A Few Basic Elements of
 Communication Security

Antonio Carzaniga

Faculty of Informatics
University of Lugano

June 1, 2011

■ Communication security model

■ Information-theoretic privacy

■ Substitution ciphers

■ Intro to modern cryptography

■ One-time pad
■ Block siphers

■ Cryptographic hash functions

■ Public-key cryptosystems

Communication Security

Communication Security

■ Communication model: Alice sends a message m to Bob

Communication Security

■ Communication model: Alice sends a message m to Bob

Communication Security

■ Communication model: Alice sends a message m to Bob

Eve

Communication Security

■ Communication model: Alice sends a message m to Bob

Eve

- can read the message

Communication Security

■ Communication model: Alice sends a message m to Bob

■ Passive adversary

- can read the message

Eve

- Active adversary
- can modify the message

Goals

Goals

Goals

■ Confidentiality (a.k.a., privacy): Alice wants to make sure that only Bob sees the message

Goals

■ Confidentiality (a.k.a., privacy): Alice wants to make sure that only Bob sees the message

■ Authentication: Bob wants to make sure that the message he reads was exactly what Alice wrote

What is Privacy, Exactly?

What is Privacy, Exactly?

■ Alice wants to make sure that only Bob "sees" the message

What is Privacy, Exactly?

■ Alice wants to make sure that only Bob "sees" the message

■ What if Eve can guess the message?

"Shift" Cipher

"Shift" Cipher

■ The ciphertext is
BUUBDL BU EBXO

"Shift" Cipher

■ The ciphertext is

> BUUBDL BU EBXO

- Plaintext is

ATTACK AT DAWN

"Shift" Cipher

■ The ciphertext is
BUUBDL BU EBXO

■ Plaintext is

ATTACK AT DAWN

■ How many possible ciphers?

- How many key bits?

Problem

■ Decrypt this ciphertext which is an Italian phrase encrypted with a shift-cipher:
ulsgt1ffvgk1sgjhttpugkpguvz yhgbp hgtpgyp yvbhpgw7ygauhgz1sbhgvzjayh

Substitution Cipher

Substitution Cipher

■ Substitution cipher

Substitution Cipher

■ Substitution cipher

- alphabet $\Sigma=$ \{'A', 'B', \ldots, 'Z', ' '\}

Substitution Cipher

■ Substitution cipher

- alphabet $\Sigma=\left\{‘ A^{\prime}, ‘ B ’, \ldots, Z^{\prime}, ‘ ’\right\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

Substitution Cipher

■ Substitution cipher

- alphabet $\Sigma=\{‘ A$ ', ' B ', \ldots, , 'Z',' ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

Example:
A B C DEFGHIJKLMNOPQRSTUVWXYZ_
V Z L Q X T _ R D UCOJNFMGEHWPISYABK

Substitution Cipher

■ Substitution cipher

- alphabet $\Sigma=\left\{{ }^{\prime} A^{\prime}, ‘ B ’, \ldots, ' Z\right.$ ', ' ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

Example:

A B C DEFGHIJKLMNOPQRSTUVWXYZ_ V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K How many possible permutations?

Substitution Cipher

■ Substitution cipher

- alphabet $\Sigma=\left\{{ }^{\prime} A^{\prime}, ‘ B ’, \ldots, ' Z\right.$ ', ' ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

Example:
A B C D E F G H I J K L M N O P Q R S T UVWXYZ_ V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K How many possible permutations?
$27!$

Substitution Cipher

■ Substitution cipher

- alphabet $\Sigma=\left\{{ }^{\prime} A^{\prime}, ‘ B ’, \ldots, ' Z\right.$ ', ' ' $\}$
- encryption function: a permutation

$$
E: \Sigma \rightarrow \Sigma
$$

Example:
A B C D E F G H I J K L M N O P Q R S T UVWXYZ_
V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K How many possible permutations?

$$
27!=10888869450418352160768000000 \approx 2^{93}
$$

Substitution Cipher

■ Encrypting some text using a substitution cipher
plaintext C I A O_M A M M A

Substitution Cipher

■ Encrypting some text using a substitution cipher

- Problems?

