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Transport Control Protocol (TCP)

◮ conntection-oriented (i.e., “connections”)

User Datagram Protocol (UDP)

◮ connectionless (i.e., “messages”)

Terminology

◮ transport-layer packets are called segments

Basic assumptions on the underlying network layer

◮ every host has one unique IP address

◮ best-effort delivery service

◮ no guarantees on the integrity of segments

◮ no guarantees on the order in which segments are delivered



Transport-Layer Value-Added Service



Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts



Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts

Reliable data transfer

◮ i.e., integrity and possibly ordered delivery



Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts

Reliable data transfer

◮ i.e., integrity and possibly ordered delivery

Connections

◮ i.e., streams

◮ can be seen as the same as ordered delivery



Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts

Reliable data transfer

◮ i.e., integrity and possibly ordered delivery

Connections

◮ i.e., streams

◮ can be seen as the same as ordered delivery

Congestion control

◮ i.e., end-to-end traffic (admission) control so as to avoid destructive congestions
within the network
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How do we distinguish all these “connections”?
(in this case, connections between the same two hosts)
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Ports

Each application running on a host is identified (within that host) by a unique
port number

◮ port numbers are simply cross-platform process identifiers

How do we identify a “connection”?

◮ two pairs of host and application identifiers

◮ i.e., two pairs (IP-address, port)

How do we find out which application (host and port number) to connect to?

◮ outside the scope of the definition of the transport layer

◮ but of course we can have “well-known” service numbers
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Ports

The message format of both UDP and TCP starts with the source and
destination port numbers

0 1516 31

source port destination port

. . .

E.g.,

A B

src port

1234

dst port

80

dst portsrc port

123480
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The UDP message format is very simple

0 1516 31

source port destination port

length checksum

application
data

(message)
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UDP Features

UDP provides only the two most basic functionalities of a transport protocol

◮ application identification (multiplexing/demultiplexing)

◮ integrity check by means of a CRC-type checksum

What if there is no application at the other end?

How is the checksum computed?

◮ which parts of the segment does it cover?

What should happen when the checksum doesn’t check?


