
The Hyper-Text Transfer Protocol

(HTTP)

Antonio Carzaniga

Faculty of Informatics
University of Lugano

October 3, 2014

© 2005–2007 Antonio Carzaniga

Outline

HTTP message formats

HTTP methods

Status codes

Headers

Web caching

© 2005–2007 Antonio Carzaniga

Anatomy of a Request

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

© 2005–2007 Antonio Carzaniga

Anatomy of a Request

GET /carzaniga/index.html HTTP/1.1 request line

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

© 2005–2007 Antonio Carzaniga

Anatomy of a Request

GET /carzaniga/index.html HTTP/1.1 request line

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

zero or more

header lines

© 2005–2007 Antonio Carzaniga

Anatomy of a Request

GET /carzaniga/index.html HTTP/1.1 request line

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

zero or more

header lines

empty line

© 2005–2007 Antonio Carzaniga

Anatomy of a Request

GET /carzaniga/index.html HTTP/1.1 request line

Host: www.inf.usi.ch

Connection: close

User-agent: Mozilla/4.0

Accept-Language: it

zero or more

header lines

empty line

object body

(possibly empty)

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

URL

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

URL

space

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

URL

space

version

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

URL

space

version

Header line

Host: www.inf.usi.ch

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

URL

space

version

Header line

Host: www.inf.usi.ch

name

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

URL

space

version

Header line

Host: www.inf.usi.ch

name

space

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

URL

space

version

Header line

Host: www.inf.usi.ch

name

space

value

© 2005–2007 Antonio Carzaniga

Anatomy of a Request (2)

Request line

GET /carzaniga/index.html HTTP/1.1

method

space

URL

space

version

Header line

Host: www.inf.usi.ch

name

space

value

Line terminator: CRLF (“carriage return” and “line feed”)
◮ two bytes: numeric values 13 and 10

© 2005–2007 Antonio Carzaniga

Methods

GET retrieve the object identified by the URL

© 2005–2007 Antonio Carzaniga

Methods

GET retrieve the object identified by the URL

OPTIONS requests the available communication options for the

given object

© 2005–2007 Antonio Carzaniga

Methods

GET retrieve the object identified by the URL

OPTIONS requests the available communication options for the

given object

HEAD like GET, but without the body

useful for testing the validity of links

© 2005–2007 Antonio Carzaniga

Methods

GET retrieve the object identified by the URL

OPTIONS requests the available communication options for the

given object

HEAD like GET, but without the body

useful for testing the validity of links

POST allows one to submit data to the server

e.g., a mail message in a web mail system, a form

in an e-commerce site. . .

the given URL is the object that handles the

posting

© 2005–2007 Antonio Carzaniga

Methods

GET retrieve the object identified by the URL

OPTIONS requests the available communication options for the

given object

HEAD like GET, but without the body

useful for testing the validity of links

POST allows one to submit data to the server

e.g., a mail message in a web mail system, a form

in an e-commerce site. . .

the given URL is the object that handles the

posting

PUT requests that the enclosed object be stored under the

given URL

© 2005–2007 Antonio Carzaniga

Methods

GET retrieve the object identified by the URL

OPTIONS requests the available communication options for the

given object

HEAD like GET, but without the body

useful for testing the validity of links

POST allows one to submit data to the server

e.g., a mail message in a web mail system, a form

in an e-commerce site. . .

the given URL is the object that handles the

posting

PUT requests that the enclosed object be stored under the

given URL

DELETE deletes the given object

© 2005–2007 Antonio Carzaniga

Methods

GET retrieve the object identified by the URL

OPTIONS requests the available communication options for the

given object

HEAD like GET, but without the body

useful for testing the validity of links

POST allows one to submit data to the server

e.g., a mail message in a web mail system, a form

in an e-commerce site. . .

the given URL is the object that handles the

posting

PUT requests that the enclosed object be stored under the

given URL

DELETE deletes the given object

TRACE see RFC 2616, Section 9.8

CONNECT see RFC 2616, Section 9.8

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

HTTP/1.1 405 Method Not Allowed

Date: Fri, 18 Mar 2005 01:18:04 GMT

Server: Apache/2.0.46 (Red Hat)

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Length: 329

Connection: close

Content-Type: text/html

<html><head>

<title>405 Method Not Allowed</title>

</head><body>

...

