A Few Basic Elements of Communication Security

Antonio Carzaniga

Faculty of Informatics University of Lugano

June 1, 2011

© 2005-2008 Antonio Carzaniga

Outline

- Communication security model
- Information-theoretic privacy
- Substitution ciphers
- Intro to modern cryptography
- One-time pad
- Block siphers
- Cryptographic hash functions
- Public-key cryptosystems

Communication model: Alice sends a message *m* to Bob

can modify the message

© 2005-2008 Antonio Carzaniga

Confidentiality (a.k.a., privacy): Alice wants to make sure that only Bob sees the message

- Confidentiality (a.k.a., privacy): Alice wants to make sure that only Bob sees the message
- Authentication: Bob wants to make sure that the message he reads was exactly what Alice wrote

What is Privacy, Exactly?

🖸 2005–2008 🛛 Antonio Carzaniga

■ Alice wants to make sure that only Bob "sees" the message

© 2005–2008 Antonio Carzaniga

- Alice wants to make sure that only Bob "sees" the message
- What if Eve can *guess* the message?

The ciphertext is

BUUBDL BU EBXO

2005-2008 Antonio Carzaniga

The ciphertext is

BUUBDL BU EBXO

Plaintext is

ATTACK AT DAWN

© 2005-2008 Antonio Carzaniga

The ciphertext is

BUUBDL BU EBXO

Plaintext is

ATTACK AT DAWN

How many possible ciphers?

How many key bits?

© 2005-2008 Antonio Carzaniga

Problem

Decrypt this ciphertext which is an Italian phrase encrypted with a shift-cipher:

ulsgtlffvgklsgjhttpugkpguvz yhgbp hgtpgyp yvbhpgwlygauhgzlsbhgvzjayh

Substitution cipher

Substitution cipher

• alphabet $\Sigma = \{ A', B', \dots, Z', '' \}$

Substitution cipher

- alphabet $\Sigma = \{ A', B', \dots, Z', '' \}$
- encryption function: a *permutation*

 $E:\Sigma\to\Sigma$

Substitution cipher

- alphabet $\Sigma = \{ (A', (B', ..., (Z', ('))) \}$
- encryption function: a *permutation*

 $E:\Sigma\to\Sigma$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ V Z L Q X T _ R D U C O J N F M G E H W P I S Y A B K

Substitution cipher

- alphabet $\Sigma = \{ (A', B', ..., Z',) \}$
- encryption function: a *permutation*

 $E:\Sigma\to\Sigma$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $_$ V Z L Q X T $_$ R D U C O J N F M G E H W P I S Y A B K How many possible permutations?

Substitution cipher

- alphabet $\Sigma = \{ (A', B', ..., Z',) \}$
- encryption function: a *permutation*

 $E:\Sigma\to\Sigma$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $_$ V Z L Q X T $_$ R D U C O J N F M G E H W P I S Y A B K How many possible permutations?

Substitution cipher

- alphabet $\Sigma = \{ (A', B', ..., Z',) \}$
- encryption function: a *permutation*

 $E:\Sigma\to\Sigma$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $_$ V Z L Q X T $_$ R D U C O J N F M G E H W P I S Y A B K How many possible permutations?

 $27! = 10888869450418352160768000000 \approx 2^{93}$

Encrypting some text using a substitution cipher

plaintext C I A O _ M A M M A

Encrypting some text using a substitution cipher

Problems?

© 2005-2008 Antonio Carzaniga

Encrypting some text using a substitution cipher

Problems?

easy to break just by guessing!

▶ ...

