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Communication Security

Communication model: Alice sends a message m to Bob

Alice Bob

m

Eve
Passive adversary

◮ can read the message

Active adversary

◮ can modify the message
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Goals

Alice Bob

m

Confidentiality (a.k.a., privacy): Alice wants to make sure that

only Bob sees the message

Authentication: Bob wants to make sure that the message he

reads was exactly what Alice wrote
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What is Privacy, Exactly?

Alice Bob

m

Alice wants to make sure that only Bob “sees” the message

What if Eve can guess the message?
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“Shift” Cipher

The ciphertext is

BUUBDL BU EBXO
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“Shift” Cipher

The ciphertext is

BUUBDL BU EBXO

Plaintext is

ATTACK AT DAWN

How many possible ciphers?

◮ How many key bits?
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Problem

Decrypt this ciphertext which is an Italian phrase encrypted

with a shift-cipher:

ulsgtlffvgklsgjhttpugkpguvz yhgbp hgtpgyp

yvbhpgwlygauhgzlsbhgvzjayh

© 2005–2008 Antonio Carzaniga



Substitution Cipher

© 2005–2008 Antonio Carzaniga



Substitution Cipher

Substitution cipher

© 2005–2008 Antonio Carzaniga



Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

© 2005–2008 Antonio Carzaniga



Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ→ Σ

© 2005–2008 Antonio Carzaniga



Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ→ Σ

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

© 2005–2008 Antonio Carzaniga



Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ→ Σ

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

How many possible permutations?

© 2005–2008 Antonio Carzaniga



Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ→ Σ

Example:
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Substitution Cipher

Substitution cipher

◮ alphabet Σ = {‘A’, ‘B’, . . . , ‘Z’, ‘ ’}

◮ encryption function: a permutation

E : Σ→ Σ

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

How many possible permutations?

27! = 10888869450418352160768000000 ≈ 293
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Substitution Cipher

Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A
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Substitution Cipher

Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A

E E E E E E E E E E

ciphertext L D V F K J V J J V

Problems?
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Substitution Cipher

Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A

E E E E E E E E E E

ciphertext L D V F K J V J J V

Problems?

◮ easy to break just by guessing!

◮ . . .
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Symmetric Encryption

S R
M

E

K

randomness

or state

D

K

MC

A

S sender

R receiver

A adversary

E encryption algorithm

D dencryption algorithm

M plaintext message

C ciphertext message

K key
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One-Time Pad

Assumptions: the message M and the key K are two n-bit

strings

M ∈ {0,1}n; K
$
←{0,1}n
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One-Time Pad

Assumptions: the message M and the key K are two n-bit

strings

M ∈ {0,1}n; K
$
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the key K is chosen uniformly at random from {0,1}n

Scheme

◮ encryption:

E(K ,M) := M ⊕ K

the key K is then thrown away an never reused

◮ decryption:

D(K ,C) := C ⊕ K

Example: M 0110010110111011
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One-Time Pad

Assumptions: the message M and the key K are two n-bit

strings

M ∈ {0,1}n; K
$
←{0,1}n

the key K is chosen uniformly at random from {0,1}n

Scheme

◮ encryption:

E(K ,M) := M ⊕ K

the key K is then thrown away an never reused

◮ decryption:

D(K ,C) := C ⊕ K

Example: M 0110010110111011

K 1011000101000101
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One-Time Pad

Assumptions: the message M and the key K are two n-bit

strings

M ∈ {0,1}n; K
$
←{0,1}n

the key K is chosen uniformly at random from {0,1}n

Scheme

◮ encryption:

E(K ,M) := M ⊕ K

the key K is then thrown away an never reused

◮ decryption:

D(K ,C) := C ⊕ K

Example: M 0110010110111011

K 1011000101000101

C 1101010011111110
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So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$
←K; for every m1 6= m2 ∈M, and for any C
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© 2005–2008 Antonio Carzaniga



So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$
←K; for every m1 6= m2 ∈M, and for any C

PrK∈K[EK(m1) = C] = PrK∈K[EK(m2) = C]

Given a ciphertext C, every plaintext m is equiprobable

◮ so, seeing any particular C = EK(M) tells us nothing about M

Is a shift cipher perfectly secure?

© 2005–2008 Antonio Carzaniga



So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$
←K; for every m1 6= m2 ∈M, and for any C

PrK∈K[EK(m1) = C] = PrK∈K[EK(m2) = C]

Given a ciphertext C, every plaintext m is equiprobable

◮ so, seeing any particular C = EK(M) tells us nothing about M

Is a shift cipher perfectly secure?

