
The Transport Layer

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

March 18, 2020



Outline

Basic concepts in transport-layer protocols

Multiplexing/demultiplexing

UDP message format

Reliable transfer



Transport Layer

Internet



Transport Layer

Internet

Web
browser

Web
server



Transport Layer

Internet

Web
browser

Web
server



Transport Layer

Internet

GET / HTTP/1.1
Web

browser

Web
server



Transport Layer

Internet

GET / HTTP/1.1
Web

browser

Web
server

Primitive communication between applications



Type of Service



Type of Service

HTTP



Type of Service

HTTP SMTP



Type of Service

HTTP SMTP DNS



Type of Service

HTTP SMTP DNS



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection messages

app.

DNS

root

.ch

unisi.ch



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection messages

app.

DNS

root

.ch

unisi.ch



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection messages

app.

DNS

root

.ch

unisi.ch



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection messages

app.

DNS

root

.ch

unisi.ch



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection messages

app.

DNS

root

.ch

unisi.ch



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection messages

app.

DNS

root

.ch

unisi.ch



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection messages

app.

DNS

root

.ch

unisi.ch



Type of Service

HTTP SMTP DNS

GET / HTTP/1.1. . .

HTTP/1.1 200. . .

GET. . .

HTTP/1.1 200. . .

connection

250 Yo. . .

HELO. . .
. . .

MAIL FROM:. . .
. . .

RCPT TO:. . .
. . .

QUIT

221 Bye

connection messages

app.

DNS

root

.ch

unisi.ch



Transport Layer in the Internet



Transport Layer in the Internet

Transport Control Protocol (TCP)

◮ conntection-oriented (i.e., “connections”)



Transport Layer in the Internet

Transport Control Protocol (TCP)

◮ conntection-oriented (i.e., “connections”)

User Datagram Protocol (UDP)

◮ connectionless (i.e., “messages”)



Transport Layer in the Internet

Transport Control Protocol (TCP)

◮ conntection-oriented (i.e., “connections”)

User Datagram Protocol (UDP)

◮ connectionless (i.e., “messages”)

Terminology

◮ transport-layer packets are called segments



Transport Layer in the Internet

Transport Control Protocol (TCP)

◮ conntection-oriented (i.e., “connections”)

User Datagram Protocol (UDP)

◮ connectionless (i.e., “messages”)

Terminology

◮ transport-layer packets are called segments

Basic assumptions on the underlying network layer



Transport Layer in the Internet

Transport Control Protocol (TCP)

◮ conntection-oriented (i.e., “connections”)

User Datagram Protocol (UDP)

◮ connectionless (i.e., “messages”)

Terminology

◮ transport-layer packets are called segments

Basic assumptions on the underlying network layer

◮ every host has one unique IP address



Transport Layer in the Internet

Transport Control Protocol (TCP)

◮ conntection-oriented (i.e., “connections”)

User Datagram Protocol (UDP)

◮ connectionless (i.e., “messages”)

Terminology

◮ transport-layer packets are called segments

Basic assumptions on the underlying network layer

◮ every host has one unique IP address

◮ best-effort delivery service

◮ no guarantees on the integrity of segments

◮ no guarantees on the order in which segments are delivered



Transport-Layer Value-Added Service



Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts



Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts

Reliable data transfer

◮ i.e., integrity and possibly ordered delivery



Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts

Reliable data transfer

◮ i.e., integrity and possibly ordered delivery

Connections

◮ i.e., streams

◮ can be seen as the same as ordered delivery



Transport-Layer Value-Added Service

Transport-layer multiplexing/demultiplexing

◮ i.e., connecting applications as opposed to hosts

Reliable data transfer

◮ i.e., integrity and possibly ordered delivery

Connections

◮ i.e., streams

◮ can be seen as the same as ordered delivery

Congestion control

◮ i.e., end-to-end traffic (admission) control so as to avoid destructive congestions
within the network



Multiplexing/Demultiplexing

Internet



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1
Web

browser

Web
server



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1

HELO ...Web
browser

Web
server

e-mail
client

e-mail
server



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1

HELO ...

