
Basics of Routing and

Link-State Routing

Antonio Carzaniga

Faculty of Informatics
University of Lugano

December 3, 2014

© 2005–2007 Antonio Carzaniga



Outline

Routing problem

Graph model

Classes of routing algorithms

Broadcast routing

Link-state routing

Dijkstra’s algorithm

© 2005–2007 Antonio Carzaniga



Routing Problem

© 2005–2007 Antonio Carzaniga



Routing Problem

Finding paths through a network

© 2005–2007 Antonio Carzaniga



Routing Problem

Finding paths through a network

a b c

d e f

g h j

© 2005–2007 Antonio Carzaniga



Routing Problem

Finding paths through a network

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

Example: a → j?

© 2005–2007 Antonio Carzaniga



Graph Model

The network is modeled as a graph

G = (V , E)

© 2005–2007 Antonio Carzaniga



Graph Model

The network is modeled as a graph

G = (V , E)

◮ V is a set of vertices representing the routers

© 2005–2007 Antonio Carzaniga



Graph Model

The network is modeled as a graph

G = (V , E)

◮ V is a set of vertices representing the routers

◮ E ⊆ V × V is a set of edges representing communication links

◮ e.g., (u, v) ∈ E iff router u is on the same subnet as v

© 2005–2007 Antonio Carzaniga



Graph Model

The network is modeled as a graph

G = (V , E)

◮ V is a set of vertices representing the routers

◮ E ⊆ V × V is a set of edges representing communication links

◮ e.g., (u, v) ∈ E iff router u is on the same subnet as v

◮ G is assumed to be an undirected graph

◮ i.e., (u, v) ∈ E ⇔ (v,u) ∈ E for all u, v ∈ N

© 2005–2007 Antonio Carzaniga



Graph Model

The network is modeled as a graph

G = (V , E)

◮ V is a set of vertices representing the routers

◮ E ⊆ V × V is a set of edges representing communication links

◮ e.g., (u, v) ∈ E iff router u is on the same subnet as v

◮ G is assumed to be an undirected graph

◮ i.e., (u, v) ∈ E ⇔ (v,u) ∈ E for all u, v ∈ N

◮ A cost function c : E → R

◮ costs are always positive: c(e) > 0 for all e ∈ E

◮ links are symmetric: c(u, v) = c(v,u) for all u, v ∈ N

© 2005–2007 Antonio Carzaniga



Routing in the Graph Model

For every router u ∈ V , for every other router v ∈ V , compute

the path Pu→v = u, x1, x2, . . . , xn, v such that

© 2005–2007 Antonio Carzaniga



Routing in the Graph Model

For every router u ∈ V , for every other router v ∈ V , compute

the path Pu→v = u, x1, x2, . . . , xn, v such that

◮ Pu→v is completely contained in the network graph G. I.e.,

(u, x1) ∈ V , (x1, x2) ∈ V , . . . , (xn, v) ∈ V

© 2005–2007 Antonio Carzaniga



Routing in the Graph Model

For every router u ∈ V , for every other router v ∈ V , compute

the path Pu→v = u, x1, x2, . . . , xn, v such that

◮ Pu→v is completely contained in the network graph G. I.e.,

(u, x1) ∈ V , (x1, x2) ∈ V , . . . , (xn, v) ∈ V

◮ Pu→v is a least-cost path, where the cost of the path is

c(Pu→v) = c(u, x1)+ c(x1, x2)+ . . .+ c(xn, v)

© 2005–2007 Antonio Carzaniga



Routing in the Graph Model

For every router u ∈ V , for every other router v ∈ V , compute

the path Pu→v = u, x1, x2, . . . , xn, v such that

◮ Pu→v is completely contained in the network graph G. I.e.,

(u, x1) ∈ V , (x1, x2) ∈ V , . . . , (xn, v) ∈ V

◮ Pu→v is a least-cost path, where the cost of the path is

c(Pu→v) = c(u, x1)+ c(x1, x2)+ . . .+ c(xn, v)

Compile u’s forwarding table by adding the following entry:

A(v)→ Iu(x1)