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

HTTP/1.1 405 Method Not Allowed status line

Date: Fri, 18 Mar 2005 01:18:04 GMT

Server: Apache/2.0.46 (Red Hat)

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Length: 329

Connection: close

Content-Type: text/html

<html><head>

<title>405 Method Not Allowed</title>

</head><body>

...

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

HTTP/1.1 405 Method Not Allowed status line

Date: Fri, 18 Mar 2005 01:18:04 GMT

Server: Apache/2.0.46 (Red Hat)

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Length: 329

Connection: close

Content-Type: text/html

zero or more

header lines

<html><head>

<title>405 Method Not Allowed</title>

</head><body>

...

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

HTTP/1.1 405 Method Not Allowed status line

Date: Fri, 18 Mar 2005 01:18:04 GMT

Server: Apache/2.0.46 (Red Hat)

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Length: 329

Connection: close

Content-Type: text/html

zero or more

header lines

empty line

<html><head>

<title>405 Method Not Allowed</title>

</head><body>

...

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

HTTP/1.1 405 Method Not Allowed status line

Date: Fri, 18 Mar 2005 01:18:04 GMT

Server: Apache/2.0.46 (Red Hat)

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Length: 329

Connection: close

Content-Type: text/html

zero or more

header lines

empty line

<html><head>

<title>405 Method Not Allowed</title>

</head><body>

...

object body

(possibly empty)

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

Status line

HTTP/1.1 405 Method Not Allowed

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

Status line

HTTP/1.1 405 Method Not Allowed

version

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

Status line

HTTP/1.1 405 Method Not Allowed

version status code

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

Status line

HTTP/1.1 405 Method Not Allowed

version status code brief description

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

Status line

HTTP/1.1 405 Method Not Allowed

version status code brief description

The status code is a 3-digit value (e.g., 200 or 401)

© 2005–2007 Antonio Carzaniga

Anatomy of a Response

Status line

HTTP/1.1 405 Method Not Allowed

version status code brief description

The status code is a 3-digit value (e.g., 200 or 401)

The rest has exactly the same structure as a request

© 2005–2007 Antonio Carzaniga

Status Codes

© 2005–2007 Antonio Carzaniga

Status Codes

1xx “informational” (see Section 10.1 of RFC 2616)

© 2005–2007 Antonio Carzaniga

Status Codes

1xx “informational” (see Section 10.1 of RFC 2616)

2xx successful operation (see Section 10.2 of RFC 2616)

© 2005–2007 Antonio Carzaniga

Status Codes

1xx “informational” (see Section 10.1 of RFC 2616)

2xx successful operation (see Section 10.2 of RFC 2616)

3xx redirection. E.g., indicates that the object has moved,

either temporarily or permanently

© 2005–2007 Antonio Carzaniga

Status Codes

1xx “informational” (see Section 10.1 of RFC 2616)

2xx successful operation (see Section 10.2 of RFC 2616)

3xx redirection. E.g., indicates that the object has moved,

either temporarily or permanently

4xx client error. E.g., malformed request (400), object not

found (404), method not allowed (405), unauthorized

(401).

© 2005–2007 Antonio Carzaniga

Status Codes

1xx “informational” (see Section 10.1 of RFC 2616)

2xx successful operation (see Section 10.2 of RFC 2616)

3xx redirection. E.g., indicates that the object has moved,

either temporarily or permanently

4xx client error. E.g., malformed request (400), object not

found (404), method not allowed (405), unauthorized

(401).

5xx server error. E.g., internal server error (500), service

overloaded (503)

© 2005–2007 Antonio Carzaniga

Headers

© 2005–2007 Antonio Carzaniga

Headers

Object characterization
◮ e.g., Content-Type, Content-Length, Content-Encoding

© 2005–2007 Antonio Carzaniga

Headers

Object characterization
◮ e.g., Content-Type, Content-Length, Content-Encoding

Content negotiation
◮ e.g., Accept-Charset, Accept-Encoding

© 2005–2007 Antonio Carzaniga

Headers

Object characterization
◮ e.g., Content-Type, Content-Length, Content-Encoding

Content negotiation
◮ e.g., Accept-Charset, Accept-Encoding

Object properties useful for cache management
◮ e.g., Expires, Last-Modified, ETag