GET /index.html HTTP/1.1
Web

browser

Web
server

e-mail
client

e-mail
server

Web
browser



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1

HELO ...

GET /index.html HTTP/1.1
Web

browser

Web
server

e-mail
client

e-mail
server

Web
browser

How do we distinguish all these “connections”?



Multiplexing/Demultiplexing

Internet

GET / HTTP/1.1

HELO ...

GET /index.html HTTP/1.1
Web

browser

Web
server

e-mail
client

e-mail
server

Web
browser

How do we distinguish all these “connections”?
(in this case, connections between the same two hosts)



Ports



Ports

Each application running on a host is identified (within that host) by a unique
port number

◮ port numbers are simply cross-platform process identifiers



Ports

Each application running on a host is identified (within that host) by a unique
port number

◮ port numbers are simply cross-platform process identifiers

How do we identify a “connection”?



Ports

Each application running on a host is identified (within that host) by a unique
port number

◮ port numbers are simply cross-platform process identifiers

How do we identify a “connection”?

◮ two pairs of host and application identifiers

◮ i.e., two pairs (IP-address, port)



Ports

Each application running on a host is identified (within that host) by a unique
port number

◮ port numbers are simply cross-platform process identifiers

How do we identify a “connection”?

◮ two pairs of host and application identifiers

◮ i.e., two pairs (IP-address, port)

How do we find out which application (host and port number) to connect to?



Ports

Each application running on a host is identified (within that host) by a unique
port number

◮ port numbers are simply cross-platform process identifiers

How do we identify a “connection”?

◮ two pairs of host and application identifiers

◮ i.e., two pairs (IP-address, port)

How do we find out which application (host and port number) to connect to?

◮ outside the scope of the definition of the transport layer

◮ but of course we can have “well-known” service numbers



Ports



Ports

The message format of both UDP and TCP starts with the source and
destination port numbers

0 1516 31

source port destination port

. . .



Ports

The message format of both UDP and TCP starts with the source and
destination port numbers

0 1516 31

source port destination port

. . .

E.g.,

A B

src port

1234

dst port

80



Ports

The message format of both UDP and TCP starts with the source and
destination port numbers

0 1516 31

source port destination port

. . .

E.g.,

A B

src port

1234

dst port

80

dst portsrc port



Ports

The message format of both UDP and TCP starts with the source and
destination port numbers

0 1516 31

source port destination port

. . .

E.g.,

A B

src port

1234

dst port

80

dst portsrc port

123480



UDP Packet Format



UDP Packet Format

The UDP message format is very simple

0 1516 31

source port destination port

length checksum

application
data

(message)



UDP Features



UDP Features

UDP provides only the two most basic functionalities of a transport protocol



UDP Features

UDP provides only the two most basic functionalities of a transport protocol

◮ application identification (multiplexing/demultiplexing)



UDP Features

UDP provides only the two most basic functionalities of a transport protocol

◮ application identification (multiplexing/demultiplexing)

◮ integrity check by means of a CRC-type checksum



UDP Features

UDP provides only the two most basic functionalities of a transport protocol

◮ application identification (multiplexing/demultiplexing)

◮ integrity check by means of a CRC-type checksum

What if there is no application at the other end?



UDP Features

UDP provides only the two most basic functionalities of a transport protocol

◮ application identification (multiplexing/demultiplexing)

◮ integrity check by means of a CRC-type checksum

What if there is no application at the other end?

How is the checksum computed?

◮ which parts of the segment does it cover?



UDP Features

UDP provides only the two most basic functionalities of a transport protocol

◮ application identification (multiplexing/demultiplexing)

◮ integrity check by means of a CRC-type checksum

What if there is no application at the other end?

How is the checksum computed?

◮ which parts of the segment does it cover?

What should happen when the checksum doesn’t check?


