
Peer-To-Peer Applications

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

March 16, 2020

Outline

Transferring big files
◮ client-server vs. peer-to-peer

BitTorrent

Peer-to-peer search

Miscellaneous

Transferring Big Files

How long does it take to transfer a big file?

Transferring Big Files

How long does it take to transfer a big file?

Example:

size = 6Gb (e.g., a movie file)

rate = 2Mb/s

T = ?

Transferring Big Files

How long does it take to transfer a big file?

Example:

size = 6Gb (e.g., a movie file)

rate = 2Mb/s

T = 3000s = 50min

Transferring Big Files

How long does it take to transfer a big file?

Example:

size = 6Gb (e.g., a movie file)

rate = 2Mb/s

T = 3000s = 50min

In general:

T =

size

rate

(we ignore the O(1) propagation delay, which is marginal for large files)

Transferring Big Files

How long does it take to transfer a big file?

Example:

size = 6Gb (e.g., a movie file)

rate = 2Mb/s

T = 3000s = 50min

In general:

T =

size

rate

(we ignore the O(1) propagation delay, which is marginal for large files)

How long does it take to transfer a big and very popular file?

◮ N clients want the file

Transferring Big and Popular Files

Internet

S

C1

C2C3

C4

C5

C6

Transferring Big and Popular Files

Internet

S

C1

C2C3

C4

C5

C6us

d1 d2

d3

d4 d5

d6

Transferring Big and Popular Files

Internet

S

C1

C2C3

C4

C5

C6us

d1 d2

d3

d4 d5

d6

Let F = file size,N = number of clients

Transferring Big and Popular Files

Internet

S

C1

C2C3

C4

C5

C6us

d1 d2

d3

d4 d5

d6

Let F = file size,N = number of clients

TCS ≥ max

(NF

us
,

F

dmin

)

Exploiting Peer-to-Peer Connections

Exploiting Peer-to-Peer Connections

1. Split the file into blocks

Exploiting Peer-to-Peer Connections

1. Split the file into blocks

2. The server sends different blocks to different clients

Exploiting Peer-to-Peer Connections

1. Split the file into blocks

2. The server sends different blocks to different clients

3. The clients exchange blocks using “peer-to-peer” connections

Transfer Time with P2P Connections

Internet

S

P1

P2P3

P4

P5

P6us

d1 d2

d3

d4 d5

d6

Transfer Time with P2P Connections

Internet

S

P1

P2P3

P4

P5

P6us

d1 d2

d3

d4 d5

d6u1

u2

u3

u4

u5

u6

Transfer Time with P2P Connections

Internet

S

P1

P2P3

P4

P5

P6us

d1 d2

d3

d4 d5

d6u1

u2

u3

u4

u5

u6

TP2P ≥ max

(F

us
,

F

dmin
,

NF

us +
∑N

i=1 ui

)

Transferring Big and Popular Files

Transfer time is at least

TP2P ≥ max

(F

us
,

F

dmin
,

NF

us +
∑N

i=1 ui

)

Transferring Big and Popular Files

Transfer time is at least

TP2P ≥ max

(F

us
,

F

dmin
,

NF

us +
∑N

i=1 ui

)

Assuming u1 = u2 = · · · = uN = up

TP2P ≥ max

(F

us
,

F

dmin
,

F

us/N + up

)

Transferring Big and Popular Files

Transfer time is at least

TP2P ≥ max

(F

us
,

F

dmin
,

NF

us +
∑N

i=1 ui

)

Assuming u1 = u2 = · · · = uN = up

TP2P ≥ max

(F

us
,

F

dmin
,

F

us/N + up

)

And for large peer groups (N ≫ 1)

TP2P ≥ max

(F

us
,

F

dmin
,

F

up

)

Transferring Big and Popular Files

Transfer time is at least

TP2P ≥ max

(F

us
,

F

dmin
,

NF

us +
∑N

i=1 ui

)

Assuming u1 = u2 = · · · = uN = up

TP2P ≥ max

(F

us
,

F

dmin
,

F

us/N + up

)

And for large peer groups (N ≫ 1)

TP2P ≥ max

(F

us
,

F

dmin
,

F

up

)

The transfer time does not depend on the number of receivers!

BitTorrent: Tracker and Startup

BitTorrent: Tracker and Startup

A tracker keeps track of which peers participate in the “torrent”

BitTorrent: Tracker and Startup

A tracker keeps track of which peers participate in the “torrent”

◮ at startup, Alice requests a list of peers from the tracker

◮ then, Alice tries to establish direct connections with her “neighbor peers”

◮ periodically, Alice tells the tracker that she is still participating in the torrent

BitTorrent: Tracker and Startup

A tracker keeps track of which peers participate in the “torrent”

◮ at startup, Alice requests a list of peers from the tracker

◮ then, Alice tries to establish direct connections with her “neighbor peers”

◮ periodically, Alice tells the tracker that she is still participating in the torrent

The torrent (one or more files) is split into equal-size chunks

◮ peers accumulate chunks and keep track of the chunks they have

◮ it might be that no single peer has all the chunks, as long as all the chunks are
available from some peer

BitTorrent: Exchanging Chunks

BitTorrent: Exchanging Chunks

Neigboring peers exchange their lists of chunks and eventually exchange
chunks

BitTorrent: Exchanging Chunks

Neigboring peers exchange their lists of chunks and eventually exchange
chunks

◮ periodically, Alice requests the list of chunks of her peers

BitTorrent: Exchanging Chunks

Neigboring peers exchange their lists of chunks and eventually exchange
chunks

◮ periodically, Alice requests the list of chunks of her peers

◮ Alice figures who has what chunks, and therefore requests some chunks from her
neighbors

◮ Alice requests the rarest chunk first (why?)