Substitution Cipher

■ Encrypting some text using a substitution cipher

■ Problems?

- easy to break just by guessing!

Symmetric Encryption

Symmetric Encryption

S
R

Symmetric Encryption

R

Symmetric Encryption

R

Symmetric Encryption

Symmetric Encryption

Symmetric Encryption

Symmetric Encryption

\mathbf{S}	sender
\mathbf{R}	receiver
\mathbf{A}	adversary
E	encryption algorithm
D	dencryption algorithm
M	plaintext message
C	ciphertext message
K	key

One-Time Pad

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \stackrel{\Phi}{-}\{0,1\}^{n}
$$

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \pm\{0,1\}^{n}
$$

the key K is chosen uniformly at random from $\{0,1\}^{n}$

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \stackrel{\$}{\infty}\{0,1\}^{n}
$$

the key K is chosen uniformly at random from $\{0,1\}^{n}$

- Scheme
- encryption:

$$
E(K, M):=M \oplus K
$$

the key K is then thrown away an never reused

- decryption:

$$
D(K, C):=C \oplus K
$$

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \subseteq\{0,1\}^{n}
$$

the key K is chosen uniformly at random from $\{0,1\}^{n}$

- Scheme
- encryption:

$$
E(K, M):=M \oplus K
$$

the key K is then thrown away an never reused

- decryption:

$$
D(K, C):=C \oplus K
$$

■ Example:
M 0110010110111011

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \subseteq\{0,1\}^{n}
$$

the key K is chosen uniformly at random from $\{0,1\}^{n}$

- Scheme
- encryption:

$$
E(K, M):=M \oplus K
$$

the key K is then thrown away an never reused

- decryption:

$$
D(K, C):=C \oplus K
$$

■ Example:
M 0110010110111011
K 1011000101000101

One-Time Pad

■ Assumptions: the message M and the key K are two n-bit strings

$$
M \in\{0,1\}^{n} ; \quad K \subseteq\{0,1\}^{n}
$$

the key K is chosen uniformly at random from $\{0,1\}^{n}$

- Scheme
- encryption:

$$
E(K, M):=M \oplus K
$$

the key K is then thrown away an never reused

- decryption:

$$
D(K, C):=C \oplus K
$$

■ Example:

M	0110010110111011
K	1011000101000101
C	1101010011111110

So, What is Privacy Exactly?

So, What is Privacy Exactly?

■ A scheme is secure if we learn nothing from the ciphertext C

So, What is Privacy Exactly?

■ A scheme is secure if we learn nothing from the ciphertext C
■ A more formal definition:
let $K ₫ \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any C

So, What is Privacy Exactly?

■ A scheme is secure if we learn nothing from the ciphertext C
■ A more formal definition:
let $K \stackrel{X}{ }$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any C

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

So, What is Privacy Exactly?

- A scheme is secure if we learn nothing from the ciphertext C

■ A more formal definition:
let $K \stackrel{X}{ }$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any C

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

■ Given a ciphertext C, every plaintext m is equiprobable

- so, seeing any particular $C=E_{K}(M)$ tells us nothing about M

So, What is Privacy Exactly?

■ A scheme is secure if we learn nothing from the ciphertext C
■ A more formal definition:
let $K \$ \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any C

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

■ Given a ciphertext C, every plaintext m is equiprobable

- so, seeing any particular $C=E_{K}(M)$ tells us nothing about M

■ Is a shift cipher perfectly secure?

So, What is Privacy Exactly?

■ A scheme is secure if we learn nothing from the ciphertext C

- A more formal definition:
let $K \$ \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any C

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

■ Given a ciphertext C, every plaintext m is equiprobable

- so, seeing any particular $C=E_{K}(M)$ tells us nothing about M

■ Is a shift cipher perfectly secure?
■ Is a substitution cipher perfectly secure?