◮ A(v) is the address (or set of addresses) of router v

◮ Iu(x1) is the interface that connects u to the first next-hop

router x1 in Pu→v = u, x1, x2, . . . , xn, v

© 2005–2007 Antonio Carzaniga



Back To The Example

a b c

d e f

g h j

3

1
1

4

3 9

21 1

1 1 2
4

14

Example: a → j

© 2005–2007 Antonio Carzaniga



Back To The Example

a b c

d e f

g h j

3

1
1

4

3 9

21 1

1 1 2
4

14

Example: a → j

◮ least-cost path is Pa→j = a, e,b, f , j

© 2005–2007 Antonio Carzaniga



Back To The Example

a b c

d e f

g h j

3
1

1

2

1
3

4

3 9

21 1

1 1 2
4

14

Example: a → j

◮ least-cost path is Pa→j = a, e,b, f , j

◮ a’s forwarding table will contain an entry j → 2 since Ia(e) = 2

© 2005–2007 Antonio Carzaniga



Two General Strategies

There are two main strategies to implement a routing

algorithm

© 2005–2007 Antonio Carzaniga



Two General Strategies

There are two main strategies to implement a routing

algorithm

Link-state routing

© 2005–2007 Antonio Carzaniga



Two General Strategies

There are two main strategies to implement a routing

algorithm

Link-state routing

◮ global view of the network

◮ local computation of least-cost paths

© 2005–2007 Antonio Carzaniga



Two General Strategies

There are two main strategies to implement a routing

algorithm

Link-state routing

◮ global view of the network

◮ local computation of least-cost paths

Distance-vector routing

© 2005–2007 Antonio Carzaniga



Two General Strategies

There are two main strategies to implement a routing

algorithm

Link-state routing

◮ global view of the network

◮ local computation of least-cost paths

Distance-vector routing

◮ local view of the network

◮ global computation of least-cost paths

© 2005–2007 Antonio Carzaniga



Link-State Routing

Router u maintains a complete view of the network graph G

(including all links and their costs)

© 2005–2007 Antonio Carzaniga



Link-State Routing

Router u maintains a complete view of the network graph G

(including all links and their costs)

◮ every router v advertises its adjacent links (their costs) to every

other router in the network; this information is called link state

◮ link-state advertisements (LSAs) are broadcast through the

entire network

© 2005–2007 Antonio Carzaniga



Link-State Routing

Router u maintains a complete view of the network graph G

(including all links and their costs)

◮ every router v advertises its adjacent links (their costs) to every

other router in the network; this information is called link state

◮ link-state advertisements (LSAs) are broadcast through the

entire network

◮ routers collect link-state advertisements from other routers,

and they use them to compile and maintain a complete view of

G

© 2005–2007 Antonio Carzaniga



Link-State Routing

Router u maintains a complete view of the network graph G

(including all links and their costs)

◮ every router v advertises its adjacent links (their costs) to every

other router in the network; this information is called link state

◮ link-state advertisements (LSAs) are broadcast through the

entire network

◮ routers collect link-state advertisements from other routers,

and they use them to compile and maintain a complete view of

G

Using its local representation of G, router u computes the
least-cost paths from u to every other router in the network

© 2005–2007 Antonio Carzaniga



Link-State Routing

Router u maintains a complete view of the network graph G

(including all links and their costs)

◮ every router v advertises its adjacent links (their costs) to every

other router in the network; this information is called link state

◮ link-state advertisements (LSAs) are broadcast through the

entire network

◮ routers collect link-state advertisements from other routers,

and they use them to compile and maintain a complete view of

G

Using its local representation of G, router u computes the
least-cost paths from u to every other router in the network

◮ the computation is local

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

ab d

e

3
1

1

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

LSAh = {(h, e,1), (h, f ,4), (h, j,14)}

ab d

e

3
1

1

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

LSAh = {(h, e,1), (h, f ,4), (h, j,14)}

ab d

e

3
1

1

h

j

f

1

4 14

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

LSAh = {(h, e,1), (h, f ,4), (h, j,14)}

LSAd = {(d,a,1), (d,g,1), (d, e,3)}

ab d

e

3
1

1

h

j

f

1

4 14

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

LSAh = {(h, e,1), (h, f ,4), (h, j,14)}

LSAd = {(d,a,1), (d,g,1), (d, e,3)}

ab d

e

3
1

1

h

j

f

1

4 14

g

1
3

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

LSAh = {(h, e,1), (h, f ,4), (h, j,14)}

LSAd = {(d,a,1), (d,g,1), (d, e,3)}

LSAf = {(f , c,1), (f ,b,1), (f , e,3), (f ,h,4), (f , j,2)}

ab d

e

3
1

1

h

j

f

1

4 14

g

1
3

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

LSAh = {(h, e,1), (h, f ,4), (h, j,14)}

LSAd = {(d,a,1), (d,g,1), (d, e,3)}

LSAf = {(f , c,1), (f ,b,1), (f , e,3), (f ,h,4), (f , j,2)}

ab d

e

3
1

1

h

j

f

1

4 14

g

1
3

c
1

9

2

2

© 2005–2007 Antonio Carzaniga



Link-State Advertisements

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

LSAa = {(a,b,3), (a, e,1), (a,d,1)}

LSAh = {(h, e,1), (h, f ,4), (h, j,14)}

LSAd = {(d,a,1), (d,g,1), (d, e,3)}

LSAf = {(f , c,1), (f ,b,1), (f , e,3), (f ,h,4), (f , j,2)}

. . .

ab d

e

3
1

1

h

j

f

1

4 14

g

1
3

c
1

9

2

2

© 2005–2007 Antonio Carzaniga



Link-State Routing Ingredients

What do we need to implement link-state routing?