© 2005–2007 Antonio Carzaniga

Headers

Object characterization
◮ e.g., Content-Type, Content-Length, Content-Encoding

Content negotiation
◮ e.g., Accept-Charset, Accept-Encoding

Object properties useful for cache management
◮ e.g., Expires, Last-Modified, ETag

Explicit cache control
◮ e.g., Cache-Control

© 2005–2007 Antonio Carzaniga

Headers

Object characterization
◮ e.g., Content-Type, Content-Length, Content-Encoding

Content negotiation
◮ e.g., Accept-Charset, Accept-Encoding

Object properties useful for cache management
◮ e.g., Expires, Last-Modified, ETag

Explicit cache control
◮ e.g., Cache-Control

Method-specific responses
◮ e.g., Allow as a response to OPTIONS

© 2005–2007 Antonio Carzaniga

Headers

Object characterization
◮ e.g., Content-Type, Content-Length, Content-Encoding

Content negotiation
◮ e.g., Accept-Charset, Accept-Encoding

Object properties useful for cache management
◮ e.g., Expires, Last-Modified, ETag

Explicit cache control
◮ e.g., Cache-Control

Method-specific responses
◮ e.g., Allow as a response to OPTIONS

Authorization/identification
◮ e.g., Authorization

© 2005–2007 Antonio Carzaniga

Web Caching

© 2005–2007 Antonio Carzaniga

Web Caching

Same idea as caching in a memory hierarchy

© 2005–2007 Antonio Carzaniga

Web Caching

Same idea as caching in a memory hierarchy

© 2005–2007 Antonio Carzaniga

Web Caching

Same idea as caching in a memory hierarchy

high latency, low bandwidth

© 2005–2007 Antonio Carzaniga

Web Caching

Same idea as caching in a memory hierarchy

high latency, low bandwidth

proxy/cache

low latency, high bandwidth

© 2005–2007 Antonio Carzaniga

Web Caching

Same idea as caching in a memory hierarchy

high latency, low bandwidth

proxy/cache

low latency, high bandwidth

© 2005–2007 Antonio Carzaniga

Web Caching

Same idea as caching in a memory hierarchy

high latency, low bandwidth

proxy/cache

low latency, high bandwidth

© 2005–2007 Antonio Carzaniga

Example

© 2005–2007 Antonio Carzaniga

Example

Cost = Ch

© 2005–2007 Antonio Carzaniga

Example

Cost = Ch

© 2005–2007 Antonio Carzaniga

Example

Cost = Ch

© 2005–2007 Antonio Carzaniga

Example

Without proxy/cache: total cost = 3Ch

© 2005–2007 Antonio Carzaniga

Example

proxy/cache

Cost = Cl

Without proxy/cache: total cost = 3Ch

© 2005–2007 Antonio Carzaniga

Example

proxy/cache

Cost = Cl

Cost = Ch

Without proxy/cache: total cost = 3Ch

© 2005–2007 Antonio Carzaniga

Example

proxy/cache

Cost = Cl

Cost = Ch

Without proxy/cache: total cost = 3Ch

© 2005–2007 Antonio Carzaniga

Example

proxy/cache

Cost = Cl

Cost = Ch

Without proxy/cache: total cost = 3Ch

© 2005–2007 Antonio Carzaniga

Example

proxy/cache

Cost = Cl

Cost = Ch

Without proxy/cache: total cost = 3Ch

With proxy/cache: total cost = Ch + 3Cl

© 2005–2007 Antonio Carzaniga

Web Caching (2)

A client request goes to a proxy (cache) server

© 2005–2007 Antonio Carzaniga

Web Caching (2)

A client request goes to a proxy (cache) server

The proxy may

1. forward the request to the origin server, thereby acting as a

client

2. get the response from the origin server

3. possibly store (cache) the object

4. forward the response back to the client

© 2005–2007 Antonio Carzaniga

Web Caching (2)