🛛 2005–2008 🛛 Antonio Carzaniga

S

R

🕽 2005–2008 🛛 Antonio Carzaniga

🛛 2005–2008 🛛 Antonio Carzaniga

R

2005–2008 Antonio Carzaniga

R

2005–2008 Antonio Carzaniga

© 2005-2008 Antonio Carzaniga

© 2005-2008 Antonio Carzaniga

Assumptions: the message *M* and the key *K* are two *n*-bit strings

$$M \in \{0,1\}^n; \quad K \stackrel{\$}{\leftarrow} \{0,1\}^n$$

Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0, 1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0, 1\}^n$$

the key K is chosen uniformly at random from $\{0,1\}^n$

Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0, 1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0, 1\}^n$$

the key K is chosen uniformly at random from $\{0,1\}^n$

Scheme

encryption:

$$E(K, M) := M \oplus K$$

the key K is then thrown away an never reused

decryption:

$$D(K,C):=C\oplus K$$

© 2005-2008 Antonio Carzaniga

Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0,1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0,1\}^n$$

the key K is chosen uniformly at random from $\{0,1\}^n$

Scheme

encryption:

$$E(K, M) := M \oplus K$$

the key K is then thrown away an never reused

decryption:

$$D(K, C) := C \oplus K$$

Example: *M* 0110010110111011

Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0, 1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0, 1\}^n$$

the key K is chosen uniformly at random from $\{0,1\}^n$

Scheme

encryption:

$$E(K, M) := M \oplus K$$

the key K is then thrown away an never reused

decryption:

$$D(K, C) := C \oplus K$$

Example: M 0110010110111011
 K 1011000101000101

Assumptions: the message M and the key K are two n-bit strings

$$M \in \{0, 1\}^n; \qquad K \stackrel{\$}{\leftarrow} \{0, 1\}^n$$

the key K is chosen uniformly at random from $\{0,1\}^n$

Scheme

encryption:

$$E(K, M) := M \oplus K$$

the key K is then thrown away an never reused

decryption:

$$D(K, C) := C \oplus K$$

- **Example:** *M* 0110010110111011
 - K 1011000101000101
 - *C* 1101010011111110

🖸 2005–2008 🛛 Antonio Carzaniga

A scheme is secure if we learn nothing from the ciphertext C

- A scheme is secure if we learn nothing from the ciphertext C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

- A scheme is secure if we learn nothing from the ciphertext C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$\Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = \Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

- A scheme is secure if we learn nothing from the ciphertext C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$\Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = \Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

Given a ciphertext C, every plaintext m is equiprobable

▶ so, seeing any particular $C = E_K(M)$ tells us *nothing* about M

- A scheme is secure if we learn nothing from the ciphertext C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$\Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = \Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

Given a ciphertext C, every plaintext m is equiprobable

- so, seeing any particular $C = E_K(M)$ tells us *nothing* about M
- Is a shift cipher perfectly secure?

- A scheme is secure if we learn nothing from the ciphertext C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$\Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = \Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

Given a ciphertext C, every plaintext m is equiprobable

- so, seeing any particular $C = E_K(M)$ tells us *nothing* about M
- Is a shift cipher perfectly secure?
- Is a substitution cipher perfectly secure?

- A scheme is secure if we learn nothing from the ciphertext C
- A more formal definition:

let $K \stackrel{\$}{\leftarrow} \mathcal{K}$; for every $m_1 \neq m_2 \in \mathcal{M}$, and for any C

$$\Pr_{K \in \mathcal{K}}[E_K(m_1) = C] = \Pr_{K \in \mathcal{K}}[E_K(m_2) = C]$$

Given a ciphertext C, every plaintext m is equiprobable

- so, seeing any particular $C = E_K(M)$ tells us *nothing* about M
- Is a shift cipher perfectly secure?
- Is a substitution cipher perfectly secure?
- Is one-time-pad perfectly secure?

The Cost of Perfect Privacy

The Cost of Perfect Privacy

Perfect privacy implies that

 $|\mathcal{K}| \geq |\mathcal{M}|$

The Cost of Perfect Privacy

Perfect privacy implies that

 $|\mathcal{K}| \geq |\mathcal{M}|$

Proof: assume not.