© 2005–2007 Antonio Carzaniga



Link-State Routing Ingredients

What do we need to implement link-state routing?

Every router sends its LSA to every other router in the network,

so we need a broadcast routing scheme

© 2005–2007 Antonio Carzaniga



Link-State Routing Ingredients

What do we need to implement link-state routing?

Every router sends its LSA to every other router in the network,

so we need a broadcast routing scheme

Once we have all the LSAs from every router, and therefore we

complete knowledge of G, we need an algorithm to compute

least-cost paths in a graph

© 2005–2007 Antonio Carzaniga



Broadcast Routing

© 2005–2007 Antonio Carzaniga



Broadcast Routing

Flooding
◮ every router forwards a broadcast packet to every adjacent

router, except the one that sent the packet

© 2005–2007 Antonio Carzaniga



Broadcast Routing

Flooding
◮ every router forwards a broadcast packet to every adjacent

router, except the one that sent the packet

Simple and elegant

© 2005–2007 Antonio Carzaniga



Broadcast Routing

Flooding
◮ every router forwards a broadcast packet to every adjacent

router, except the one that sent the packet

Simple and elegant

Correct w.r.t. the broadcast requirement: a broadcast packet

will eventually reach every router

© 2005–2007 Antonio Carzaniga



Broadcast Routing

Flooding
◮ every router forwards a broadcast packet to every adjacent

router, except the one that sent the packet

Simple and elegant

Correct w.r.t. the broadcast requirement: a broadcast packet

will eventually reach every router

Any problem with this solution?

© 2005–2007 Antonio Carzaniga



Broadcast Routing

Flooding
◮ every router forwards a broadcast packet to every adjacent

router, except the one that sent the packet

Simple and elegant

Correct w.r.t. the broadcast requirement: a broadcast packet

will eventually reach every router

Any problem with this solution?

◮ cycles in the network create packet storms

© 2005–2007 Antonio Carzaniga



Broadcast Routing (2)

© 2005–2007 Antonio Carzaniga



Broadcast Routing (2)

Reverse-path broadcast
◮ every router forwards a broadcast packet to every adjacent

router, except the one where it received the packet router

◮ a router u accepts a broadcast packet p originating at router s

only if p arrives on the link that is on the direct (unicast) path

from u to s

© 2005–2007 Antonio Carzaniga



Broadcast Routing (2)

Reverse-path broadcast
◮ every router forwards a broadcast packet to every adjacent

router, except the one where it received the packet router

◮ a router u accepts a broadcast packet p originating at router s

only if p arrives on the link that is on the direct (unicast) path

from u to s

Correct w.r.t. the broadcast requirement: a broadcast packet

will eventually reach every router

© 2005–2007 Antonio Carzaniga



Broadcast Routing (2)

Reverse-path broadcast
◮ every router forwards a broadcast packet to every adjacent

router, except the one where it received the packet router

◮ a router u accepts a broadcast packet p originating at router s

only if p arrives on the link that is on the direct (unicast) path

from u to s

Correct w.r.t. the broadcast requirement: a broadcast packet

will eventually reach every router

No packet storms even in the presence of cycles in G

© 2005–2007 Antonio Carzaniga



Broadcast Routing (2)

Reverse-path broadcast
◮ every router forwards a broadcast packet to every adjacent

router, except the one where it received the packet router

◮ a router u accepts a broadcast packet p originating at router s

only if p arrives on the link that is on the direct (unicast) path

from u to s

Correct w.r.t. the broadcast requirement: a broadcast packet

will eventually reach every router

No packet storms even in the presence of cycles in G

Any problem with this solution?

© 2005–2007 Antonio Carzaniga



Broadcast Routing (2)

Reverse-path broadcast
◮ every router forwards a broadcast packet to every adjacent

router, except the one where it received the packet router

◮ a router u accepts a broadcast packet p originating at router s

only if p arrives on the link that is on the direct (unicast) path

from u to s

Correct w.r.t. the broadcast requirement: a broadcast packet

will eventually reach every router

No packet storms even in the presence of cycles in G

Any problem with this solution?