A client request goes to a proxy (cache) server

The proxy may

1. forward the request to the origin server, thereby acting as a

client

2. get the response from the origin server

3. possibly store (cache) the object

4. forward the response back to the client

The proxy may

1. respond immediately to the client, possibly using a cached

object

© 2005–2007 Antonio Carzaniga

Web Caching (3)

Benefits of the proxy/cache architecture

© 2005–2007 Antonio Carzaniga

Web Caching (3)

Benefits of the proxy/cache architecture

◮ performance: reduced latency

© 2005–2007 Antonio Carzaniga

Web Caching (3)

Benefits of the proxy/cache architecture

◮ performance: reduced latency

◮ performance: reduced network traffic

© 2005–2007 Antonio Carzaniga

Web Caching (3)

Benefits of the proxy/cache architecture

◮ performance: reduced latency

◮ performance: reduced network traffic

◮ security: privacy, the server sees the proxy as a client

© 2005–2007 Antonio Carzaniga

Web Caching (3)

Benefits of the proxy/cache architecture

◮ performance: reduced latency

◮ performance: reduced network traffic

◮ security: privacy, the server sees the proxy as a client

◮ security: protection from intrusions, in combination with a

firewall

© 2005–2007 Antonio Carzaniga

Web Caching (3)

Benefits of the proxy/cache architecture

◮ performance: reduced latency

◮ performance: reduced network traffic

◮ security: privacy, the server sees the proxy as a client

◮ security: protection from intrusions, in combination with a

firewall

Problems

© 2005–2007 Antonio Carzaniga

Web Caching (3)

Benefits of the proxy/cache architecture

◮ performance: reduced latency

◮ performance: reduced network traffic

◮ security: privacy, the server sees the proxy as a client

◮ security: protection from intrusions, in combination with a

firewall

Problems

◮ latency (just like any other caching system)

◮ complexity

© 2005–2007 Antonio Carzaniga

HTTP and Caching

The proxy/cache architecture is central to several features of

HTTP—in fact, it affects its overall design

© 2005–2007 Antonio Carzaniga

HTTP and Caching

The proxy/cache architecture is central to several features of

HTTP—in fact, it affects its overall design

HTTP is defined as a request/response protocol, where

requests and responses are explicitly passed through a

request chain

© 2005–2007 Antonio Carzaniga

HTTP and Caching

The proxy/cache architecture is central to several features of

HTTP—in fact, it affects its overall design

HTTP is defined as a request/response protocol, where

requests and responses are explicitly passed through a

request chain

client proxy proxy origin

© 2005–2007 Antonio Carzaniga

HTTP and Caching (2)

HTTP is defined as a request/response protocol, where

requests and responses are explicitly passed through a

request chain

client proxy proxy origin

HTTP defines

© 2005–2007 Antonio Carzaniga

HTTP and Caching (2)

HTTP is defined as a request/response protocol, where

requests and responses are explicitly passed through a

request chain

client proxy proxy origin

HTTP defines

◮ how protocol versions are handled on the request chain

© 2005–2007 Antonio Carzaniga

HTTP and Caching (2)

HTTP is defined as a request/response protocol, where

requests and responses are explicitly passed through a

request chain

client proxy proxy origin

HTTP defines

◮ how protocol versions are handled on the request chain

◮ how each method must be handled w.r.t. the request chain
◮ e.g., responses to OPTIONS requests are not cacheable; 302

responses are only cacheable if indicated by a Cache-Control

or Expires header field

© 2005–2007 Antonio Carzaniga

HTTP and Caching (2)

HTTP is defined as a request/response protocol, where

requests and responses are explicitly passed through a

request chain

client proxy proxy origin

HTTP defines

◮ how protocol versions are handled on the request chain

◮ how each method must be handled w.r.t. the request chain
◮ e.g., responses to OPTIONS requests are not cacheable; 302

responses are only cacheable if indicated by a Cache-Control

or Expires header field

◮ specific authentication mechanisms for proxies

© 2005–2007 Antonio Carzaniga

HTTP and Caching (2)

HTTP is defined as a request/response protocol, where

requests and responses are explicitly passed through a

request chain

client proxy proxy origin

HTTP defines

◮ how protocol versions are handled on the request chain

◮ how each method must be handled w.r.t. the request chain
◮ e.g., responses to OPTIONS requests are not cacheable; 302

responses are only cacheable if indicated by a Cache-Control

or Expires header field

◮ specific authentication mechanisms for proxies

◮ a lot of headers to control caching along the request chain
© 2005–2007 Antonio Carzaniga

HTTP and Caching (3)

© 2005–2007 Antonio Carzaniga

HTTP and Caching (3)

Cached pages may become stale

© 2005–2007 Antonio Carzaniga

HTTP and Caching (3)

Cached pages may become stale

A HEAD request could be used to see if an object has been
updated, in which case the cache can be invalidated

◮ but how does a proxy decide that it is okay to respond to a

client with a cached object?