Fix a possible ciphertext *C*, i.e., there is a message *m* and a key *k* such that $E_K(m) = C$, and $Pr_{K \in \mathcal{K}}[E_K(m) = C] > 0$

Let $P_C = \{m \in \mathcal{M} \text{ such that } E_k(m) = C \text{ for some } k\}$

Since every *k* maps exactly one message *m* to *C*, and since we have fewer keys than messages, then there is an $m' \notin P_C$ such that no key *k* maps m' to *C*; therefore $\Pr_{K \in \mathcal{K}}[E_K(m') = C] = 0$, which violates the perfect-secrecy condition that for all *m* and m', $\Pr_{K \in \mathcal{K}}[E_K(m) = C] = \Pr_{K \in \mathcal{K}}[E_K(m') = C]$

🛛 2005–2008 🛛 Antonio Carzaniga

S

2005–2008 Antonio Carzaniga

R

R

© 2005–2008 Antonio Carzaniga

R

2005–2008 Antonio Carzaniga

🛛 2005–2008 🛛 Antonio Carzaniga

R

2005–2008 Antonio Carzaniga

Asymmetric Encryption

🖸 2005–2008 🛛 Antonio Carzaniga

Asymmetric Encryption

🖸 2005–2008 🛛 Antonio Carzaniga

Protocol

▶ an *algorithm*

solves a specific security problem (e.g., signing a message)

Protocol

an algorithm

solves a specific security problem (e.g., signing a message)

Primitive

Protocol

- an algorithm
- solves a specific security problem (e.g., signing a message)

Primitive

- also an *algorithm*
- the elementary subroutines of protocols
- implement (try to approximate) well-defined mathematical object
- embody "hard problems"

A stream cipher is a generator of a pseudo-random streams

A stream cipher is a generator of a pseudo-random streams

- given an initialization key K
- generates an infinite pseudo-random sequence of bits

A stream cipher is a generator of a pseudo-random streams

- given an initialization key K
- generates an infinite pseudo-random sequence of bits

E.g., RC4

2005-2008 Antonio Carzaniga

- Assumptions: S and R share a secret key K and agree to use a stream cipher S_K
 - S and R maintain some *state*: position s initialized to s = 0

- Assumptions: S and R share a secret key K and agree to use a stream cipher S_K
 - S and *R* maintain some *state*: position *s* initialized to s = 0
- Encryption protocol
 - 1. S computes $C \leftarrow M \oplus S_K[s \dots s + |M| 1]$
 - 2. S updates its position $s \leftarrow s + |M|$

- Assumptions: S and R share a secret key K and agree to use a stream cipher S_K
 - S and *R* maintain some *state*: position *s* initialized to s = 0
- Encryption protocol
 - 1. S computes $C \leftarrow M \oplus S_K[s \dots s + |M| 1]$
 - 2. S updates its position $s \leftarrow s + |M|$
- Dencryption protocol
 - 1. *R* computes $M \leftarrow C \oplus S_K[s \dots s + |C| 1]$
 - 2. *R* updates its position $s \leftarrow s + |C|$

■ Block Cipher: $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

Block Cipher: $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

■ Block Cipher: $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

• $E_K(\cdot)$ is a *permutation*, so $E_K^{-1}(\cdot)$ is always defined

■ Block Cipher: $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

- $E_K(\cdot)$ is a *permutation*, so $E_K^{-1}(\cdot)$ is always defined
- fixed-length input and output (n)

■ Block Cipher: $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

- $E_K(\cdot)$ is a *permutation*, so $E_K^{-1}(\cdot)$ is always defined
- fixed-length input and output (n)
- fixed-length key (k)

■ Block Cipher: $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

- $E_K(\cdot)$ is a *permutation*, so $E_K^{-1}(\cdot)$ is always defined
- fixed-length input and output (n)
- fixed-length key (k)
- e.g., DES, AES

🛛 2005–2008 🛛 Antonio Carzaniga

- Input: k-bit key K, N-bit message M
- Output: N-bit ciphertext C

- Input: k-bit key K, N-bit message M
- Output: N-bit ciphertext C
- Cipher Block Chaining (CBC)
 - use a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| \dots ||M_\ell$ ($\ell = \lfloor N/n \rfloor$)

