
The Network Layer

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

April 22, 2020

Outline

Basic network-layer architecture of a datagram network

Introduction to forwarding

Introduction to routing

General architecture of a router

Switching fabric and queuing

Internet network-layer protocol

The Internet protocol (IP)

Fragmentation

Application Level

web
browser

web
server

Application Level

web
browser

web
server

Application Level

web
browser

web
server

GET /carzaniga/ HTTP/1.1

Host: www.inf.usi.ch

. . .

Application Level

web
browser

web
server

HTTP/1.1 200 OK

. . .
<html><head>. . . </head><body>
. . .

Application Level

web
browser

web
server

GET /carzaniga/anto.png HTTP/1.1

Host: www.inf.usi.ch

. . .

Application Level

web
browser

web
server

HTTP/1.1 200 OK

. . .

. . .

Transport Level

web
browser

web
server

Transport Level

web
browser

web
server

Transport Level

web
browser

web
server

Network Layer

web
browser

web
server

Network Layer

web
browser

web
server

Network Layer

web
browser

web
server

Router

Router

Fundamental component of the network layer

Router

Fundamental component of the network layer

A node in a graph

Router

12

3

4 5

Fundamental component of the network layer

A node in a graph

A finite set of input/output (physical) connections
◮ a.k.a., interfaces or ports

Focus: “Datagram” Networks

Focus: “Datagram” Networks

Packet-switched network

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

◮ a datagram is a self-contained message

◮ treated independently by the network

◮ no connection setup/tear-down phase

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

◮ a datagram is a self-contained message

◮ treated independently by the network

◮ no connection setup/tear-down phase

“Best-effort” service

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

◮ a datagram is a self-contained message

◮ treated independently by the network

◮ no connection setup/tear-down phase

“Best-effort” service

◮ delivery guarantee: none

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

◮ a datagram is a self-contained message

◮ treated independently by the network

◮ no connection setup/tear-down phase

“Best-effort” service

◮ delivery guarantee: none

◮ maximum latency guarantee: none

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

◮ a datagram is a self-contained message

◮ treated independently by the network

◮ no connection setup/tear-down phase

“Best-effort” service

◮ delivery guarantee: none

◮ maximum latency guarantee: none

◮ bandwidth guarantee: none

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

◮ a datagram is a self-contained message

◮ treated independently by the network

◮ no connection setup/tear-down phase

“Best-effort” service

◮ delivery guarantee: none

◮ maximum latency guarantee: none

◮ bandwidth guarantee: none

◮ in-order delivery guarantee: none

Focus: “Datagram” Networks

Packet-switched network

◮ information is transmitted in discrete units called datagrams

Connectionless service

◮ a datagram is a self-contained message

◮ treated independently by the network

◮ no connection setup/tear-down phase

“Best-effort” service

◮ delivery guarantee: none

◮ maximum latency guarantee: none

◮ bandwidth guarantee: none

◮ in-order delivery guarantee: none

◮ congestion indication: none

Datagram Network

Datagram Network

Datagram Network

Datagram Network

Datagram Network

Datagram Network

Datagram Network

Datagram Network

Potentiallymultiple paths for the same source/destination

Datagram Network

Potentiallymultiple paths for the same source/destination

Datagram Network

Potentiallymultiple paths for the same source/destination

Datagram Network

Potentiallymultiple paths for the same source/destination

Datagram Network

Potentiallymultiple paths for the same source/destination

Datagram Network

Potentiallymultiple paths for the same source/destination

Datagram Network

Potentiallymultiple paths for the same source/destination

Datagram Network

Potentiallymultiple paths for the same source/destination

Datagram Network

Potentiallymultiple paths for the same source/destination

Potentially asymmetric paths

Datagram Network

Potentiallymultiple paths for the same source/destination

Potentially asymmetric paths

Datagram Network

Potentiallymultiple paths for the same source/destination

Potentially asymmetric paths

Datagram Network

Potentiallymultiple paths for the same source/destination

Potentially asymmetric paths

Datagram Network

Potentiallymultiple paths for the same source/destination

Potentially asymmetric paths

Datagram Network

Potentiallymultiple paths for the same source/destination

Potentially asymmetric paths

Forwarding

Forwarding

A Bk

c

d

e

f

gh

i

j

A sends a datagram to B

Forwarding

A Bk

c

d

e

f

gh

i

j

to: B
. . .