© 2005–2007 Antonio Carzaniga

HTTP and Caching (3)

Cached pages may become stale

A HEAD request could be used to see if an object has been
updated, in which case the cache can be invalidated

◮ but how does a proxy decide that it is okay to respond to a

client with a cached object?

Servers specify explicit expiration times using either the

Expires header, or the max-age directive of the

Cache-Control header

© 2005–2007 Antonio Carzaniga

HTTP and Caching (3)

Cached pages may become stale

A HEAD request could be used to see if an object has been
updated, in which case the cache can be invalidated

◮ but how does a proxy decide that it is okay to respond to a

client with a cached object?

Servers specify explicit expiration times using either the

Expires header, or the max-age directive of the

Cache-Control header

A client or proxy can use a conditional GET by including a

If-Modified-Since header

© 2005–2007 Antonio Carzaniga

Cache-Control in Requests

© 2005–2007 Antonio Carzaniga

Cache-Control in Requests

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Cache-Control: no-cache

© 2005–2007 Antonio Carzaniga

Cache-Control in Requests

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Cache-Control: no-cache

“Please, do not use cached objects!”

◮ proxies must go to the origin server

© 2005–2007 Antonio Carzaniga

Cache-Control in Requests

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Cache-Control: no-cache

“Please, do not use cached objects!”

◮ proxies must go to the origin server

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Cache-Control: max-age=20

© 2005–2007 Antonio Carzaniga

Cache-Control in Requests

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Cache-Control: no-cache

“Please, do not use cached objects!”

◮ proxies must go to the origin server

GET /carzaniga/index.html HTTP/1.1

Host: www.inf.usi.ch

Cache-Control: max-age=20

“Please, give me a cached object only if it is less than 20

seconds old”

© 2005–2007 Antonio Carzaniga

Cache-Control in Replies

© 2005–2007 Antonio Carzaniga

Cache-Control in Replies

HTTP/1.1 200 Ok

Cache-Control: no-cache

...

© 2005–2007 Antonio Carzaniga

Cache-Control in Replies

HTTP/1.1 200 Ok

Cache-Control: no-cache

...

“Please, do not cache this objects!”

© 2005–2007 Antonio Carzaniga

Cache-Control in Replies

HTTP/1.1 200 Ok

Cache-Control: no-cache

...

“Please, do not cache this objects!”

HTTP/1.1 200 Ok

Cache-Control: maxage=100; must-revalidate

...

© 2005–2007 Antonio Carzaniga

Cache-Control in Replies

HTTP/1.1 200 Ok

Cache-Control: no-cache

...

“Please, do not cache this objects!”

HTTP/1.1 200 Ok

Cache-Control: maxage=100; must-revalidate

...

“You may use this object up to 100 seconds from now. After

that, you must revalidate the object.”

◮ without the must-revalidate directive, a client may use a

stale object

© 2005–2007 Antonio Carzaniga

Sessions in HTTP

© 2005–2007 Antonio Carzaniga

Sessions in HTTP

HTTP is a stateless protocol

© 2005–2007 Antonio Carzaniga

Sessions in HTTP

HTTP is a stateless protocol

◮ so how do you implement a “shopping cart”?

© 2005–2007 Antonio Carzaniga

Sessions in HTTP

HTTP is a stateless protocol

◮ so how do you implement a “shopping cart”?

HTTP provides the means for higher-level applications to

maintain stateful sessions (see RFC 2109)

© 2005–2007 Antonio Carzaniga

Sessions in HTTP

HTTP is a stateless protocol

◮ so how do you implement a “shopping cart”?

