A Quantitative View: Delay, Throughput, Loss

Antonio Carzaniga

Faculty of Informatics
University of Lugano

September 23, 2014

Outline

■ Quantitative analysis of data transfer concepts for network applications

■ Propagation delay and transmission rate

■ Multi-hop scenario

Quantifying Data Transfer

■ How do we measure the "speed" and "capacity" of a network connection?

Quantifying Data Transfer

■ How do we measure the "speed" and "capacity" of a network connection?

■ Intuition

- water moving in a pipeline
- cars moving on a road

Quantifying Data Transfer

■ How do we measure the "speed" and "capacity" of a network connection?

■ Intuition

- water moving in a pipeline
- cars moving on a road
- Delay or Latency
- the time it takes for one bit to go through the connection (from one end to the other)

Quantifying Data Transfer

■ How do we measure the "speed" and "capacity" of a network connection?

- Intuition
- water moving in a pipeline
- cars moving on a road
- Delay or Latency
- the time it takes for one bit to go through the connection (from one end to the other)
- Transmission rate or Throughput
- the amount of information that can get into (or out of) the connection in a time unit

Delay (Latency) and Rate (Throughput)

connection

Delay (Latency) and Rate (Throughput)

Propagation Delay

$$
d_{\text {prop }}=t_{1}-t_{0} \quad \text { sec }
$$

Delay (Latency) and Rate (Throughput)

Propagation Delay

$$
d_{\text {prop }}=t_{1}-t_{0} \quad \text { sec }
$$

Transmission Rate

$$
R=\frac{\ell}{t_{2}-t_{1}} \quad \text { bits } / \mathrm{sec}
$$

Delay (Latency) and Rate (Throughput)

Propagation Delay

$$
d_{\text {prop }}=t_{1}-t_{0} \quad \text { sec }
$$

Transmission Rate

$$
R=\frac{\ell}{t_{2}-t_{1}} \quad \text { bits } / \mathrm{sec}
$$

Total transfer time

$$
d_{\text {end-end }}=d+\frac{\ell}{R} \quad \text { sec }
$$

Examples

■ How long does it take to tranfer a file between, say, Lugano and Zürich?

Examples

■ How long does it take to tranfer a file between, say, Lugano and Zürich?

■ How big is this file? And how fast is our connection?

Examples

■ How long does it take to tranfer a file between, say, Lugano and Zürich?

■ How big is this file? And how fast is our connection?
E.g., a (short) e-mail message
$\ell \quad=4 \mathrm{~Kb}$
$d_{\text {prop }}=500 \mathrm{~ms}$
$R \quad=1 \mathrm{Mb} / \mathrm{s}$
$d_{\text {end-end }}=$?

Examples

■ How long does it take to tranfer a file between, say, Lugano and Zürich?

■ How big is this file? And how fast is our connection?
E.g., a (short) e-mail message
$\ell \quad=4 \mathrm{~Kb}$
$d_{\text {prop }}=500 \mathrm{~ms}$
$R=1 \mathrm{Mb} / \mathrm{s}$
$d_{\text {end-end }}=500 \mathrm{~ms}+4 \mathrm{~ms}=504 \mathrm{~ms}$

Examples

■ How about a big file? (E.g., a CD)

Examples

■ How about a big file? (E.g., a CD)

ℓ	$=400 \mathrm{Mb}$
$d_{\text {prop }}$	$=500 \mathrm{~ms}$
R	$=1 \mathrm{Mb} / \mathrm{s}$
$d_{\text {end-end }}$	$=?$

Examples

■ How about a big file? (E.g., a CD)

$$
\begin{array}{ll}
\ell & =400 \mathrm{Mb} \\
d_{\text {prop }} & =500 \mathrm{~ms} \\
R & =1 \mathrm{Mb} / \mathrm{s} \\
d_{\text {end-end }} & =500 \mathrm{~ms}+400 \mathrm{~s}=400.5 \mathrm{~s}=6^{\prime} 40^{\prime \prime}
\end{array}
$$

Examples

■ How about a big file? (E.g., a CD)

$$
\begin{array}{ll}
\ell & =400 \mathrm{Mb} \\
d_{\text {prop }} & =500 \mathrm{~ms} \\
R & =1 \mathrm{Mb} / \mathrm{s} \\
d_{\text {end-end }} & =500 \mathrm{~ms}+400 \mathrm{~s}=400.5 \mathrm{~s}=6^{\prime} 40^{\prime \prime}
\end{array}
$$