So, What is Privacy Exactly?

■ A scheme is secure if we learn nothing from the ciphertext C

- A more formal definition:
let $K \$ \mathcal{K}$; for every $m_{1} \neq m_{2} \in \mathcal{M}$, and for any C

$$
\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{1}\right)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m_{2}\right)=C\right]
$$

- Given a ciphertext C, every plaintext m is equiprobable
- so, seeing any particular $C=E_{K}(M)$ tells us nothing about M

■ Is a shift cipher perfectly secure?
■ Is a substitution cipher perfectly secure?
■ Is one-time-pad perfectly secure?

The Cost of Perfect Privacy

The Cost of Perfect Privacy

■ Perfect privacy implies that

$$
|\mathcal{K}| \geq|\mathcal{M}|
$$

The Cost of Perfect Privacy

■ Perfect privacy implies that

$$
|\mathcal{K}| \geq|\mathcal{M}|
$$

■ Proof: assume not.
Fix a possible ciphertext C, i.e., there is a message m and a key k such that $E_{K}(m)=C$, and $\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}(m)=C\right]>0$ Let $P_{C}=\left\{m \in \mathcal{M}\right.$ such that $E_{k}(m)=C$ for some $\left.k\right\}$
Since every k maps exactly one message m to C, and since we have fewer keys than messages, then there is an $m^{\prime} \notin P_{C}$ such that no key k maps m^{\prime} to C; therefore $\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m^{\prime}\right)=C\right]=0$, which violates the perfect-secrecy condition that for all m and $m^{\prime}, \operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}(m)=C\right]=\operatorname{Pr}_{K \in \mathcal{K}}\left[E_{K}\left(m^{\prime}\right)=C\right]$

Message Authenticity

Message Authenticity

S
R

Message Authenticity

$$
\mathrm{S} \xrightarrow{M} \mathrm{R}
$$

Message Authenticity

Message Authenticity

Message Authenticity

Message Authenticity

Message Authenticity

Message Authenticity

σ	message authentication code (MAC)
K	key
$\$$	randomness
MAC gen.	MAC generation algorithm
MAC ver.	MAC verification algorithm

Asymmetric Encryption

Asymmetric Encryption

S

R

Asymmetric Encryption

R

Asymmetric Encryption

R

Asymmetric Encryption

R

Asymmetric Encryption

Asymmetric Encryption

Asymmetric Encryption

$P K_{R}$	receiver's public key
$S K_{R}$	receiver's secret key
M	plaintext message
C	ciphertext message

Digital Signatures

Digital Signatures

Digital Signatures

Digital Signatures

Digital Signatures

Digital Signatures

σ	digital signature
$S K_{S}$	sender's secret key
$P K_{S}$	sender's public key
$\$$	randomness
sign	signing algorithm
verify	verification algorithm

Primitives vs. Protocols

Primitives vs. Protocols

■ Protocol

- an algorithm
- solves a specific security problem (e.g., signing a message)

Primitives vs. Protocols

■ Protocol

- an algorithm
- solves a specific security problem (e.g., signing a message)

■ Primitive

Primitives vs. Protocols

■ Protocol

- an algorithm
- solves a specific security problem (e.g., signing a message)

■ Primitive

- also an algorithm
- the elementary subroutines of protocols
- implement (try to approximate) well-defined mathematical object
- embody "hard problems"

Stream Ciphers

Stream Ciphers

■ A stream cipher is a generator of a pseudo-random streams

Stream Ciphers

■ A stream cipher is a generator of a pseudo-random streams

- given an initialization key K
- generates an infinite pseudo-random sequence of bits

Stream Ciphers

- A stream cipher is a generator of a pseudo-random streams
- given an initialization key K
- generates an infinite pseudo-random sequence of bits

■ E.g., RC4

Padding with a Stream Cipher

Padding with a Stream Cipher

■ Assumptions: S and R share a secret key K and agree to use a stream cipher S_{K}