A sends a datagram to B

The datagram is forwarded towards B

Forwarding

A Bk

c

d

e

f

gh

i

j

to: B
. . .

A sends a datagram to B

The datagram is forwarded towards B

Forwarding

A Bk

c

d

e

f

gh

i

j

to: B
. . .

Forwarding

A Bk

c

d

e

f

gh

i

j

to: B
. . .

Forwarding

A Bk

c

d

e

f

gh

i

j

to: B
. . .

1
2

43

forwarding
table

dest. output

.
B port 4
.

Forwarding

A Bk

c

d

e

f

gh

i

j

12

to: B
. . .

43

forwarding
table

dest. output

.
B port 4
.

Forwarding

A Bk

c

d

e

f

gh

i

j

12

43

to: B
. . .

forwarding
table

dest. output

.
B port 4
.

Forwarding

A Bk

c

d

e

f

gh

i

j

12

43

to: B
. . .

forwarding
table

dest. output

.
B port 4
.

Forwarding

Input: datagram destination

Forwarding

Input: datagram destination

Output: output port

Forwarding

Input: datagram destination

Output: output port

Simple design: “forwarding table”

Forwarding

Input: datagram destination

Output: output port

Simple design: “forwarding table”

Issues

Forwarding

Input: datagram destination

Output: output port

Simple design: “forwarding table”

Issues

◮ how big is the forwarding table?

Forwarding

Input: datagram destination

Output: output port

Simple design: “forwarding table”

Issues

◮ how big is the forwarding table?

◮ how fast does the router have to forward datagrams?

Forwarding

Input: datagram destination

Output: output port

Simple design: “forwarding table”

Issues

◮ how big is the forwarding table?

◮ how fast does the router have to forward datagrams?

◮ how does the router build and maintain the forwarding table?

Routing

Routing

A Bk

c

d

e

f

gh

i

j

1 2

1

2
4

23

2

1

1

3

4
2

4

1
2

3

3

3

1

2
3

2

1
1

4

2

5

4
4

3

5

1

3

1 1

Routing

A Bk

c

d

e

f

gh

i

j

1 2

1

2
4

23

2

1

1

3

4
2

4

1
2

3

3

3

1

2
3

2

1
1

4

2

5

4
4

3

5

1

3

1 1

router k

A 2

B 1

. . .

Router Functions

Router Functions

routing
communications
with neighbors:
routing protocol

routing
table

Router Functions

routing
communications
with neighbors:
routing protocol

routing
table

forwarding
table

Router Functions

routing
communications
with neighbors:
routing protocol

routing
table

forwarding
table

forwarding
input packets

from input ports
output packets
to output ports

Anatomy of a Router

Anatomy of a Router

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

Anatomy of a Router

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

data link
processing

lookup
forwarding

queuing

Anatomy of a Router

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

Anatomy of a Router

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

queuing data link
processing

Queuing

Where does queuing occur?

Queuing

Where does queuing occur?

Input ports

◮ queuing may occur here if the switching fabric is slower than the aggregate speed
of all the input lines. I.e., RS < nRin

Queuing

Where does queuing occur?

Input ports

◮ queuing may occur here if the switching fabric is slower than the aggregate speed
of all the input lines. I.e., RS < nRin

Output ports

◮ queuing may occur here because of the limited throughput of the output link. I.e.,
Rout < min(RS, nRin)

Queuing

What happens when packets queue up in a router?

Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

◮ weighted fair queuing: the router tries to be balance traffic evenly among the
different end-to-end connections. Essential to implement quality-of-service
guarantees

Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

◮ weighted fair queuing: the router tries to be balance traffic evenly among the
different end-to-end connections. Essential to implement quality-of-service
guarantees

Deciding when to drop packets, and which packets to drop

Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

◮ weighted fair queuing: the router tries to be balance traffic evenly among the
different end-to-end connections. Essential to implement quality-of-service
guarantees

Deciding when to drop packets, and which packets to drop

◮ drop tail: drop arriving packets when queues are full

Queuing

What happens when packets queue up in a router?

Scheduling: deciding which packets to process

◮ first-come-first-served

◮ weighted fair queuing: the router tries to be balance traffic evenly among the
different end-to-end connections. Essential to implement quality-of-service
guarantees

Deciding when to drop packets, and which packets to drop

◮ drop tail: drop arriving packets when queues are full

◮ active queue management: a set of policies and algorithms to decide when and how
to drop or mark packets in the attempt to prevent congestion

Internet Network Layer

Internet Network Layer

Routing: defining paths and compiling forwarding tables

Internet Network Layer

Routing: defining paths and compiling forwarding tables

◮ RIP

◮ OSPF

◮ BGP

Internet Network Layer

Routing: defining paths and compiling forwarding tables

◮ RIP

◮ OSPF

◮ BGP

IP

Internet Network Layer

Routing: defining paths and compiling forwarding tables

◮ RIP

◮ OSPF

◮ BGP

IP

◮ addressing

◮ datagram format

◮ fragmentation and packet handling

Internet Network Layer

Routing: defining paths and compiling forwarding tables

◮ RIP

◮ OSPF

◮ BGP

IP

◮ addressing

◮ datagram format

◮ fragmentation and packet handling

ICMP

Internet Network Layer

Routing: defining paths and compiling forwarding tables

◮ RIP

◮ OSPF

◮ BGP

IP

◮ addressing

◮ datagram format

◮ fragmentation and packet handling

ICMP

◮ error reporting

◮ signaling

IPv4 Datagram Format

0 31

IPv4 Datagram Format

0 31

vers.

IPv4 Datagram Format

0 31

vers. hlen

IPv4 Datagram Format

0 31

vers. hlen type of service

IPv4 Datagram Format

0 31

vers. hlen type of service datagram length

IPv4 Datagram Format

0 31

vers. hlen type of service datagram length

identifier flags fragmentation offset

IPv4 Datagram Format

0 31

vers. hlen type of service datagram length

identifier flags fragmentation offset

time-to-live

IPv4 Datagram Format

0 31

vers. hlen type of service datagram length

identifier flags fragmentation offset

time-to-live protocol

IPv4 Datagram Format

0 31

vers. hlen type of service datagram length

identifier flags fragmentation offset

time-to-live protocol header checksum

IPv4 Datagram Format

0 31

vers. hlen type of service datagram length

identifier flags fragmentation offset

time-to-live protocol header checksum

source address

destination address

IPv4 Datagram Format

0 31

vers. hlen type of service datagram length

identifier flags fragmentation offset

time-to-live protocol header checksum

source address

destination address

options (if any)

IPv4 Datagram Format

0 31

vers. hlen type of service datagram length

identifier flags fragmentation offset

time-to-live protocol header checksum

source address

destination address

options (if any)

data

Fragmentation

Fragmentation

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

Fragmentation

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

Fragmentation

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

Fragmentation

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

Fragmentation

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

MTU = 1500b
size = 1000b

Fragmentation

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

MTU = 1500b
size = 1000b

MTU = 512b

Fragmentation

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

MTU = 1500b
size = 1000b

MTU = 512b

How does the router handle cases where the size of an input datagram exceeds
the maximum transmission unit (MTU) of the output link?

Fragmentation

routing
processor

input port

input port

input port
..
.

output port

output port

output port

..
.

switch
fabric

MTU = 1500b
size = 1000b

MTU = 512b

How does the router handle cases where the size of an input datagram exceeds
the maximum transmission unit (MTU) of the output link?

