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Fundamental component of the network layer

A node in a graph

A finite set of input/output (physical) connections
◮ a.k.a., interfaces or ports
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Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

◮ a datagram is a self-contained message

◮ treated independently by the network

◮ no connection setup/tear-down phase

“Best-effort” service

◮ delivery guarantee: none

◮ maximum latency guarantee: none

◮ bandwidth guarantee: none

◮ in-order delivery guarantee: none

◮ congestion indication: none
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Forwarding

Input: datagram destination

Output: output port

Simple design: “forwarding table”

Issues

◮ how big is the forwarding table?

◮ how fast does the router have to forward datagrams?

◮ how does the router build and maintain the forwarding table?
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routing
communications
with neighbors:
routing protocol

routing
table

forwarding
table

forwarding
input packets

from input ports
output packets
to output ports
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Queuing

Where does queuing occur?

Input ports

◮ queuing may occur here if the switching fabric is slower than the aggregate speed
of all the input lines. I.e., RS < nRin

Output ports

◮ queuing may occur here because of the limited throughput of the output link. I.e.,
Rout < min(RS, nRin)



Queuing

What happens when packets queue up in a router?



Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process



Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served



Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

◮ weighted fair queuing: the router tries to be balance traffic evenly among the
different end-to-end connections. Essential to implement quality-of-service
guarantees



Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

◮ weighted fair queuing: the router tries to be balance traffic evenly among the
different end-to-end connections. Essential to implement quality-of-service
guarantees

Deciding when to drop packets, and which packets to drop



Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

◮ weighted fair queuing: the router tries to be balance traffic evenly among the
different end-to-end connections. Essential to implement quality-of-service
guarantees

Deciding when to drop packets, and which packets to drop

◮ drop tail: drop arriving packets when queues are full



Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

◮ weighted fair queuing: the router tries to be balance traffic evenly among the
different end-to-end connections. Essential to implement quality-of-service
guarantees

Deciding when to drop packets, and which packets to drop

◮ drop tail: drop arriving packets when queues are full

◮ active queue management: a set of policies and algorithms to decide when and how
to drop or mark packets in the attempt to prevent congestion
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Internet Network Layer

Routing: defining paths and compiling forwarding tables

◮ RIP

◮ OSPF

◮ BGP

IP

◮ addressing

◮ datagram format

◮ fragmentation and packet handling

ICMP

◮ error reporting

◮ signaling
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0 31

vers. hlen type of service datagram length

identifier flags fragmentation offset

time-to-live protocol header checksum

source address

destination address

options (if any)

data
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routing
processor
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input port
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..
.

output port

output port

output port

..
.

switch
fabric

MTU = 1500b
size = 1000b

MTU = 512b

How does the router handle cases where the size of an input datagram exceeds
the maximum transmission unit (MTU) of the output link?

The datagram is fragmented
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The destination reassembles fragmented datagrams

◮ push complexity out of the network

◮ a datagram may have to be fragmented further along the path

Requirements

◮ destination must recognize two fragments of the same original datagram

◮ destination must see if and when all the fragments have been received

◮ intermediate routers must be able to fragment a datagram to whatever level
necessary
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Fragmentation

Initial (non-fragmented) datagram format (datasize = 1000)

◮ sender host assigns a 16-bit identifier to the datagram (e.g., 789)

◮ the fragment offset is set to 0, indicating that this packet contains data starting at
position 0 of the original datagram

◮ fragment offset is actually the offset in units of 8 bytes (remember it’s only 13 bits. . . )

◮ the “more fragments” flag is set to 0, indicating that no (more) fragments have been
sent

identifier fragment more header total
offset fragments length length

789 0 0 20 1020
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Fragmentation

Fragmentation to an MTU of 512

◮ sender must split the datagram into 3 fragments:

identifier fragment more header total
offset fragments length length

789 0 1 20 508

identifier fragment more header total
offset fragments length length

789 61 1 20 508

identifier fragment more header total
offset fragments length length

789 122 0 20 44


