
Congestion Control in TCP

Antonio Carzaniga

Faculty of Informatics
University of Lugano

November 11, 2014

© 2005–2007 Antonio Carzaniga

Outline

Intro to congestion control

Input rate vs. output throughput

Congestion window

“Congestion avoidance”

“Slow start”

“Fast recovery”

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

max throughput

T

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = T/2

throughput = T/2

max throughput

T

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = T/2 λ2 = T/2

throughput = T

max throughput

T

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = T/2 λ2 = T/2

throughput = T

λ3 = T/2

max throughput

T

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = T/2 λ2 = T/2

throughput = T

λ3 = T/2

max throughput

T

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = T/2 λ2 = T/2

throughput = T

λ3 = T/2

max throughput

T

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = T/2 λ2 = T/2

throughput = T

λ3 = T/2

max throughput

T

© 2005–2007 Antonio Carzaniga

Understanding Congestion

A router behaves a lot like a kitchen sink

λ1 = T/2 λ2 = T/2

throughput = T

λ3 = T/2

max throughput

T

© 2005–2007 Antonio Carzaniga

Queuing Delay

© 2005–2007 Antonio Carzaniga

Queuing Delay

Total latency is the sum of link latency, processing time, and

the time that a packet spends in the input queue

L = ∆TX +∆CPU +∆q where ∆q = |q|/T

© 2005–2007 Antonio Carzaniga

Queuing Delay

Total latency is the sum of link latency, processing time, and

the time that a packet spends in the input queue

L = ∆TX +∆CPU +∆q where ∆q = |q|/T

Ideal case: constant input data rate

λin < T

In this case the ∆q = 0, because |q| = 0

© 2005–2007 Antonio Carzaniga

Queuing Delay

Total latency is the sum of link latency, processing time, and

the time that a packet spends in the input queue

L = ∆TX +∆CPU +∆q where ∆q = |q|/T

Ideal case: constant input data rate

λin < T

In this case the ∆q = 0, because |q| = 0

Extreme case: constant input data rate

λin > T

In this case |q| = (λin − T)t and therefore

∆q =
λin − T

T
t

© 2005–2007 Antonio Carzaniga

Queuing Delay

© 2005–2007 Antonio Carzaniga

Queuing Delay

Steady-state queuing delay

∆q =

0 λin < T
λin−T

T t λin > T

© 2005–2007 Antonio Carzaniga

Queuing Delay

Steady-state queuing delay

∆q =

0 λin < T
λin−T

T t λin > T

∆q

λin

T

ideal input flow

λin constant

© 2005–2007 Antonio Carzaniga

Queuing Delay

Steady-state queuing delay

∆q =

0 λin < T
λin−T

T t λin > T

∆q

λin

T

ideal input flow

λin constant

∆q

λin

T

realistic input flow

λin variable

© 2005–2007 Antonio Carzaniga

Queuing Delay

© 2005–2007 Antonio Carzaniga

Queuing Delay

Conclusion: as the input rate λin approaches the maximum

throughput T , packets will experience very long delays

© 2005–2007 Antonio Carzaniga

Queuing Delay

Conclusion: as the input rate λin approaches the maximum

throughput T , packets will experience very long delays

More realistic assumptions and models

◮ finite queue length (buffers) in routers

◮ effects of retransmission overhead

© 2005–2007 Antonio Carzaniga

Queuing Delay

Conclusion: as the input rate λin approaches the maximum

throughput T , packets will experience very long delays

More realistic assumptions and models

◮ finite queue length (buffers) in routers

◮ effects of retransmission overhead

λout

λin

T

© 2005–2007 Antonio Carzaniga

Queuing Delay

Conclusion: as the input rate λin approaches the maximum

throughput T , packets will experience very long delays

More realistic assumptions and models

◮ finite queue length (buffers) in routers

◮ effects of retransmission overhead

λout

λin

T

congestion

© 2005–2007 Antonio Carzaniga

What to Do?

What to do when the network is congested and queues are full?

λ1 = T/2 λ2 = T/2

λ3 = T/2

max throughput

T

throughput = T

© 2005–2007 Antonio Carzaniga

What to Do?

What to do when the network is congested and queues are full?

λ1 = T/2

max throughput

T

throughput = T

© 2005–2007 Antonio Carzaniga

What to Do?