- S and R maintain some state: position s initialized to $s=0$

Padding with a Stream Cipher

■ Assumptions: S and R share a secret key K and agree to use a stream cipher S_{K}

- S and R maintain some state: position s initialized to $s=0$
- Encryption protocol

1. S computes $C \leftarrow M \oplus S_{K}[s \ldots s+|M|-1]$
2. S updates its position $s \leftarrow s+|M|$

Padding with a Stream Cipher

■ Assumptions: S and R share a secret key K and agree to use a stream cipher S_{K}

- S and R maintain some state: position s initialized to $s=0$
- Encryption protocol

1. S computes $C \leftarrow M \oplus S_{K}[s \ldots s+|M|-1]$
2. S updates its position $s \leftarrow s+|M|$

- Dencryption protocol

1. R computes $M \leftarrow C \oplus S_{K}[s \ldots s+|C|-1]$
2. R updates its position $s \leftarrow s+|C|$

Block Ciphers

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Block Ciphers

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Block Ciphers

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- $E_{K}(\cdot)$ is a permutation, so $E_{K}^{-1}(\cdot)$ is always defined

Block Ciphers

■ Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- $E_{K}(\cdot)$ is a permutation, so $E_{K}^{-1}(\cdot)$ is always defined
- fixed-length input and output (n)

Block Ciphers

- Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- $E_{K}(\cdot)$ is a permutation, so $E_{K}^{-1}(\cdot)$ is always defined
- fixed-length input and output (n)
- fixed-length key (k)

Block Ciphers

- Block Cipher: $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- $E_{K}(\cdot)$ is a permutation, so $E_{K}^{-1}(\cdot)$ is always defined
- fixed-length input and output (n)
- fixed-length key (k)
- e.g., DES, AES

An Encryption Protocol

An Encryption Protocol

- Symmetric encryption
- Input: k-bit key K, N-bit message M
- Output: N-bit ciphertext C

An Encryption Protocol

- Symmetric encryption
- Input: k-bit key K, N-bit message M
- Output: N-bit ciphertext C

■ Cipher Block Chaining (CBC)

- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split M into n-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$

An Encryption Protocol

- Symmetric encryption
- Input: k-bit key K, N-bit message M
- Output: N-bit ciphertext C

■ Cipher Block Chaining (CBC)

- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split M into n-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$

$$
\begin{aligned}
& \operatorname{CBC}(K, M) \\
& 1 \\
& 1 \quad x \leftarrow 0^{n} \\
& 2
\end{aligned} \text { for } i \leftarrow 0 \text { to }\lfloor|M| / n\rfloor, ~ d o ~ C[n i \ldots n i+n-1] \leftarrow E_{K}(x \oplus M[n i \ldots n i+n-1])
$$

An Encryption Protocol

- Symmetric encryption
- Input: k-bit key K, N-bit message M
- Output: N-bit ciphertext C

■ Cipher Block Chaining (CBC)

- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split M into n-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$

Exercise

$■$ Write the decryption algorithm for CBC

Exercise

■ Write the decryption algorithm for CBC

```
CBC-Decrypt \((K, C)\)
\(1 \quad x \leftarrow 0^{n}\)
2 for \(i \leftarrow 0\) to \(\lfloor|C| / n\rfloor\)
    do \(M[n i \ldots n i+n-1] \leftarrow x \oplus E_{K}^{-1}(C[n i \ldots n i+n-1])\)
    \(x \leftarrow C[n i \ldots n i+n-1]\)
5 return \(M\)
```


An Encryption Protocol (2)

An Encryption Protocol (2)

■ Is this CBC protocol secure?

An Encryption Protocol (2)

■ Is this CBC protocol secure?

- any deterministic stateless protocol is insecure
- we need state and/or randomness

An Encryption Protocol (2)

■ Is this CBC protocol secure?

- any deterministic stateless protocol is insecure
- we need state and/or randomness

■ What if $|M| \neq 0 \bmod n$?