◮ it requires (unicast) routing information

◮ so it is obviously useless to implement a routing algorithm

© 2005–2007 Antonio Carzaniga



Broadcast Routing (3)

Sequence-number controlled flooding

© 2005–2007 Antonio Carzaniga



Broadcast Routing (3)

Sequence-number controlled flooding

◮ the originator s of a broadcast packet marks the packet with a

sequence number ns

© 2005–2007 Antonio Carzaniga



Broadcast Routing (3)

Sequence-number controlled flooding

◮ the originator s of a broadcast packet marks the packet with a

sequence number ns

◮ every router u stores the most recent sequence number seen

from each source router. Let’s assume that u has seen

sequence numbers from s up to ns

© 2005–2007 Antonio Carzaniga



Broadcast Routing (3)

Sequence-number controlled flooding

◮ the originator s of a broadcast packet marks the packet with a

sequence number ns

◮ every router u stores the most recent sequence number seen

from each source router. Let’s assume that u has seen

sequence numbers from s up to ns

◮ a router accepts a broadcast packet p originating at s only if p

carries a sequence number seq(p) that is higher than the most

recent one seen from s: seq(p) > ns

© 2005–2007 Antonio Carzaniga



Broadcast Routing (3)

Sequence-number controlled flooding

◮ the originator s of a broadcast packet marks the packet with a

sequence number ns

◮ every router u stores the most recent sequence number seen

from each source router. Let’s assume that u has seen

sequence numbers from s up to ns

◮ a router accepts a broadcast packet p originating at s only if p

carries a sequence number seq(p) that is higher than the most

recent one seen from s: seq(p) > ns

◮ accepted packets are forwarded to every adjacent router,

except the previous-hop router

© 2005–2007 Antonio Carzaniga



Broadcast Routing (3)

Sequence-number controlled flooding

◮ the originator s of a broadcast packet marks the packet with a

sequence number ns

◮ every router u stores the most recent sequence number seen

from each source router. Let’s assume that u has seen

sequence numbers from s up to ns

◮ a router accepts a broadcast packet p originating at s only if p

carries a sequence number seq(p) that is higher than the most

recent one seen from s: seq(p) > ns

◮ accepted packets are forwarded to every adjacent router,

except the previous-hop router

◮ u updates its table of sequence numbers ns ← seq(p)

© 2005–2007 Antonio Carzaniga



Dijkstra’s Algorithm

Executing locally at node u

© 2005–2007 Antonio Carzaniga



Dijkstra’s Algorithm

Executing locally at node u

Variables storing values known at each iteration

© 2005–2007 Antonio Carzaniga



Dijkstra’s Algorithm

Executing locally at node u

Variables storing values known at each iteration

◮ D[v], cost of the least-cost path from u to v

© 2005–2007 Antonio Carzaniga



Dijkstra’s Algorithm

Executing locally at node u

Variables storing values known at each iteration

◮ D[v], cost of the least-cost path from u to v

◮ p[v], node preceding v (neighbor of v) on the least-cost path

from u to v

© 2005–2007 Antonio Carzaniga



Dijkstra’s Algorithm

Executing locally at node u

Variables storing values known at each iteration

◮ D[v], cost of the least-cost path from u to v

◮ p[v], node preceding v (neighbor of v) on the least-cost path

from u to v

◮ N, nodes of G whose least-cost path from u is definitely known

© 2005–2007 Antonio Carzaniga



Dijkstra’s Algorithm

Dijkstra(G = (V , E),u)

1 N ← {u}

2 for all v ∈ V

3 do if v ∈ neighbors(u)

4 then D[v]← c(u, v)

5 p[v]← u

6 else D[v]←∞

7 while N 6= V

8 do find w 6∈ N such that D[w] is minimum

9 N ← N ∪ {w}

10 for all v ∈ neighbors(w) \ N

11 do if D[w]+ c(w, v) < D[v]

12 then D[v]← D[w]+ c(w, v)

13 p[v]← w

© 2005–2007 Antonio Carzaniga



Example

Dijkstra(G = (V , E),u)

1 N ← {u}

2 for all v ∈ V

3 do if v ∈ neighbors(u)

4 then D[v]← c(u, v)

5 p[v]← u

6 else D[v]←∞

7 while N 6= V

8 do find w 6∈ N such that D[w] is minimum

9 N ← N ∪ {w}

10 for all v ∈ neighbors(w) \ N

11 do if D[w]+ c(w, v) < D[v]

12 then D[v]← D[w]+ c(w, v)

13 p[v]← w

a b c

d e f

g h j

3 4

3 9

21
1 1 1

1 1 2
4

14

© 2005–2007 Antonio Carzaniga