- Input: k-bit key K, N-bit message M
- Output: N-bit ciphertext C
- Cipher Block Chaining (CBC)
 - use a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| ... ||M_\ell$ ($\ell = \lfloor N/n \rfloor$)

CBC(K, M)
1
$$x \leftarrow 0^n$$

2 for $i \leftarrow 0$ to $\lfloor |M|/n \rfloor$
3 do $C[ni \dots ni + n - 1] \leftarrow E_K(x \oplus M[ni \dots ni + n - 1])$
4 $x \leftarrow C[ni \dots ni + n - 1]$
5 return C

- Input: k-bit key K, N-bit message M
- Output: N-bit ciphertext C
- Cipher Block Chaining (CBC)
 - use a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| ... ||M_\ell$ ($\ell = \lfloor N/n \rfloor$)

Write the decryption algorithm for CBC

Write the decryption algorithm for CBC

Is this CBC protocol secure?

Is this CBC protocol secure?

- any deterministic stateless protocol is insecure
- we need state and/or randomness

An Encryption Protocol (2)

Is this CBC protocol secure?

- any deterministic stateless protocol is insecure
- we need state and/or randomness
- What if $|M| \neq 0 \mod n$?

An Encryption Protocol (2)

Is this CBC protocol secure?

- any deterministic stateless protocol is insecure
- we need state and/or randomness
- What if $|M| \neq 0 \mod n$?
- Is CBC parallelizable?

CBC With Random IV

■ *CBC*\$: cipher block chaining with random IV

CBC With Random IV

```
CBC$-Encrypt(K, M)
    if |M| = 0 \vee |M| \neq 0 \mod n
2 then return \perp
3 M[1] \cdot M[2] \cdots M[\ell] \leftarrow M
4 IV \stackrel{\$}{\leftarrow} \{0,1\}^n
5 C[0] \leftarrow IV
6 for i \leftarrow 1 to \ell
7 do C[i] \leftarrow E_K(C[i-1] \oplus M[i])
8 C \leftarrow C[1] \cdot C[2] \cdots C[\ell]
9 return \langle IV, C \rangle
```

CBC With Random IV (2)

CBC: cipher block chaining with random IV (decryption)

CBC With Random IV (2)

CBC*^{\$}:* cipher block chaining with random IV (decryption)

```
CBC$-Decrypt(K, IV, C)

1 if |C| = 0 \lor |C| \neq 0 \mod n

2 then return \perp

3 C[1] \cdot C[2] \cdots C[\ell] \leftarrow C

4 C[0] \leftarrow IV

5 for i \leftarrow 1 to \ell

6 do M[i] \leftarrow C[i-1] \oplus E_K(C[i])

7 M \leftarrow M[1] \cdot M[2] \cdots M[\ell]

8 return M
```

CBC With Stateful Counter

■ CBCC: cipher block chaining with stateful counter

CBC With Stateful Counter

CBCC: cipher block chaining with stateful counter

```
CBCC-Encrypt(K, M)
      static ctr \leftarrow 0
  2 if ctr \ge 2^n \lor |M| = 0 \lor |M| \neq 0 \mod n
  3 then return
  4 M[1] \cdot M[2] \cdot \cdot \cdot M[\ell] \leftarrow M
  5 IV \leftarrow [ctr]_n
  6 C[0] \leftarrow [ctr]_n
  7 for i \leftarrow 1 to \ell
  8
              do C[i] \leftarrow E_{\mathcal{K}}(C[i-1] \oplus M[i])
  9 C \leftarrow C[1] \cdot C[2] \cdots C[\ell]
 10 ctr \leftarrow ctr + 1
 11 return (IV, C)
```

CBC With Stateful Counter (2)

■ CBCC: cipher block chaining with stateful counter

CBC With Stateful Counter (2)

