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Examples of Network Applications

The world-wide web

Electronic mail

Instant messaging

Peer-to-peer file sharing

Video streaming

Multi-user networked games

. . .

Remote login

. . .

Remote on-line banking

Network telephony

. . .
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Processes

A process is an execution of a program

A single sequential program

◮ i.e., a single thread

Processes may exchange messages

◮ obviously, received messages can be considered as input to a process (program)

Different processes may be running on different end systems

◮ possibly on different computers

◮ running different operating systems

◮ a process must be able to address another specific process



Example

while(browsing) {

url = read_url(keyboard);

page = get_web_page(url);

display_web_page(page);

}

while(serving_pages) {

page_name = read_web_request(network);

page = read_file(page_name, disk);

write_page(page, network);

}



Example

while(chatting) {

msg = read_message(keyboard);

write_message(msg, network);

msg = read_message(network);

write_message(msg, screen);

}

while(chatting) {

msg = read_message(network);

write_message(msg, screen);

msg = read_message(keyboard);

write_message(msg, network);

}
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Clients and Servers

For each pair of communicating processes, we distinguish two roles

Client: process that initiates the communication
◮ specifically, if the communication is carried over a connection-oriented service,
then the client is the process that establishes the connection

Server: process that waits to be contacted
◮ specifically, if the communication is carried over a connection-oriented service,
then the server is the process that passively accepts the connection

Some applications have processes that act both as clients and servers. This is
often called peer-to-peer architecture

Caveat: this classification is useful, but it is little more than nomenclature. Some
applications and protocols mix and confuse those terms (e.g., FTP)
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Processes and Hosts

An end system (host) may run multiple processes

process X

process Y

process Z

Network Application Programmer Interface
Operating System

A process is addressed (within its host) by its port number
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Application Programs

Client application

1. create a socket C by “connecting” to the server application
◮ i.e., connect to host H on port P

2. use socket C by reading and writing data into it
◮ this is the body of the client application protocol

3. disconnect and destroy C

Server application (running on host H)

1. create a socket S by “accepting” a connection on port P
◮ a port is often called a “server socket”

2. use socket S by reading and writing data into it
◮ this is the body of the server application protocol

3. disconnect and destroy S
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The World-Wide Web

Developed in the early 1990s

Based on the idea of hypertext and links

Extremely successful, even though. . .

◮ the HyperText Transfer Protocol (HTTP) is just a glorified file transfer protocol

◮ the idea of hypertext and links was already quite old at the time HTTP was
developed

Success factors

◮ simplicity (openness) of the HTML language and

◮ simplicity of HTTP (a stateless protocol)

◮ low entry barrier for “publishers”

◮ GUI browsers (remember Netscape? Or Mosaic?!), search engines (AltaVista?!), etc.
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Web Terminology

document—a web page is also called a document

objects—a document may contain several objects (images, applets, etc.). An
object is simply a file

URL—or Uniform Resource Locator specifies the address of an object

browser—also called user agent is the program that users run to get and display
documents

Web server—is an application that houses objects, and makes them available
through the HTTP protocol
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Overview HTTP

The main purpose of HTTP is to provide access to Web objects

Uses a connection-oriented transport mechanism (i.e., TCP)

◮ alhough it can also work on UDP

Consists of a sequence of requests issued by the client, and responses issued
by the server, each one in response to a single request

HTTP is stateless

◮ the behavior (semantics) of an HTTP request does not depend on any previous
request
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Client request

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it
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Example: Reply

Server reply

HTTP/1.1 200 OK

Connection: close

Date: Tue, 15 Mar 2005 10:00:01 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Tue, 8 Mar 2005 16:44:00 GMT

Content-Length: 2557

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-/W3C//DTD HTML 4.01//EN"

. . .
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Protocol Features

Request

◮ protocol version

◮ URL specification

◮ connection attributes

◮ content/feature negotiation

Reply

◮ protocol version

◮ reply status/value

◮ connection attributes

◮ object attributes

◮ content specification (type, length)

◮ content
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Protocol Version

Principle: a protocol should always include a version number

◮ usually in the very first bits of the protocol (negotiation messages)

A mechanism to negotiate the protocol version allows the protocol design to
change

◮ design for change
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The Host Header

http://www.inf.usi.ch/carzaniga/index.html

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

The host name in the URL determines where the request goes
◮ host name maps to a network address

The host name is also passed as a parameter within the request, so that the
server knows the full URL

◮ this is to allow a single server to serve multiple “virtual” sites (e.g., atelier.inf.usi.ch
and www.inf.usi.ch)
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How HTTP Uses (TCP) Connections

The first version of HTTP used one (TCP) connection per object
◮ inefficient use of the network
◮ inefficient use of the operating system

HTTP/1.1 introduces persistent connections
◮ the same (TCP) connection can be used by the client to issue multiple request, and
by the server to return multiple replies, and possibly multiple objects

◮ the default behavior is to use persistent connections

◮ “Connection: close” in the request and response indicates the intention, of the
client and server, respectively, to not use a persistent connection
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