An Encryption Protocol (2)

■ Is this CBC protocol secure?

- any deterministic stateless protocol is insecure
- we need state and/or randomness

■ What if $|M| \neq 0 \bmod n$?

■ Is CBC parallelizable?

CBC With Random IV

■ CBC\$: cipher block chaining with random IV

CBC With Random IV

- CBC\$: cipher block chaining with random IV

$$
\begin{aligned}
& C B C \$-\operatorname{Encrypt}(K, M) \\
& 1 \\
& 2 \text { if }|M|=0 \vee|M| \neq 0 \bmod n \\
& 2
\end{aligned} \quad \text { then return } \perp,
$$

CBC With Random IV (2)

- CBC : cipher block chaining with random IV (decryption)

CBC With Random IV (2)

■ CBC : cipher block chaining with random IV (decryption)

$$
\begin{aligned}
& \text { CBC } \$ \text {-Decrypt }(K, I V, C) \\
& 1 \quad \text { if }|C|=0 \vee|C| \neq 0 \bmod n \\
& 2
\end{aligned} \quad \text { then return } \perp
$$

CBC With Stateful Counter

■ CBCC: cipher block chaining with stateful counter

CBC With Stateful Counter

■ CBCC: cipher block chaining with stateful counter

$$
\begin{array}{ll}
\hline \text { CBCC-Encrypt }(K, M) \\
1 & \text { static } c t r \leftarrow 0 \\
2 & \text { if } c t r \geq 2^{n} \vee|M|=0 \vee|M| \neq 0 \bmod n \\
3 & \text { then return } \perp \\
4 & M[1] \cdot M[2] \cdots M[\ell] \leftarrow M \\
5 & I V \leftarrow[\operatorname{ctr}]_{n} \\
6 & C[0] \leftarrow[c t r]_{n} \\
7 & \text { for } i \leftarrow 1 \text { to } \ell \\
8 & \text { do } C[i] \leftarrow E_{K}(C[i-1] \oplus M[i]) \\
9 & C \leftarrow C[1] \cdot C[2] \cdots C[\ell] \\
10 & \text { ctr } \leftarrow c t r+1 \\
11 & \text { return }\langle I V, C\rangle
\end{array}
$$

CBC With Stateful Counter (2)

■ CBCC: cipher block chaining with stateful counter

CBC With Stateful Counter (2)

■ CBCC: cipher block chaining with stateful counter

$$
\begin{array}{|ll|}
\hline C B C C-D e c r y p t ~ \\
\hline 1 & \text { if } I V+|V| \geq 2^{n} \vee|C|=0 \vee|C| \neq 0 \bmod n \\
2 & \text { then return } \perp \\
3 & C[1] \cdot C[2] \cdots C[\ell] \leftarrow C \\
4 & I V[C t r]_{n} \\
5 & C[0] \leftarrow I V \\
6 & \text { for } i \leftarrow 1 \text { to } \ell \\
7 & \text { do } M[i] \leftarrow C[i-1] \oplus E_{K}^{-1}(C[i]) \\
8 & M \leftarrow M[1] \cdot M[2] \cdots M[\ell] \\
9 & \text { return } M
\end{array}
$$

Counter Mode

■ CTR \$: counter mode with random initial counter

Counter Mode

■ CTR\$: counter mode with random initial counter

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Counter Mode

■ CTR\$: counter mode with random initial counter

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

```
CTR \$-Encrypt ( \(K, M\) )
\(1 R \stackrel{\$}{\leftrightarrows} 0,1\}^{n}\)
\(2 \mathrm{Pad} \leftarrow F_{K}\left([R]_{n}\right)\)
3 for \(i \leftarrow 1\) to \(\lceil|M| / n\rceil-1\)
    do Pad \(\leftarrow \operatorname{Pad} \cdot F_{K}\left([R+i]_{n}\right)\)
5 Pad \(\leftarrow\) first \(|M|\) bits of Pad
\(6 \quad C \leftarrow M \oplus P a d\)
7 return \(\langle R, C\rangle\)
```