CBCC: cipher block chaining with stateful counter

```
CBCC-Decrypt(K, IV, C)
   if |V + |C| \ge 2^n \lor |C| = 0 \lor |C| \ne 0 \mod n
2 then return \perp
3 C[1] \cdot C[2] \cdots C[\ell] \leftarrow C
4 IV \leftarrow [ctr]_n
 5 C[0] \leftarrow IV
 6 for i \leftarrow 1 to \ell
7 do M[i] \leftarrow C[i-1] \oplus E_K^{-1}(C[i])
8 M \leftarrow M[1] \cdot M[2] \cdots M[\ell]
     return M
 9
```

Counter Mode

CTR\$: counter mode with random initial counter

Counter Mode

CTR\$: counter mode with random initial counter

Counter Mode

CTR\$: counter mode with random initial counter

```
CTR$-Encrypt(K, M)

1 R \stackrel{\$}{\leftarrow} \{0, 1\}^n

2 Pad \leftarrow F_K([R]_n)

3 for i \leftarrow 1 to [|M|/n] - 1

4 do Pad \leftarrow Pad \cdot F_K([R + i]_n)

5 Pad \leftarrow first |M| bits of Pad

6 C \leftarrow M \oplus Pad

7 return \langle R, C \rangle
```

Counter Mode (2)

CTR\$: counter mode with random initial counter (decryption)

Counter Mode (2)

CTR\$: counter mode with random initial counter (decryption)

```
CTR$-Decrypt(K, R, C)

1 Pad \leftarrow F_K([R]_n)

2 for i \leftarrow 1 to \lceil |C|/n \rceil - 1

3 do Pad \leftarrow Pad \cdot F_K([R+i]_n)

4 Pad \leftarrow first |C| bits of Pad

5 M \leftarrow C \oplus Pad

6 return M
```

Counter Mode (3)

CTRC: counter mode with stateful counter

Counter Mode (3)

CTRC: counter mode with stateful counter

```
CTRC(K, M)
      static R \leftarrow 0
  2 \ell \leftarrow [|M|/n]
  3 if R + \ell - 1 \ge 2^n
  4 then return \perp
  5 Pad \leftarrow F_K([R]_n)
  6 for i \leftarrow 1 to \ell - 1
  7 do Pad \leftarrow Pad \cdot F_K([R+i]_n)
  8 Pad \leftarrow first |M| bits of Pad
  9 C \leftarrow M \oplus Pad
 10 R \leftarrow R + \ell
 11 return \langle R - \ell, C \rangle
```

Counter Mode (4)

CTRC: counter mode with stateful counter (decryption)

Counter Mode (4)

CTRC: counter mode with stateful counter (decryption)

```
CTRC-Decrypt(K, R, C)

1 Pad \leftarrow F_K([R]_n)

2 for i \leftarrow 1 to [|C|/n] - 1

3 do Pad \leftarrow Pad \cdot F_K([R+i]_n)

4 Pad \leftarrow \text{first } |C| \text{ bits of } Pad

5 M \leftarrow C \oplus Pad

6 return M
```

Authentication Protocol

MAC generation

- Input: k-bit key K, N-bit message M
- Output: n-bit message authentication code σ

Authentication Protocol

MAC generation

- Input: k-bit key K, N-bit message M
- Output: n-bit message authentication code σ
- CBC with random IV
 - use a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| ... ||M_\ell$ ($\ell = \lfloor N/n \rfloor$)

MAC(K, M)
1
$$IV \stackrel{\$}{\leftarrow} \{0,1\}^n$$

2 $C \leftarrow IV$
3 for $i \leftarrow 0$ to $\lfloor |M|/n \rfloor$
4 do $C \leftarrow E_K(C \oplus M[ni \dots ni + n - 1])$
5 return $\langle IV, C \rangle$

Authentication Protocol

MAC generation

- Input: k-bit key K, N-bit message M
- Output: n-bit message authentication code σ
- CBC with random IV
 - use a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$
 - ▶ split *M* into *n*-bit blocks $M = M_0 ||M_1|| ... ||M_\ell$ ($\ell = \lfloor N/n \rfloor$)