Is a substitution cipher perfectly secure?

© 2005–2008 Antonio Carzaniga



So, What is Privacy Exactly?

A scheme is secure if we learn nothing from the ciphertext C

A more formal definition:

let K
$
←K; for every m1 6= m2 ∈M, and for any C

PrK∈K[EK(m1) = C] = PrK∈K[EK(m2) = C]

Given a ciphertext C, every plaintext m is equiprobable

◮ so, seeing any particular C = EK(M) tells us nothing about M

Is a shift cipher perfectly secure?

Is a substitution cipher perfectly secure?

Is one-time-pad perfectly secure?
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The Cost of Perfect Privacy
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The Cost of Perfect Privacy

Perfect privacy implies that

|K| ≥ |M|
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The Cost of Perfect Privacy

Perfect privacy implies that

|K| ≥ |M|

Proof: assume not.

Fix a possible ciphertext C, i.e., there is a message m and a

key k such that EK(m) = C, and PrK∈K[EK(m) = C] > 0

Let PC = {m ∈M such that Ek(m) = C for some k}

Since every k maps exactly one message m to C, and since we

have fewer keys than messages, then there is an m′ 6∈ PC such

that no key k maps m′ to C; therefore PrK∈K[EK(m
′) = C] = 0,

which violates the perfect-secrecy condition that for all m and

m′, PrK∈K[EK(m) = C] = PrK∈K[EK(m
′) = C]
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Message Authenticity

S R
M

A

M′

MAC

gen.

K$ or state

σ σ ′ MAC

ver.

K





accept

reject

σ message authentication code (MAC)

K key

$ randomness

MAC gen. MAC generation algorithm

MAC ver. MAC verification algorithm
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Asymmetric Encryption

S R
M

E

PKR

$

D

SKR

MC

A

PKR receiver’s public key

SKR receiver’s secret key

M plaintext message

C ciphertext message
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Digital Signatures

S R
M

A

M′

sign

SKS$

σ σ ′
verify

PKS





accept

reject

σ digital signature

SKS sender’s secret key

PKS sender’s public key

$ randomness

sign signing algorithm

verify verification algorithm
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Primitives vs. Protocols

Protocol

◮ an algorithm

◮ solves a specific security problem (e.g., signing a message)
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Primitives vs. Protocols

Protocol

◮ an algorithm

◮ solves a specific security problem (e.g., signing a message)

Primitive

◮ also an algorithm

◮ the elementary subroutines of protocols

◮ implement (try to approximate) well-defined mathematical

object

◮ embody “hard problems”
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Stream Ciphers
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Stream Ciphers

A stream cipher is a generator of a pseudo-random streams
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Stream Ciphers

A stream cipher is a generator of a pseudo-random streams

◮ given an initialization key K

◮ generates an infinite pseudo-random sequence of bits
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Stream Ciphers

A stream cipher is a generator of a pseudo-random streams

◮ given an initialization key K

◮ generates an infinite pseudo-random sequence of bits

E.g., RC4
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Padding with a Stream Cipher
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Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK

◮ S and R maintain some state: position s initialized to s = 0
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Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK

◮ S and R maintain some state: position s initialized to s = 0

Encryption protocol

1. S computes C ← M ⊕ SK[s . . . s+ |M| − 1]

2. S updates its position s ← s+ |M|
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Padding with a Stream Cipher

Assumptions: S and R share a secret key K and agree to use a
stream cipher SK

◮ S and R maintain some state: position s initialized to s = 0

Encryption protocol

1. S computes C ← M ⊕ SK[s . . . s+ |M| − 1]

2. S updates its position s ← s+ |M|

Dencryption protocol

1. R computes M ← C ⊕ SK[s . . . s+ |C| − 1]

2. R updates its position s ← s+ |C|
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Block Ciphers

Block Cipher: E : {0,1}k × {0,1}n → {0,1}n
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Block Ciphers

Block Cipher: E : {0,1}k × {0,1}n → {0,1}n

M

K E

EK(M)
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Block Ciphers

Block Cipher: E : {0,1}k × {0,1}n → {0,1}n

M

K E

EK(M)

◮ EK(·) is a permutation, so E−1
K (·) is always defined

© 2005–2008 Antonio Carzaniga



Block Ciphers

Block Cipher: E : {0,1}k × {0,1}n → {0,1}n

M

K E

EK(M)

n

n

◮ EK(·) is a permutation, so E−1
K (·) is always defined

◮ fixed-length input and output (n)
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Block Ciphers

