTD HTML 4.01//EN"

. . .



Connection

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

HTTP/1.1 200 OK

Connection: close

Date: Tue, 15 Mar 2005 10:00:01 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Tue, 8 Mar 2005 16:44:00 GMT

Content-Length: 2557

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-/W3C//DTD HTML 4.01//EN"

. . .



How HTTP Uses (TCP) Connections



How HTTP Uses (TCP) Connections

The first version of HTTP used one (TCP) connection per object
◮ inefficient use of the network
◮ inefficient use of the operating system



How HTTP Uses (TCP) Connections

The first version of HTTP used one (TCP) connection per object
◮ inefficient use of the network
◮ inefficient use of the operating system

HTTP/1.1 introduces persistent connections
◮ the same (TCP) connection can be used by the client to issue multiple request, and
by the server to return multiple replies, and possibly multiple objects



How HTTP Uses (TCP) Connections

The first version of HTTP used one (TCP) connection per object
◮ inefficient use of the network
◮ inefficient use of the operating system

HTTP/1.1 introduces persistent connections
◮ the same (TCP) connection can be used by the client to issue multiple request, and
by the server to return multiple replies, and possibly multiple objects

◮ the default behavior is to use persistent connections



How HTTP Uses (TCP) Connections

The first version of HTTP used one (TCP) connection per object
◮ inefficient use of the network
◮ inefficient use of the operating system

HTTP/1.1 introduces persistent connections
◮ the same (TCP) connection can be used by the client to issue multiple request, and
by the server to return multiple replies, and possibly multiple objects

◮ the default behavior is to use persistent connections

◮ “Connection: close” in the request and response indicates the intention, of the
client and server, respectively, to not use a persistent connection



How HTTP Uses Persistent Connections

A persistent connection can be used to request and transfer two or more
objects



How HTTP Uses Persistent Connections

A persistent connection can be used to request and transfer two or more
objects

client server
request 1



How HTTP Uses Persistent Connections

A persistent connection can be used to request and transfer two or more
objects

client server
request 1

reply 1



How HTTP Uses Persistent Connections

A persistent connection can be used to request and transfer two or more
objects

client server
request 1

reply 1

request 2



How HTTP Uses Persistent Connections

A persistent connection can be used to request and transfer two or more
objects

client server
request 1

reply 1

request 2

reply 2



How HTTP Uses Persistent Connections

A persistent connection can be used to request and transfer two or more
objects

client server
request 1

reply 1

request 2

reply 2

request 3



How HTTP Uses Persistent Connections

A persistent connection can be used to request and transfer two or more
objects

client server
request 1

reply 1

request 2

reply 2

request 3

reply 3



Persistent Connections With Pipelining

A more efficient use of a connection is by pipelining requests



Persistent Connections With Pipelining

A more efficient use of a connection is by pipelining requests

client server
request 1



Persistent Connections With Pipelining

A more efficient use of a connection is by pipelining requests

client server
request 1request 2



Persistent Connections With Pipelining

A more efficient use of a connection is by pipelining requests

client server
request 1request 2request 3



Persistent Connections With Pipelining

A more efficient use of a connection is by pipelining requests

client server
request 1request 2request 3


