Basics of Routing and
Link-State Routing

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

May 6, 2020



Routing problem

Graph model

Classes of routing algorithms
Broadcast routing

Link-state routing

Dijkstra’s algorithm

Outline



Routing Problem



Routing Problem

m Finding paths through a network



Routing Problem

m Finding paths through a network




Routing Problem

m Finding paths through a network

m Example: g — j?



Graph Model

m The network is modeled as a graph

G = (V,E)



Graph Model

m The network is modeled as a graph

G = (V,E)

» Vs a set of vertices representing the routers



Graph Model

m The network is modeled as a graph

G = (V,E)

» Vs a set of vertices representing the routers

» £ C V XVisasetof edges representing communication links

> e.g., (u,v) € Eiff router u is on the same subnet as v



Graph Model

m The network is modeled as a graph

G = (V,E)

» Vs a set of vertices representing the routers
» £ C V XVisasetof edges representing communication links

> e.g., (u,v) € Eiff router u is on the same subnet as v

» Gis assumed to be an undirected graph, meaning that links are bidirectional

> i.e,(uv) EEe (v,u) eEforallu,veN



Graph Model

m The network is modeled as a graph

G = (V,E)

v

V is a set of vertices representing the routers

\ 4

E C VX Vis aset of edges representing communication links

> e.g., (u,v) € Eiff router u is on the same subnet as v

» Gis assumed to be an undirected graph, meaning that links are bidirectional

> i.e,(uv) EEe (v,u) eEforallu,veN

A cost functionc: E —> R

v

> costs are always positive: c(e) > Oforalle € £
> links are symmetric: c(u,v) = c(v,u) forallu,v e N



Routing in the Graph Model

m For every router u € V, for every other router v € V, compute the path
P, = U,X1,X2,...,Xp,Vsuch that



Routing in the Graph Model

m For every router u € V, for every other router v € V, compute the path
P, = U,X1,X2,...,Xp,Vsuch that

» P, is completely contained in the network graph G. l.e.,
(U, x1) €V, (x1,x2) € V..., (xp,v) €V



Routing in the Graph Model

m For every router u € V, for every other router v € V, compute the path
P, = U,X1,X2,...,Xp,Vsuch that

» P, is completely contained in the network graph G. l.e.,
(U, x1) €V, (x1,x2) € V..., (xp,v) €V

» P, is aleast-cost path, where the cost of the path is
c(Py=y) = c(u,x1) + c(x1,x2) + ...+ c(Xp, V)



Routing in the Graph Model

m For every router u € V, for every other router v € V, compute the path
P, = U,X1,X2,...,Xp,Vsuch that

» P, is completely contained in the network graph G. l.e.,
(U, x1) €V, (x1,x2) € V..., (xp,v) €V

» P, is aleast-cost path, where the cost of the path is
c(Py=y) = c(u,x1) + c(x1,x2) + ...+ c(Xp, V)

m Compile u's forwarding table by adding the following entry:

A(v) = lu(x1)

» A(v) is the address (or set of addresses) of router v

» I,(xq) is the interface that connects u to the first next-hop router x; in
Pusy = U, X1, X2, .. ., Xp, V



Back To The Example

m Example: g —j



Back To The Example

m Example: g —j

> least-cost pathis P,; = a,e,b,f,j



Back To The Example

m Example: g —j

> least-cost pathis P,; = a,e,b,f,j

» a's forwarding table will contain an entry since Iy(e) = 2



Two General Strategies

m There are two main strategies to implement a routing algorithm



Two General Strategies

m There are two main strategies to implement a routing algorithm

m Link-state routing



Two General Strategies

m There are two main strategies to implement a routing algorithm

m Link-state routing

» global view of the network

» local computation of least-cost paths



Two General Strategies

m There are two main strategies to implement a routing algorithm

m Link-state routing

» global view of the network

» local computation of least-cost paths

m Distance-vector routing



Two General Strategies

m There are two main strategies to implement a routing algorithm

m Link-state routing

» global view of the network

» local computation of least-cost paths

m Distance-vector routing

» local view of the network

» global computation of least-cost paths



Link-State Routing

m Router u maintains a complete view of the network graph G (including all links
and their costs)



Link-State Routing

m Router u maintains a complete view of the network graph G (including all links
and their costs)

» every router v advertises its adjacent links (their costs) to every other router in the
network; this information is called link state

» link-state advertisements (LSAs) are broadcast through the entire network



Link-State Routing

m Router u maintains a complete view of the network graph G (including all links
and their costs)

» every router v advertises its adjacent links (their costs) to every other router in the
network; this information is called link state
» link-state advertisements (LSAs) are broadcast through the entire network