Counter Mode (2)

■ CTR $\$$: counter mode with random initial counter (decryption)

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Counter Mode (2)

■ CTR $\$$: counter mode with random initial counter (decryption)

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

```
CTR\$-Decrypt \((K, R, C)\)
\(1 \quad\) Pad \(\leftarrow F_{K}\left([R]_{n}\right)\)
2 for \(i \leftarrow 1\) to \(\lceil|C| / n\rceil-1\)
    do Pad \(\leftarrow \operatorname{Pad} \cdot F_{K}\left([R+i]_{n}\right)\)
4 Pad \(\leftarrow\) first \(|C|\) bits of Pad
\(5 \quad M \leftarrow C \oplus \operatorname{Pad}\)
6 return \(M\)
```


Counter Mode (3)

■ CTRC: counter mode with stateful counter

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Counter Mode (3)

■ CTRC: counter mode with stateful counter

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

$$
\begin{aligned}
& \text { CTRC (} K, M \text {) } \\
& 1 \text { static } R \leftarrow 0 \\
& 2 \ell \leftarrow\lceil|M| / n\rceil \\
& 3 \text { if } R+\ell-1 \geq 2^{n} \\
& 4 \text { then return } \perp \\
& 5 \mathrm{Pad} \leftarrow F_{K}\left([R]_{n}\right) \\
& 6 \text { for } i \leftarrow 1 \text { to } \ell-1 \\
& \text { do Pad } \leftarrow \operatorname{Pad} \cdot F_{K}\left([R+i]_{n}\right) \\
& 8 \text { Pad } \leftarrow \text { first }|M| \text { bits of Pad } \\
& 9 \quad C \leftarrow M \oplus \text { Pad } \\
& 10 R \leftarrow R+\ell \\
& 11 \text { return }\langle R-\ell, C\rangle
\end{aligned}
$$

Counter Mode (4)

■ CTRC: counter mode with stateful counter (decryption)

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Counter Mode (4)

■ CTRC: counter mode with stateful counter (decryption)

- family of functions: $F:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

```
CTRC-Decrypt \((K, R, C)\)
1 Pad \(\leftarrow F_{K}\left([R]_{n}\right)\)
2 for \(i \leftarrow 1\) to \(\lceil|C| / n\rceil-1\)
    do Pad \(\leftarrow \operatorname{Pad} \cdot F_{K}\left([R+i]_{n}\right)\)
4 Pad \(\leftarrow\) first \(|C|\) bits of Pad
\(5 \quad M \leftarrow C \oplus \operatorname{Pad}\)
6 return \(M\)
```


Authentication Protocol

■ MAC generation

- Input: k-bit key K, N-bit message M
- Output: n-bit message authentication code σ

Authentication Protocol

- MAC generation
- Input: k-bit key K, N-bit message M
- Output: n-bit message authentication code σ
- CBC with random IV
- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split M into n-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$

$$
\begin{aligned}
& \operatorname{MAC}(K, M) \\
& 1 / V \underbrace{\Phi}\{0,1\}^{n} \\
& 2 C \leftarrow I V \\
& 3 \text { for } i \leftarrow 0 \text { to }\lfloor|M| / n\rfloor \\
& \text { do } C \leftarrow E_{K}(C \oplus M[n i \ldots n i+n-1]) \\
& 5 \text { return }\langle I V, C\rangle
\end{aligned}
$$

Authentication Protocol

- MAC generation
- Input: k-bit key K, N-bit message M
- Output: n-bit message authentication code σ
- CBC with random IV
- use a block cipher $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- split M into n-bit blocks $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{\ell} \quad(\ell=\lfloor N / n\rfloor)$