Block Cipher: E : {0,1}k × {0,1}n → {0,1}n

M

K E

EK(M)

k

n

n

◮ EK(·) is a permutation, so E−1
K (·) is always defined

◮ fixed-length input and output (n)

◮ fixed-length key (k)
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Block Ciphers

Block Cipher: E : {0,1}k × {0,1}n → {0,1}n

M

K E

EK(M)

k

n

n

◮ EK(·) is a permutation, so E−1
K (·) is always defined

◮ fixed-length input and output (n)

◮ fixed-length key (k)

◮ e.g., DES, AES
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An Encryption Protocol
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An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K, N-bit message M

◮ Output: N-bit ciphertext C
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An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K, N-bit message M

◮ Output: N-bit ciphertext C

Cipher Block Chaining (CBC)

◮ use a block cipher E : {0,1}k × {0,1}n → {0,1}n

◮ split M into n-bit blocks M = M0||M1|| . . . ||Mℓ (ℓ = ⌊N/n⌋)
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An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K, N-bit message M

◮ Output: N-bit ciphertext C

Cipher Block Chaining (CBC)

◮ use a block cipher E : {0,1}k × {0,1}n → {0,1}n

◮ split M into n-bit blocks M = M0||M1|| . . . ||Mℓ (ℓ = ⌊N/n⌋)

CBC(K ,M)

1 x ← 0n

2 for i ← 0 to ⌊|M|/n⌋

3 do C[ni . . .ni + n− 1]← EK(x ⊕M[ni . . .ni + n− 1])
4 x ← C[ni . . .ni + n− 1]

5 return C
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An Encryption Protocol

Symmetric encryption

◮ Input: k-bit key K, N-bit message M

◮ Output: N-bit ciphertext C

Cipher Block Chaining (CBC)

◮ use a block cipher E : {0,1}k × {0,1}n → {0,1}n

◮ split M into n-bit blocks M = M0||M1|| . . . ||Mℓ (ℓ = ⌊N/n⌋)

M0

⊕0n

K E

C0

M1

⊕

K E

C1

M2

⊕

K E

C2

· · ·

· · ·

· · ·

Mℓ

⊕

K E

Cℓ
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Exercise

Write the decryption algorithm for CBC
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Exercise

Write the decryption algorithm for CBC

CBC-Decrypt(K,C)

1 x ← 0n

2 for i ← 0 to ⌊|C|/n⌋

3 do M[ni . . .ni + n− 1]← x ⊕ E−1
K (C[ni . . .ni + n− 1])

4 x ← C[ni . . .ni + n− 1]

5 return M
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An Encryption Protocol (2)
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An Encryption Protocol (2)

Is this CBC protocol secure?
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An Encryption Protocol (2)

Is this CBC protocol secure?

◮ any deterministic stateless protocol is insecure

◮ we need state and/or randomness
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An Encryption Protocol (2)

Is this CBC protocol secure?

◮ any deterministic stateless protocol is insecure

◮ we need state and/or randomness

What if |M| 6= 0 mod n?
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An Encryption Protocol (2)

Is this CBC protocol secure?

◮ any deterministic stateless protocol is insecure

◮ we need state and/or randomness

What if |M| 6= 0 mod n?

Is CBC parallelizable?
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CBC With Random IV

CBC$: cipher block chaining with random IV
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CBC With Random IV

CBC$: cipher block chaining with random IV

CBC$-Encrypt(K,M)

1 if |M| = 0∨ |M| 6= 0 mod n

2 then return ⊥

3 M[1] ·M[2] · · ·M[ℓ]← M

4 IV
$
←{0,1}n

5 C[0]← IV

6 for i ← 1 to ℓ

7 do C[i]← EK(C[i − 1]⊕M[i])

8 C ← C[1] · C[2] · · ·C[ℓ]

9 return 〈IV ,C〉
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CBC With Random IV (2)

CBC$: cipher block chaining with random IV (decryption)
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CBC With Random IV (2)

CBC$: cipher block chaining with random IV (decryption)

CBC$-Decrypt(K, IV ,C)

1 if |C| = 0∨ |C| 6= 0 mod n

2 then return ⊥

3 C[1] · C[2] · · ·C[ℓ]← C

4 C[0]← IV

5 for i ← 1 to ℓ

6 do M[i]← C[i − 1]⊕ EK(C[i])

7 M ← M[1] ·M[2] · · ·M[ℓ]

8 return M
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CBC With Stateful Counter

CBCC: cipher block chaining with stateful counter
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CBC With Stateful Counter

CBCC: cipher block chaining with stateful counter

CBCC-Encrypt(K,M)