What to do when the network is congested and queues are full?

λ1 = T/2

max throughput

T

throughput = T

© 2005–2007 Antonio Carzaniga

What to Do?

What to do when the network is congested and queues are full?

λ1 = T/2

max throughput

T

throughput = T

© 2005–2007 Antonio Carzaniga

What to Do?

What to do when the network is congested and queues are full?

λ1 = T/2

max throughput

T

throughput = T

© 2005–2007 Antonio Carzaniga

Congestion Control (in TCP)

© 2005–2007 Antonio Carzaniga

Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the

network (λin)

© 2005–2007 Antonio Carzaniga

Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the

network (λin)

Issues

© 2005–2007 Antonio Carzaniga

Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the

network (λin)

Issues

◮ how does the sender “measure” the status of the network?
◮ i.e., how does the sender detect congestion?

© 2005–2007 Antonio Carzaniga

Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the

network (λin)

Issues

◮ how does the sender “measure” the status of the network?
◮ i.e., how does the sender detect congestion?

◮ how does the sender effectively limit its output rate?

© 2005–2007 Antonio Carzaniga

Congestion Control (in TCP)

Approach: the sender limits its output rate according to the
status of the network

◮ the sender output rate becomes (part of) the input rate for the

network (λin)

Issues

◮ how does the sender “measure” the status of the network?
◮ i.e., how does the sender detect congestion?

◮ how does the sender effectively limit its output rate?

◮ how should the sender “modulate” its output rate?
◮ i.e., what algorithm should the sender use to decrease or

increase its output rate?

© 2005–2007 Antonio Carzaniga

Detecting Congestion

© 2005–2007 Antonio Carzaniga

Detecting Congestion

If all traffic is correctly acknowledged, then the sender

assumes (quite correctly) that there is no congestion

© 2005–2007 Antonio Carzaniga

Detecting Congestion

If all traffic is correctly acknowledged, then the sender

assumes (quite correctly) that there is no congestion

Congestion means that the queue of one or more routers

between the sender and the receiver overflow

◮ the visible effect is that some segments are dropped

© 2005–2007 Antonio Carzaniga

Detecting Congestion

If all traffic is correctly acknowledged, then the sender

assumes (quite correctly) that there is no congestion

Congestion means that the queue of one or more routers

between the sender and the receiver overflow

◮ the visible effect is that some segments are dropped

Therefore the server assumes that the network is congested

when it detects a segment loss

◮ time out (i.e., no ACK)

◮ multiple acknowledgements (i.e., NACK)

© 2005–2007 Antonio Carzaniga

Congestion Window

The sender maintains a congestion window W

© 2005–2007 Antonio Carzaniga

Congestion Window

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the

sender pushes into the network before blocking waiting for

acknowledgments

© 2005–2007 Antonio Carzaniga

Congestion Window

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the

sender pushes into the network before blocking waiting for

acknowledgments

LastByteSent − LastByteAcked ≤ W

where

W =min (CongestionWindow,ReceiverWindow)

© 2005–2007 Antonio Carzaniga

Congestion Window

The sender maintains a congestion window W

The congestion window limits the amount of bytes that the

sender pushes into the network before blocking waiting for

acknowledgments

LastByteSent − LastByteAcked ≤ W

where

W =min (CongestionWindow,ReceiverWindow)

The resulting maximum output rate is roughly

λ =
W

2L

© 2005–2007 Antonio Carzaniga

Congestion Control

How does TCP “modulate” its output rate?

© 2005–2007 Antonio Carzaniga

Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease

© 2005–2007 Antonio Carzaniga

Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease

Slow start

© 2005–2007 Antonio Carzaniga

Congestion Control

How does TCP “modulate” its output rate?

