
Computer Networking Graded Assignment n. 2
Università della Svizzera italiana — A. Carzaniga, S. Santini, P. Bressana, M. Laporte May 3, 2020

Assignment 2: Go-Back-N-T

Due date: Wednesday, May 13, 2020 at 22:00

This is an individual assignment. You may discuss it with others, but your code and documentation
must be written on your own. You must properly reference any and all sources you used.

You must implement a variant of the Go-Back-N reliable data transfer protocol called Go-Back-N-T. The imple-
mentation must be done in Java on top of the transport Java library available from the course page. In particular,
you must implement a unidirectional transport-level service by providing two Java classes called GBNTSender
and GBNTReceiver that realize the two sides of the transport layer and that implement transport.Sender and
transport.Receiver interfaces, respectively.

Go-Back-N-T Specification

Go-Back-N-T is a simple extension of the Go-Back-N protocol as specified in the textbook. As in Go-Back-N, a
Go-Back-N-T sender maintains a sliding window of up to W pending segments, that is, segments that have been
sent but not yet acknowledged. As in Go-Back-N, W is a fixed parameter.

As in Go-Back-N, the receiver acknowledges all the segments received in the correct order, and discards out-of-
order segments. Also, acknowledgments are cumulative, so the sender window “slides” by updating the base of
the pending sequence whenever the sender receives an acknowledgment for a sequence number within the window.
The sender resends all pending segments if it does not receive any valid acknowledgment after a certain time.

In addition to these standard features, Go-Back-N-T has an adaptive timeout. The sender resends all pending
segments if it does not receive any valid acknowledgment after a certain time. This timeout value is computed as
in TCP, based on a running estimation of the round-trip time (RTT). In particular, the sender measures the real RTT
using acknowledgments. A measurement is the time elapsed between the departure of a segment and the arrival of
the acknowledgment for that segment. The sender then estimates a stable RTT value using an exponential weighted
moving average (EWMA) of the individual measurements, and similarly it also computes the RTT variability, also
as an expontential weighted moving average. The sender then computes its timeout values based on the average
RTT and average RTT variability, exactly as in TCP.

Transport Library API

Your GBNTSender must implement the transport.Sender interface. In particular, GBNTSender must implement
a reliableSend method to handle requests from the application layer, and an unreliableReceive method to handle
packets from the network (e.g., acknowledgments). Similarly, GBNTReceiver must implement the unreliableRe-
ceive method to handle packets from the network (e.g., data packets from the sender).

Within your code, you can use the methods provided by the transport.Network class. The most important ones
are:

• unreliableSend sends a packet through the network to the other endpoint.

• setTimeout and cancelTimeout start and cancel a timer, respectively. The action specified with setTimeout is
executed when the timer expires (if the timer is not cancelled before that time). The delay that you have to
specify in setTimeout is the one computed using the RTT statistics.



• blockSender blocks the sender application, preventing further calls to reliableSend. The sender application
can be resumed with the resumeSender method. You may have to block the sender at the transport-level
when the window is full.

Notice that the transport library is rather simple, and does not have a connect procedure. So, the sender and
receiver classes must be initially synchonized with respect to sequence numbers. Also, there is no shutdown
procedure, so the sender application will simply disconnect and terminate as soon as your transport level imple-
mentation is done sending the last segment. However, according to the Go-Back-N specification seen in class, the
receiver application will not realize that the sender has terminated and will simply wait for more data, therefore
your implementation of the receiver must have an appropriate termination condition (e.g., after a reasonably long
timeout).

Consult the documentation of the transport library to familiarize yourself with its operations and methods.

Testing your implementation

The transport library implements two applications, FileSender and FileReceiver, which can be used to test your
implementation. As the names suggest, these applications exchange a file. The syntax to call them from the
command line is:

• java -cp transport.jar:. transport.FileSender sender-impl localport hostname remoteport filename [error]

• java -cp transport.jar:. transport.FileReceiver receiver-impl localport hostname remoteport filename [error]

Where:

• sender-implementation and receiver-implementation are the class names of the implementation of the trans-
port protocol you want to use. For example, you should set them to GBNTSender and GBNTReceiver to test
your implementation.

• We use -cp transport.jar:. to set the classpath to the class files of the library and to the current directory,
where you should have your class files.

• localport hostname remoteport have the usual meaning. In order to test the RTT estimation you should run
the applications on different machines.

• filename is the file read and sent by the sender, or received and written by the receiver.

• error is the percentage of lost packets. Notice that these errors are introduced in addition to the errors that
might occur naturally across the network.

Submission Instructions

You should submit a single zip or tar archive containing only three files: GBNTSender.java, GBNTReceiver.java
and README. Do not include any other files or folder. Make sure that you include all the necessary components
to build and run your solution on a standard installation of a Java environment. In particular, make sure your
solution works with the most basic command-line tools, outside of any integrated development environment. You
may use the IDE of your choice, but do not include their project files and folders. Name your archive file following
this format: assign02-<surname>-<name>{.tar.gz,.zip}.

Add comments to your code to explain sections of the code that might not be clear. Use the README file to
add general comments to properly acknowledge any and all external sources of information you may have used,
including code, suggestions, and comments from other students. If your implementation has limitations and errors
you are aware of (and were unable to fix), then list those as well in the README file.

Submit your solution package through the iCorsi system.