1 static ctr ← 0

2 if ctr ≥ 2n ∨ |M| = 0∨ |M| 6= 0 mod n

3 then return ⊥

4 M[1] ·M[2] · · ·M[ℓ]← M

5 IV ← [ctr]n
6 C[0]← [ctr]n
7 for i ← 1 to ℓ

8 do C[i]← EK(C[i − 1]⊕M[i])

9 C ← C[1] · C[2] · · ·C[ℓ]

10 ctr ← ctr+1

11 return 〈IV ,C〉
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CBC With Stateful Counter (2)

CBCC: cipher block chaining with stateful counter
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CBC With Stateful Counter (2)

CBCC: cipher block chaining with stateful counter

CBCC-Decrypt(K, IV ,C)

1 if IV +|C| ≥ 2n ∨ |C| = 0∨ |C| 6= 0 mod n

2 then return ⊥

3 C[1] · C[2] · · ·C[ℓ]← C

4 IV ← [ctr]n
5 C[0]← IV

6 for i ← 1 to ℓ

7 do M[i]← C[i − 1]⊕ E−1
K (C[i])

8 M ← M[1] ·M[2] · · ·M[ℓ]

9 return M
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Counter Mode

CTR$: counter mode with random initial counter
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Counter Mode

CTR$: counter mode with random initial counter

◮ family of functions: F : {0,1}k × {0,1}n → {0,1}n
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Counter Mode

CTR$: counter mode with random initial counter

◮ family of functions: F : {0,1}k × {0,1}n → {0,1}n

CTR$-Encrypt(K,M)

1 R
$
←{0,1}n

2 Pad ← FK([R]n)

3 for i ← 1 to ⌈|M|/n⌉ − 1

4 do Pad ← Pad ·FK([R+ i]n)

5 Pad ← first |M| bits of Pad

6 C ← M ⊕ Pad

7 return 〈R,C〉
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Counter Mode (2)

CTR$: counter mode with random initial counter (decryption)

◮ family of functions: F : {0,1}k × {0,1}n → {0,1}n
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Counter Mode (2)

CTR$: counter mode with random initial counter (decryption)

◮ family of functions: F : {0,1}k × {0,1}n → {0,1}n

CTR$-Decrypt(K,R,C)

1 Pad ← FK([R]n)

2 for i ← 1 to ⌈|C|/n⌉ − 1

3 do Pad ← Pad ·FK([R+ i]n)

4 Pad ← first |C| bits of Pad

5 M ← C ⊕ Pad

6 return M
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Counter Mode (3)

CTRC: counter mode with stateful counter

◮ family of functions: F : {0,1}k × {0,1}n → {0,1}n
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Counter Mode (3)

CTRC: counter mode with stateful counter

◮ family of functions: F : {0,1}k × {0,1}n → {0,1}n

CTRC(K,M)

1 static R ← 0

2 ℓ ← ⌈|M|/n⌉

3 if R+ℓ− 1 ≥ 2n

4 then return ⊥

5 Pad ← FK([R]n)

6 for i ← 1 to ℓ − 1

7 do Pad ← Pad ·FK([R+ i]n)

8 Pad ← first |M| bits of Pad

9 C ← M ⊕ Pad

10 R ← R+ ℓ

11 return 〈R− ℓ,C〉

© 2005–2008 Antonio Carzaniga



Counter Mode (4)

CTRC: counter mode with stateful counter (decryption)

◮ family of functions: F : {0,1}k × {0,1}n → {0,1}n
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Counter Mode (4)

CTRC: counter mode with stateful counter (decryption)

◮ family of functions: F : {0,1}k × {0,1}n → {0,1}n

CTRC-Decrypt(K,R,C)

1 Pad ← FK([R]n)

2 for i ← 1 to ⌈|C|/n⌉ − 1

3 do Pad ← Pad ·FK([R+ i]n)

4 Pad ← first |C| bits of Pad

5 M ← C ⊕ Pad

6 return M
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Authentication Protocol

MAC generation

◮ Input: k-bit key K, N-bit message M

◮ Output: n-bit message authentication code σ
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Authentication Protocol

MAC generation

◮ Input: k-bit key K, N-bit message M

◮ Output: n-bit message authentication code σ

CBC with random IV

◮ use a block cipher E : {0,1}k × {0,1}n → {0,1}n

◮ split M into n-bit blocks M = M0||M1|| . . . ||Mℓ (ℓ = ⌊N/n⌋)

MAC(K ,M)