» routers collect link-state advertisements from other routers, and they use them to
compile and maintain a complete view of G



Link-State Routing

m Router u maintains a complete view of the network graph G (including all links
and their costs)

» every router v advertises its adjacent links (their costs) to every other router in the
network; this information is called link state
» link-state advertisements (LSAs) are broadcast through the entire network

» routers collect link-state advertisements from other routers, and they use them to
compile and maintain a complete view of G

m Using its local representation of G, router u computes the least-cost paths from
u to every other router in the network



Link-State Routing

m Router u maintains a complete view of the network graph G (including all links
and their costs)

» every router v advertises its adjacent links (their costs) to every other router in the
network; this information is called link state
» link-state advertisements (LSAs) are broadcast through the entire network

» routers collect link-state advertisements from other routers, and they use them to
compile and maintain a complete view of G

m Using its local representation of G, router u computes the least-cost paths from
u to every other router in the network

» the computation is local



Link-State Advertisements



Link-State Advertisements

LSA; = {(a,b,3),(a,e,1),(a,d, 1)}



Link-State Advertisements

1
(®

G——E—0

LSA; = {(a,b,3),(a,e,1),(a,d, 1)}




Link-State Advertisements

1
(®

LSA; = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}



Link-State Advertisements

LSA; = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}



Link-State Advertisements

LSA; = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}
LSA; ={(d,a,1),(d,g,1),(d,e,3)}



Link-State Advertisements

LSA; = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}
LSA; ={(d,a,1),(d,g,1),(d,e,3)}



Link-State Advertisements

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}
LSAq = {(d,a,1),(d,g,1),(d,e,3)}
LSAf = {(fa G 1)a (f’ b’ 1)a (f’ e, 3)’ (f’ ha 4)’ (f’ja 2)}



Link-State Advertisements

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}
LSAq = {(d,a,1),(d,g,1),(d,e,3)}
LSAf = {(fa G 1)a (f’ b’ 1)a (f’ e, 3)’ (f’ ha 4)’ (f’ja 2)}



Link-State Advertisements

LSA, = {(a,b,3),(a,e,1),(a,d, 1)}
LSA, = {(h,e, 1), (h,f,4),(h,j,14)}
LSAq = {(d,a,1),(d,g,1),(d,e,3)}
LSAf = {(fa G 1)a (f’ b’ 1)a (f’ e, 3)’ (f’ ha 4)’ (f’ja 2)}



Link-State Routing Ingredients

What do we need to implement link-state routing?



Link-State Routing Ingredients

What do we need to implement link-state routing?

m Every router sends its LSA to every other router in the network, so we need a
broadcast routing scheme



Link-State Routing Ingredients

What do we need to implement link-state routing?

m Every router sends its LSA to every other router in the network, so we need a
broadcast routing scheme

m Once we have all the LSAs from every router, and therefore we complete
knowledge of G, we need an algorithm to compute least-cost paths in a graph



Broadcast Routing



Broadcast Routing

m Flooding

» every router forwards a broadcast packet to every adjacent router, except the one
that sent the packet



Broadcast Routing

m Flooding

» every router forwards a broadcast packet to every adjacent router, except the one
that sent the packet

m Simple and elegant



Broadcast Routing

m Flooding

» every router forwards a broadcast packet to every adjacent router, except the one
that sent the packet

m Simple and elegant

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router



Broadcast Routing

m Flooding

» every router forwards a broadcast packet to every adjacent router, except the one
that sent the packet

m Simple and elegant

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router

m Any problem with this solution?



Broadcast Routing

m Flooding

» every router forwards a broadcast packet to every adjacent router, except the one
that sent the packet

m Simple and elegant

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router

m Any problem with this solution?

» cyclesin the network create packet storms



Broadcast Routing (2)



Broadcast Routing (2)

m Reverse-path broadcast
» every router forwards a broadcast packet to every adjacent router, except the one
where it received the packet router

» arouter u accepts a broadcast packet p originating at router s only if p arrives on
the link that is on the direct (unicast) path from u to s



Broadcast Routing (2)

m Reverse-path broadcast
» every router forwards a broadcast packet to every adjacent router, except the one
where it received the packet router

» arouter u accepts a broadcast packet p originating at router s only if p arrives on
the link that is on the direct (unicast) path from u to s

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router



Broadcast Routing (2)

m Reverse-path broadcast

» every router forwards a broadcast packet to every adjacent router, except the one
where it received the packet router

» arouter u accepts a broadcast packet p originating at router s only if p arrives on
the link that is on the direct (unicast) path from u to s

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router

m No packet storms even in the presence of cycles in G



Broadcast Routing (2)

m Reverse-path broadcast

» every router forwards a broadcast packet to every adjacent router, except the one
where it received the packet router

» arouter u accepts a broadcast packet p originating at router s only if p arrives on
the link that is on the direct (unicast) path from u to s

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router

m No packet storms even in the presence of cycles in G

m Any problem with this solution?