CBC MAC: Generation

■ CBC MAC: cipher block chaining MAC with random IV

CBC MAC: Generation

■ CBC MAC: cipher block chaining MAC with random IV

$$
\begin{aligned}
& \text { CBC-MAC } \$(K, M) \\
& 1 \text { if }|M|=0 \vee|M| \neq 0 \bmod n \\
& \text { then return } \perp \\
& 3 M[1] \cdot M[2] \cdots M[\ell] \leftarrow M \\
& 4 \operatorname{IV} \stackrel{\$}{\lfloor }\{0,1\}^{n} \\
& 5 C \leftarrow I V \\
& 6 \text { for } i \leftarrow 1 \text { to } \ell \\
& \text { do } C \leftarrow E_{K}(C \oplus M[i]) \\
& 8 \text { return }\langle I V, C\rangle
\end{aligned}
$$

CBC MAC: Verification

- CBC MAC: cipher block chaining MAC with random IV

CBC MAC: Verification

■ CBC MAC: cipher block chaining MAC with random IV

$$
\begin{aligned}
& \text { CBC-MAC } \$-\operatorname{Verify}(K, I V, \sigma, M) \\
& 1 \\
& \text { if }|M|=0 \vee|M| \neq 0 \bmod n \\
& 2
\end{aligned} \quad \text { then return } \perp,
$$

Cryptographic Hash Functions

■ Cryptographic Hash: $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

Cryptographic Hash Functions

■ Cryptographic Hash: $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

Cryptographic Hash Functions

■ Cryptographic Hash: $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- $H(\cdot)$ is a good hash function when (informally)

$$
\forall m \in\{0,1\}^{*}, h \in\{0,1\}^{n}, \operatorname{Pr}[H(m)=h]=\frac{1}{2^{n}}
$$

Cryptographic Hash Functions

■ Cryptographic Hash: $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- $H(\cdot)$ is a good hash function when (informally)

$$
\forall m \in\{0,1\}^{*}, h \in\{0,1\}^{n}, \operatorname{Pr}[H(m)=h]=\frac{1}{2^{n}}
$$

- it is "difficult" to find collisions

$$
\text { find } m_{1}, m_{2} \in\{0,1\}^{*}: m_{1} \neq m_{2}, H\left(m_{1}\right)=H\left(m_{2}\right)
$$

Cryptographic Hash Functions

■ Cryptographic Hash: $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- $H(\cdot)$ is a good hash function when (informally)

$$
\forall m \in\{0,1\}^{*}, h \in\{0,1\}^{n}, \operatorname{Pr}[H(m)=h]=\frac{1}{2^{n}}
$$

- it is "difficult" to find collisions

$$
\text { find } m_{1}, m_{2} \in\{0,1\}^{*}: m_{1} \neq m_{2}, H\left(m_{1}\right)=H\left(m_{2}\right)
$$

- it is "difficult" to find a preimage given $m \in\{0,1\}^{*}$, find $m^{\prime}: H\left(m^{\prime}\right)=m$

Cryptographic Hash Functions

■ Cryptographic Hash: $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- $H(\cdot)$ is a good hash function when (informally)

$$
\forall m \in\{0,1\}^{*}, h \in\{0,1\}^{n}, \operatorname{Pr}[H(m)=h]=\frac{1}{2^{n}}
$$

- it is "difficult" to find collisions

$$
\text { find } m_{1}, m_{2} \in\{0,1\}^{*}: m_{1} \neq m_{2}, H\left(m_{1}\right)=H\left(m_{2}\right)
$$

- it is "difficult" to find a preimage

$$
\text { given } m \in\{0,1\}^{*} \text {, find } m^{\prime}: H\left(m^{\prime}\right)=m
$$

- e.g., SHA-1

■ Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Recipes: cryptographic protocols

- certificates (e.g., X.509)
- secure transport (e.g., TLS, IPSec)
- ...

■ Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

■ Recipes: cryptographic protocols

- certificates (e.g., X.509)
- secure transport (e.g., TLS, IPSec)
- ...

■ Applications

- electronic commerce
- secure shell
- secure electronic mail
- virtual private networks
- ...