HTTP provides the means for higher-level applications to

maintain stateful sessions (see RFC 2109)

Set-Cookie header

◮ sent within an HTTP response, from the server to the client

◮ tells the client to store the given “cookie” as a session identifier

for that site

© 2005–2007 Antonio Carzaniga

Sessions in HTTP

HTTP is a stateless protocol

◮ so how do you implement a “shopping cart”?

HTTP provides the means for higher-level applications to

maintain stateful sessions (see RFC 2109)

Set-Cookie header

◮ sent within an HTTP response, from the server to the client

◮ tells the client to store the given “cookie” as a session identifier

for that site

Cookie header

◮ sent within an HTTP request, from the client to the server

◮ tells the server that the request belongs to the given session

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

GET / HTTP/1.1

Host: blah.com

. . .

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

GET / HTTP/1.1

Host: blah.com

. . .

Session 687876

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876

HTTP/1.1 200 OK

Set-Cookie: 687876

. . .

<html><head>. . . </head><body>

Buy

Buy

. . .

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876

HTTP/1.1 200 OK

Set-Cookie: 687876

. . .

<html><head>. . . </head><body>

Buy

Buy

. . .

blah.com: 687876

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876

GET /led-zeppelin HTTP/1.1

Host: blah.com

Cookie: 687876

. . .

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin

HTTP/1.1 200 OK

. . .

<html><head>. . . </head><body>

Buy

Buy

. . .

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin

GET /cream HTTP/1.1

Host: blah.com

Cookie: 687876

. . .

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin
Cream

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin
Cream

HTTP/1.1 200 OK

. . .

<html><head>. . . </head><body>

Buy

Buy

. . .

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin
Cream

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin
Cream

GET /end-session HTTP/1.1

Host: blah.com

Cookie: 687876

. . .

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin
Cream
Led Zeppelin

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876blah.com: 687876
Led Zeppelin
Cream
Led Zeppelin

HTTP/1.1 200 OK

Set-Cookie: END

. . .

<html><head>. . . </head><body>

Thank you!

. . .

© 2005–2007 Antonio Carzaniga

Example

web

browser

hispeed.ch

web

server

blah.com

Session 687876
Led Zeppelin
Cream
Led Zeppelin

blah.com: END

© 2005–2007 Antonio Carzaniga

Cookies and User Privacy

A “session” identifies the actions of a user

© 2005–2007 Antonio Carzaniga

Cookies and User Privacy

A “session” identifies the actions of a user

Web sites may use cookies to compile and collect user profiles

◮ and obviously they do exactly that!

© 2005–2007 Antonio Carzaniga

Cookies and User Privacy

A “session” identifies the actions of a user

Web sites may use cookies to compile and collect user profiles

◮ and obviously they do exactly that!

In our example, we can infer that user n. 687876. . .

© 2005–2007 Antonio Carzaniga

Cookies and User Privacy

A “session” identifies the actions of a user

Web sites may use cookies to compile and collect user profiles

◮ and obviously they do exactly that!

In our example, we can infer that user n. 687876. . .

◮ likes rock-blues music from the sixties and seventies

© 2005–2007 Antonio Carzaniga

Cookies and User Privacy

A “session” identifies the actions of a user

Web sites may use cookies to compile and collect user profiles

◮ and obviously they do exactly that!

In our example, we can infer that user n. 687876. . .

◮ likes rock-blues music from the sixties and seventies

◮ lives in Switzerland

© 2005–2007 Antonio Carzaniga

Cookies and User Privacy

A “session” identifies the actions of a user

Web sites may use cookies to compile and collect user profiles

◮ and obviously they do exactly that!

In our example, we can infer that user n. 687876. . .

◮ likes rock-blues music from the sixties and seventies

◮ lives in Switzerland

◮ . . .

© 2005–2007 Antonio Carzaniga

Cookies and User Privacy

A “session” identifies the actions of a user

Web sites may use cookies to compile and collect user profiles

◮ and obviously they do exactly that!

In our example, we can infer that user n. 687876. . .

◮ likes rock-blues music from the sixties and seventies

◮ lives in Switzerland

◮ . . .

If user n. 687876 buys something on line with a credit card,

then he or she would also be immediately indentified

© 2005–2007 Antonio Carzaniga