Broadcast Routing (2)

m Reverse-path broadcast

» every router forwards a broadcast packet to every adjacent router, except the one
where it received the packet router

» arouter u accepts a broadcast packet p originating at router s only if p arrives on
the link that is on the direct (unicast) path from u to s

m Correct w.r.t. the broadcast requirement: a broadcast packet will eventually
reach every router

m No packet storms even in the presence of cycles in G

m Any problem with this solution?

» it requires (unicast) routing information

» so it is obviously useless to implement a routing algorithm



Broadcast Routing (3)

m Sequence-number controlled flooding



Broadcast Routing (3)

m Sequence-number controlled flooding

» the originator s of a broadcast packet marks the packet with a sequence number ng



Broadcast Routing (3)

m Sequence-number controlled flooding

» the originator s of a broadcast packet marks the packet with a sequence number ng

» every router u stores the most recent sequence number seen from each source
router. Let's assume that v has seen sequence numbers from s up to ns



Broadcast Routing (3)

m Sequence-number controlled flooding

» the originator s of a broadcast packet marks the packet with a sequence number ng

» every router u stores the most recent sequence number seen from each source
router. Let's assume that v has seen sequence numbers from s up to ns

» arouter accepts a broadcast packet p originating at s only if p carries a sequence
number seq(p) that is higher than the most recent one seen from s: seq(p) > ns



Broadcast Routing (3)

m Sequence-number controlled flooding

>

>

the originator s of a broadcast packet marks the packet with a sequence number ng

every router u stores the most recent sequence number seen from each source
router. Let's assume that v has seen sequence numbers from s up to ns

a router accepts a broadcast packet p originating at s only if p carries a sequence
number seq(p) that is higher than the most recent one seen from s: seq(p) > ns

accepted packets are forwarded to every adjacent router, except the previous-hop
router



Broadcast Routing (3)

m Sequence-number controlled flooding

» the originator s of a broadcast packet marks the packet with a sequence number ng

» every router u stores the most recent sequence number seen from each source
router. Let's assume that v has seen sequence numbers from s up to ns

» arouter accepts a broadcast packet p originating at s only if p carries a sequence
number seq(p) that is higher than the most recent one seen from s: seq(p) > ns

» accepted packets are forwarded to every adjacent router, except the previous-hop
router

v

u updates its table of sequence numbers ng « seq(p)



Dijkstra’s Algorithm

m Executing locally at node u



Dijkstra’s Algorithm

m Executing locally at node u

m Variables storing values known at each iteration



Dijkstra’s Algorithm

m Executing locally at node u

m Variables storing values known at each iteration

» D[v], cost of the least-cost path from u to v



Dijkstra’s Algorithm

m Executing locally at node u

m Variables storing values known at each iteration

» D[v], cost of the least-cost path from u to v

» p[v], node preceding v (neighbor of v) on the least-cost path from u to v



Dijkstra’s Algorithm

m Executing locally at node u

m Variables storing values known at each iteration
» D[v], cost of the least-cost path from u to v
» p[v], node preceding v (neighbor of v) on the least-cost path from u to v

» N, nodes of G whose least-cost path from u is definitely known



Dijkstra’s Algorithm

DKSTRA(G = (V,E), u)
1 N« {u}
2 forallveV
do if v € neighbors(u)
then D[v] « c(u,v)
plv] < u
else D[v] « o
while N # V
do find w ¢ N such that D[w] is minimum
N — NU {w}
for all v € neighbors(w) \ N
11 do if D[w] + c(w,v) < D[v]
12 then D[v] « D[w] + c(w, V)
13 plv] « w

—_—
Swoo~NOoOUL B~ W



Example

DIKSTRA(G = (V,E), u)
1 N« {u}
2 forallveVv
3 do if v € neighbors(u) 1 5
4 then D[v] « c(u,v) 1 1 1
5 plv] «u
6 else D[v] « o )—3 (b 4 (c
7 while N # V © ~ ©)
8 do find w ¢ N such that D[w] is minimum
9 N — NU{w}

10 for all v € neighbors(w) \ N

11 do if D[w] + c(w,v) < D[v]

12 then D[v] <« D[w] + c(w, v)

13 plv] « w