Additive-increase and multiplicative-decrease

Slow start

Reaction to timeout events

© 2005–2007 Antonio Carzaniga

Additive-Increase/Multiplicative-Decrease

© 2005–2007 Antonio Carzaniga

Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the

congestion window

© 2005–2007 Antonio Carzaniga

Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the

congestion window

◮ e.g., suppose the window size W is currently 20Kb, and a loss

is detected

◮ TCP reduces W to 10Kb

© 2005–2007 Antonio Carzaniga

Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the

congestion window

◮ e.g., suppose the window size W is currently 20Kb, and a loss

is detected

◮ TCP reduces W to 10Kb

How W is increased: at every (good) acknowledgment, TCP

increments W by 1MSS/W , so as to increase W by MSS every

round-trip time 2L. This process is called congestion avoidance

© 2005–2007 Antonio Carzaniga

Additive-Increase/Multiplicative-Decrease

How W is reduced: at every loss event, TCP halves the

congestion window

◮ e.g., suppose the window size W is currently 20Kb, and a loss

is detected

◮ TCP reduces W to 10Kb

How W is increased: at every (good) acknowledgment, TCP

increments W by 1MSS/W , so as to increase W by MSS every

round-trip time 2L. This process is called congestion avoidance

◮ e.g., suppose W = 14600 and MSS = 1460, then the sender

increases W to 16060 after 10 acknowledgments

acknowledgments

© 2005–2007 Antonio Carzaniga

Additive-Increase/Multiplicative-Decrease

Window size W over time

W

Time

© 2005–2007 Antonio Carzaniga

Slow Start

What is the initial value of W ?

© 2005–2007 Antonio Carzaniga

Slow Start

What is the initial value of W ?

The initial value of W is MSS, that is 1 segment, which is quite

low for modern networks

© 2005–2007 Antonio Carzaniga

Slow Start

What is the initial value of W ?

The initial value of W is MSS, that is 1 segment, which is quite

low for modern networks

To get quickly to a good throughput level, TCP increases its

sending rate exponentially for its first growth phase, up to a

slow-start threshold (ssthresh)

© 2005–2007 Antonio Carzaniga

Slow Start

What is the initial value of W ?

The initial value of W is MSS, that is 1 segment, which is quite

low for modern networks

To get quickly to a good throughput level, TCP increases its

sending rate exponentially for its first growth phase, up to a

slow-start threshold (ssthresh)

After the threshold, TCP proceeds with its linear push

© 2005–2007 Antonio Carzaniga

Slow Start

What is the initial value of W ?

The initial value of W is MSS, that is 1 segment, which is quite

low for modern networks

To get quickly to a good throughput level, TCP increases its

sending rate exponentially for its first growth phase, up to a

slow-start threshold (ssthresh)

After the threshold, TCP proceeds with its linear push

This process is called “slow start” because of the small initial

value of W

© 2005–2007 Antonio Carzaniga

Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

© 2005–2007 Antonio Carzaniga

Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different

things about the status of the network

© 2005–2007 Antonio Carzaniga

Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different

things about the status of the network

A timeout indicates congestion

© 2005–2007 Antonio Carzaniga

Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different

things about the status of the network

A timeout indicates congestion

Three (duplicate) ACKs suggest that the network is still able to

deliver segments along that path

© 2005–2007 Antonio Carzaniga

Timeouts vs. NACKs

As we know, three duplicate ACKs are interpreted as a NACK

Both timeouts and NACKs signal a loss, but they say different

things about the status of the network

A timeout indicates congestion

Three (duplicate) ACKs suggest that the network is still able to

deliver segments along that path

So, TCP reacts differently to a timeout and to a triple duplicate

ACKs

© 2005–2007 Antonio Carzaniga

Timeouts vs. NACKs

Assuming the current window size is W = W

© 2005–2007 Antonio Carzaniga

Timeouts vs. NACKs

Assuming the current window size is W = W

Timeout

◮ go back to W = MSS

◮ set ssthresh = W/2

◮ run slow start up to W = ssthresh

◮ then proceed with congestion avoidance

© 2005–2007 Antonio Carzaniga

Timeouts vs. NACKs

Assuming the current window size is W = W

Timeout

◮ go back to W = MSS

◮ set ssthresh = W/2

◮ run slow start up to W = ssthresh

◮ then proceed with congestion avoidance

NACK (i.e., triple duplicate-ack)

◮ set ssthresh = W/2

◮ cut W in half: W = W/2

◮ run congestion avoidance, ramping up W linearly

◮ This is called fast recovery

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

NACK

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK

© 2005–2007 Antonio Carzaniga

Sender Behavior

W

Time

MSS

NACK

timeout

NACK

NACK

SS CA SS CA CA CA

SS=slow start CA=congestion avoidance

© 2005–2007 Antonio Carzaniga

