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How long does it take to transfer a big file?

Example:

size = 6Gb (e.g., a movie file)

rate = 2Mb/s

T = 3000s = 50min

In general:

T =

size

rate

(we ignore the O(1) propagation delay, which is marginal for large files)

How long does it take to transfer a big and very popular file?

◮ N clients want the file
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Exploiting Peer-to-Peer Connections

1. Split the file into blocks

2. The server sends different blocks to different clients

3. The clients exchange blocks using “peer-to-peer” connections
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The transfer time does not depend on the number of receivers!
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BitTorrent: Tracker and Startup

A tracker keeps track of which peers participate in the “torrent”

◮ at startup, Alice requests a list of peers from the tracker

◮ then, Alice tries to establish direct connections with her “neighbor peers”

◮ periodically, Alice tells the tracker that she is still participating in the torrent

The torrent (one or more files) is split into equal-size chunks

◮ peers accumulate chunks and keep track of the chunks they have

◮ it might be that no single peer has all the chunks, as long as all the chunks are
available from some peer
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BitTorrent: Exchanging Chunks

Neigboring peers exchange their lists of chunks and eventually exchange
chunks

◮ periodically, Alice requests the list of chunks of her peers

◮ Alice figures who has what chunks, and therefore requests some chunks from her
neighbors

◮ Alice requests the rarest chunk first (why?)

◮ Alice also receives requests from her neighbors

◮ Alice gives priority to neighbors that share the most (highest rate): she sends her
chunks to the top four (why?)

◮ periodically, Alice also selects another trading partner at random (why?)
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Searching

How do you find files in a file-sharing network?

Centralized index (i.e., client-server)

◮ typically maps objects (e.g., files, nicknames) to IP addresses

◮ not too good: performance bottleneck, single point of failure, etc.

Distributed peer-to-peer search with query flooding

◮ not too good (why?)

◮ many variants: limited scope, probabilistic, hierarchical with super-peeers, etc.

Distributed peer-to-peer search with structured indexes

◮ a.k.a., distributed hash tables (DHTs)

◮ many variants, lots of interesting theoretical and practical developments
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Skype

How does Skype work? . . . or what Skype does not want you to know

Search: how does Alice find Bob?

◮ peer-to-peer index

Connections: how does Alice connect to Bob?

◮ direct connections when possible

◮ indirect connections through a relay “super-peer”

And much more: chat, audio/video codecs, multi-party communication, etc.