BitTorrent: Exchanging Chunks

Neigboring peers exchange their lists of chunks and eventually exchange
chunks

◮ periodically, Alice requests the list of chunks of her peers

◮ Alice figures who has what chunks, and therefore requests some chunks from her
neighbors

◮ Alice requests the rarest chunk first (why?)

◮ Alice also receives requests from her neighbors

BitTorrent: Exchanging Chunks

Neigboring peers exchange their lists of chunks and eventually exchange
chunks

◮ periodically, Alice requests the list of chunks of her peers

◮ Alice figures who has what chunks, and therefore requests some chunks from her
neighbors

◮ Alice requests the rarest chunk first (why?)

◮ Alice also receives requests from her neighbors

◮ Alice gives priority to neighbors that share the most (highest rate): she sends her
chunks to the top four (why?)

BitTorrent: Exchanging Chunks

Neigboring peers exchange their lists of chunks and eventually exchange
chunks

◮ periodically, Alice requests the list of chunks of her peers

◮ Alice figures who has what chunks, and therefore requests some chunks from her
neighbors

◮ Alice requests the rarest chunk first (why?)

◮ Alice also receives requests from her neighbors

◮ Alice gives priority to neighbors that share the most (highest rate): she sends her
chunks to the top four (why?)

◮ periodically, Alice also selects another trading partner at random (why?)

Searching

How do you find files in a file-sharing network?

Searching

How do you find files in a file-sharing network?

Centralized index (i.e., client-server)

◮ typically maps objects (e.g., files, nicknames) to IP addresses

◮ not too good: performance bottleneck, single point of failure, etc.

Searching

How do you find files in a file-sharing network?

Centralized index (i.e., client-server)

◮ typically maps objects (e.g., files, nicknames) to IP addresses

◮ not too good: performance bottleneck, single point of failure, etc.

Distributed peer-to-peer search with query flooding

Searching

How do you find files in a file-sharing network?

Centralized index (i.e., client-server)

◮ typically maps objects (e.g., files, nicknames) to IP addresses

◮ not too good: performance bottleneck, single point of failure, etc.

Distributed peer-to-peer search with query flooding

◮ not too good (why?)

Searching

How do you find files in a file-sharing network?

Centralized index (i.e., client-server)

◮ typically maps objects (e.g., files, nicknames) to IP addresses

◮ not too good: performance bottleneck, single point of failure, etc.

Distributed peer-to-peer search with query flooding

◮ not too good (why?)

◮ many variants: limited scope, probabilistic, hierarchical with super-peeers, etc.

Searching

How do you find files in a file-sharing network?

Centralized index (i.e., client-server)

◮ typically maps objects (e.g., files, nicknames) to IP addresses

◮ not too good: performance bottleneck, single point of failure, etc.

Distributed peer-to-peer search with query flooding

◮ not too good (why?)

◮ many variants: limited scope, probabilistic, hierarchical with super-peeers, etc.

Distributed peer-to-peer search with structured indexes

◮ a.k.a., distributed hash tables (DHTs)

Searching

How do you find files in a file-sharing network?

Centralized index (i.e., client-server)

◮ typically maps objects (e.g., files, nicknames) to IP addresses

◮ not too good: performance bottleneck, single point of failure, etc.

Distributed peer-to-peer search with query flooding

◮ not too good (why?)

◮ many variants: limited scope, probabilistic, hierarchical with super-peeers, etc.

Distributed peer-to-peer search with structured indexes

◮ a.k.a., distributed hash tables (DHTs)

◮ many variants, lots of interesting theoretical and practical developments

Skype

How does Skype work?

Skype

How does Skype work? . . . or what Skype does not want you to know

Skype

How does Skype work? . . . or what Skype does not want you to know

Search: how does Alice find Bob?

◮ peer-to-peer index

Skype

How does Skype work? . . . or what Skype does not want you to know

Search: how does Alice find Bob?

◮ peer-to-peer index

Connections: how does Alice connect to Bob?

Skype

How does Skype work? . . . or what Skype does not want you to know

Search: how does Alice find Bob?

◮ peer-to-peer index

Connections: how does Alice connect to Bob?

◮ direct connections when possible

Skype

How does Skype work? . . . or what Skype does not want you to know

Search: how does Alice find Bob?

◮ peer-to-peer index

Connections: how does Alice connect to Bob?

◮ direct connections when possible

◮ indirect connections through a relay “super-peer”

Skype

How does Skype work? . . . or what Skype does not want you to know

Search: how does Alice find Bob?

◮ peer-to-peer index

Connections: how does Alice connect to Bob?

◮ direct connections when possible

◮ indirect connections through a relay “super-peer”

And much more: chat, audio/video codecs, multi-party communication, etc.