The datagram is fragmented

Fragmentation

input datagram
h
e
a
d
e
r

Fragmentation

input datagram
h
e
a
d
e
r

MTU

Fragmentation

input datagram
h
e
a
d
e
r

MTU

fragment 1

h
e
a
d
e
r

+

fragment 2

h
e
a
d
e
r

Fragmentation

input datagram
h
e
a
d
e
r

MTU

fragment 1

h
e
a
d
e
r

+

fragment 2

h
e
a
d
e
r

The destination reassembles fragmented datagrams

Fragmentation

input datagram
h
e
a
d
e
r

MTU

fragment 1

h
e
a
d
e
r

+

fragment 2

h
e
a
d
e
r

The destination reassembles fragmented datagrams

◮ push complexity out of the network

◮ a datagram may have to be fragmented further along the path

Fragmentation

input datagram
h
e
a
d
e
r

MTU

fragment 1

h
e
a
d
e
r

+

fragment 2

h
e
a
d
e
r

The destination reassembles fragmented datagrams

◮ push complexity out of the network

◮ a datagram may have to be fragmented further along the path

Requirements

◮ destination must recognize two fragments of the same original datagram

◮ destination must see if and when all the fragments have been received

◮ intermediate routers must be able to fragment a datagram to whatever level
necessary

Fragmentation

Fragmentation

Initial (non-fragmented) datagram format (datasize = 1000)

Fragmentation

Initial (non-fragmented) datagram format (datasize = 1000)

◮ sender host assigns a 16-bit identifier to the datagram (e.g., 789)

Fragmentation

Initial (non-fragmented) datagram format (datasize = 1000)

◮ sender host assigns a 16-bit identifier to the datagram (e.g., 789)

◮ the fragment offset is set to 0, indicating that this packet contains data starting at
position 0 of the original datagram

◮ fragment offset is actually the offset in units of 8 bytes (remember it’s only 13 bits. . .)

Fragmentation

Initial (non-fragmented) datagram format (datasize = 1000)

◮ sender host assigns a 16-bit identifier to the datagram (e.g., 789)

◮ the fragment offset is set to 0, indicating that this packet contains data starting at
position 0 of the original datagram

◮ fragment offset is actually the offset in units of 8 bytes (remember it’s only 13 bits. . .)

◮ the “more fragments” flag is set to 0, indicating that no (more) fragments have been
sent

Fragmentation

Initial (non-fragmented) datagram format (datasize = 1000)

◮ sender host assigns a 16-bit identifier to the datagram (e.g., 789)

◮ the fragment offset is set to 0, indicating that this packet contains data starting at
position 0 of the original datagram

◮ fragment offset is actually the offset in units of 8 bytes (remember it’s only 13 bits. . .)

◮ the “more fragments” flag is set to 0, indicating that no (more) fragments have been
sent

identifier fragment more header total
offset fragments length length

789 0 0 20 1020

Fragmentation

Fragmentation

Fragmentation to an MTU of 512

Fragmentation

Fragmentation to an MTU of 512

◮ sender must split the datagram into 3 fragments:

Fragmentation

Fragmentation to an MTU of 512

◮ sender must split the datagram into 3 fragments:

identifier fragment more header total
offset fragments length length

789 0 1 20 508

Fragmentation

Fragmentation to an MTU of 512

◮ sender must split the datagram into 3 fragments:

identifier fragment more header total
offset fragments length length

789 0 1 20 508

identifier fragment more header total
offset fragments length length

789 61 1 20 508

Fragmentation

Fragmentation to an MTU of 512

◮ sender must split the datagram into 3 fragments:

identifier fragment more header total
offset fragments length length

789 0 1 20 508

identifier fragment more header total
offset fragments length length

789 61 1 20 508

identifier fragment more header total
offset fragments length length

789 122 0 20 44