CBC MAC: Generation

CBC MAC: Generation

```
CBC-MAC$(K, M)

1 if |M| = 0 \lor |M| \neq 0 \mod n

2 then return \perp

3 M[1] \cdot M[2] \cdots M[\ell] \leftarrow M

4 IV \stackrel{\$}{\leftarrow} \{0, 1\}^n

5 C \leftarrow IV

6 for i \leftarrow 1 to \ell

7 do C \leftarrow E_K(C \oplus M[i])

8 return \langle IV, C \rangle
```

CBC MAC: Verification

CBC MAC: Verification

```
CBC-MAC-Verify(K, IV, \sigma, M)
       \mathbf{if} |M| = 0 \vee |M| \neq 0 \mod n
1 \quad \text{if } |M| = 0 \quad \text{if } |M| \neq 0 \quad \text{if } 0
2 \quad \text{then return } \perp
3 \quad M[1] \cdot M[2] \cdots M[\ell] \leftarrow M
4 \quad C \leftarrow IV
5 \quad \text{for } i \leftarrow 1 \text{ to } \ell
6 \quad \text{do } C \leftarrow E_K(C \oplus M[i])
  7 if C = \sigma
  8 then return Accept
  9
            else return Reject
```

Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$

Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$

© 2005-2008 Antonio Carzaniga

Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$

• $H(\cdot)$ is a good *hash* function when (*informally*)

$$\forall m \in \{0,1\}^*, h \in \{0,1\}^n, \Pr[H(m) = h] = \frac{1}{2^n}$$

Cryptographic Hash: $H: \{0,1\}^* \rightarrow \{0,1\}^n$

• $H(\cdot)$ is a good *hash* function when (*informally*)

$$\forall m \in \{0, 1\}^*, h \in \{0, 1\}^n, \Pr[H(m) = h] = \frac{1}{2^n}$$

it is "difficult" to find collisions

find $m_1, m_2 \in \{0, 1\}^* : m_1 \neq m_2, H(m_1) = H(m_2)$

Cryptographic Hash: $H : \{0,1\}^* \rightarrow \{0,1\}^n$

• $H(\cdot)$ is a good *hash* function when (*informally*)

$$\forall m \in \{0, 1\}^*, h \in \{0, 1\}^n, \Pr[H(m) = h] = \frac{1}{2^n}$$

it is "difficult" to find collisions

find $m_1, m_2 \in \{0, 1\}^* : m_1 \neq m_2, H(m_1) = H(m_2)$

it is "difficult" to find a preimage

given $m \in \{0, 1\}^*$, find m' : H(m') = m

Cryptographic Hash: $H : \{0,1\}^* \rightarrow \{0,1\}^n$

• $H(\cdot)$ is a good *hash* function when (*informally*)

$$\forall m \in \{0, 1\}^*, h \in \{0, 1\}^n, \Pr[H(m) = h] = \frac{1}{2^n}$$

it is "difficult" to find collisions

find $m_1, m_2 \in \{0, 1\}^* : m_1 \neq m_2, H(m_1) = H(m_2)$

it is "difficult" to find a preimage

given $m \in \{0, 1\}^*$, find m' : H(m') = m

e.g., SHA-1

Summary

Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

Summary

Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)
- Recipes: cryptographic protocols
 - certificates (e.g., X.509)
 - secure transport (e.g., TLS, IPSec)
 - ▶ ...

Summary

Basic ingredients: cryptographic primitives

- secret-key (symmetric) cryptography (e.g., AES)
- public-key (asymmetric) cryptography (e.g., RSA)
- cryptographic hash functions (e.g., SHA-1)
- stream ciphers (e.g., RC4)

Recipes: cryptographic protocols

- certificates (e.g., X.509)
- secure transport (e.g., TLS, IPSec)
- ▶ ...

Applications

- electronic commerce
- secure shell
- secure electronic mail
- virtual private networks
- ▶ ...