1 IV
$
←{0,1}n

2 C ← IV

3 for i ← 0 to ⌊|M|/n⌋

4 do C ← EK(C ⊕M[ni . . .ni + n− 1])
5 return 〈IV ,C〉
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Authentication Protocol

MAC generation

◮ Input: k-bit key K, N-bit message M

◮ Output: n-bit message authentication code σ

CBC with random IV

◮ use a block cipher E : {0,1}k × {0,1}n → {0,1}n

◮ split M into n-bit blocks M = M0||M1|| . . . ||Mℓ (ℓ = ⌊N/n⌋)

M0

⊕IV

K E

M1

⊕

K E

M2

⊕

K E

· · ·

· · ·

Mℓ

⊕

K E

MACK(M)
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CBC MAC: Generation

CBC MAC: cipher block chaining MAC with random IV
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CBC MAC: Generation

CBC MAC: cipher block chaining MAC with random IV

CBC-MAC$(K,M)

1 if |M| = 0∨ |M| 6= 0 mod n

2 then return ⊥

3 M[1] ·M[2] · · ·M[ℓ]← M

4 IV
$
←{0,1}n

5 C ← IV

6 for i ← 1 to ℓ

7 do C ← EK(C ⊕M[i])

8 return 〈IV ,C〉
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CBC MAC: Verification

CBC MAC: cipher block chaining MAC with random IV
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CBC MAC: Verification

CBC MAC: cipher block chaining MAC with random IV

CBC-MAC$-Verify(K, IV , σ ,M)

1 if |M| = 0∨ |M| 6= 0 mod n

2 then return ⊥

3 M[1] ·M[2] · · ·M[ℓ]← M

4 C ← IV

5 for i ← 1 to ℓ

6 do C ← EK(C ⊕M[i])

7 if C = σ

8 then return Accept

9 else return Reject

© 2005–2008 Antonio Carzaniga



Cryptographic Hash Functions

Cryptographic Hash: H : {0,1}∗ → {0,1}n
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Cryptographic Hash Functions

Cryptographic Hash: H : {0,1}∗ → {0,1}n

M

H

H(M)

∗

n
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Cryptographic Hash Functions

Cryptographic Hash: H : {0,1}∗ → {0,1}n

◮ H(·) is a good hash function when (informally)

∀m ∈ {0,1}∗,h ∈ {0,1}n, Pr[H(m) = h] =
1

2n
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Cryptographic Hash Functions

Cryptographic Hash: H : {0,1}∗ → {0,1}n

◮ H(·) is a good hash function when (informally)

∀m ∈ {0,1}∗,h ∈ {0,1}n, Pr[H(m) = h] =
1

2n

◮ it is “difficult” to find collisions

find m1,m2 ∈ {0,1}
∗ : m1 6= m2,H(m1) = H(m2)
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Cryptographic Hash Functions

Cryptographic Hash: H : {0,1}∗ → {0,1}n

◮ H(·) is a good hash function when (informally)

∀m ∈ {0,1}∗,h ∈ {0,1}n, Pr[H(m) = h] =
1

2n

◮ it is “difficult” to find collisions

find m1,m2 ∈ {0,1}
∗ : m1 6= m2,H(m1) = H(m2)

◮ it is “difficult” to find a preimage

given m ∈ {0,1}∗, find m′ : H(m′) =m
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Cryptographic Hash Functions

Cryptographic Hash: H : {0,1}∗ → {0,1}n

◮ H(·) is a good hash function when (informally)

∀m ∈ {0,1}∗,h ∈ {0,1}n, Pr[H(m) = h] =
1

2n

◮ it is “difficult” to find collisions

find m1,m2 ∈ {0,1}
∗ : m1 6= m2,H(m1) = H(m2)

◮ it is “difficult” to find a preimage

given m ∈ {0,1}∗, find m′ : H(m′) =m

◮ e.g., SHA-1
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Summary

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)
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◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Recipes: cryptographic protocols
◮ certificates (e.g., X.509)
◮ secure transport (e.g., TLS, IPSec)
◮ . . .
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Summary

Basic ingredients: cryptographic primitives
◮ secret-key (symmetric) cryptography (e.g., AES)
◮ public-key (asymmetric) cryptography (e.g., RSA)
◮ cryptographic hash functions (e.g., SHA-1)
◮ stream ciphers (e.g., RC4)

Recipes: cryptographic protocols
◮ certificates (e.g., X.509)
◮ secure transport (e.g., TLS, IPSec)
◮ . . .

Applications
◮ electronic commerce
◮ secure shell
◮ secure electronic mail
◮ virtual private networks
◮ . . .
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