■ How about a bigger file? (E.g., 10 DVDs)

Examples

■ How about a big file? (E.g., a CD)

$$
\begin{array}{ll}
\ell & =400 \mathrm{Mb} \\
d_{\text {prop }} & =500 \mathrm{~ms} \\
R & =1 \mathrm{Mb} / \mathrm{s} \\
d_{\text {end-end }} & =500 \mathrm{~ms}+400 \mathrm{~s}=400.5 \mathrm{~s}=6^{\prime} 40^{\prime \prime}
\end{array}
$$

■ How about a bigger file? (E.g., 10 DVDs)

ℓ	$=40 \mathrm{~Gb}$
$d_{\text {prop }}$	$=500 \mathrm{~ms}$
R	$=1 \mathrm{Mb} / \mathrm{s}$
$d_{\text {end-end }}$	$=?$

Examples

■ How about a big file? (E.g., a CD)

$$
\begin{array}{ll}
\ell & =400 \mathrm{Mb} \\
d_{\text {prop }} & =500 \mathrm{~ms} \\
R & =1 \mathrm{Mb} / \mathrm{s} \\
d_{\text {end-end }} & =500 \mathrm{~ms}+400 \mathrm{~s}=400.5 \mathrm{~s}=6^{\prime} 40^{\prime \prime}
\end{array}
$$

■ How about a bigger file? (E.g., 10 DVDs)

$$
\begin{array}{ll}
\ell & =40 \mathrm{~Gb} \\
d_{\text {prop }} & =500 \mathrm{~ms} \\
R & =1 \mathrm{Mb} / \mathrm{s} \\
d_{\text {end-end }} & =\epsilon+40000 \mathrm{~s}=11 \mathrm{~h} 6^{\prime} 40^{\prime \prime}
\end{array}
$$

Examples

■ How about going to Zürich on a Vespa?

Examples

■ How about going to Zürich on a Vespa?

- assuming you can carry more or less 100 DVDs in your backpack
- assuming it takes you four seconds to take the DVDs out of your backpack

Examples

■ How about going to Zürich on a Vespa?

- assuming you can carry more or less 100 DVDs in your backpack
- assuming it takes you four seconds to take the DVDs out of your backpack

ℓ	$=40 G b$
$d_{\text {prop }}$	$=?$
R	$=$
$d_{\text {end-end }}$	$=$

Examples

■ How about going to Zürich on a Vespa?

- assuming you can carry more or less 100 DVDs in your backpack
- assuming it takes you four seconds to take the DVDs out of your backpack

ℓ	$=40 G b$
$d_{\text {prop }}$	$=6 h$
R	$=?$
$d_{\text {end-end }}$	$=$

Examples

■ How about going to Zürich on a Vespa?

- assuming you can carry more or less 100 DVDs in your backpack
- assuming it takes you four seconds to take the DVDs out of your backpack

ℓ	$=40 G b$
$d_{\text {prop }}$	$=6 h$
R	$=100 G b / s$
$d_{\text {end-end }}$	$=?$

Examples

■ How about going to Zürich on a Vespa?

- assuming you can carry more or less 100 DVDs in your backpack
- assuming it takes you four seconds to take the DVDs out of your backpack

$$
\begin{array}{ll}
\ell & =40 G b \\
d_{\text {prop }} & =6 h \\
R & =100 G b / s \\
d_{\text {end-end }} & =6 h
\end{array}
$$

Examples

■ How about going to Zürich on a Vespa?

- assuming you can carry more or less 100 DVDs in your backpack
- assuming it takes you four seconds to take the DVDs out of your backpack

ℓ	$=40 G b$
$d_{\text {prop }}$	$=6 h$
R	$=100 G b / s$
$d_{\text {end-end }}$	$=6 h$

If you need to transfer 10 DVDs from Lugano to Zürich and time is crucial. . . then you might be better off riding your Vespa to Zürich rather than using the Internet

Two Hops (Stream)

Two Hops (Stream)

Two Hops (Stream)

Two Hops (Stream)

Two Hops (Stream)

$$
\begin{gathered}
\left(R_{1}<R_{2}\right) \quad d_{1}, R_{1} \\
d_{\text {end-end }} \\
=d_{1}+\frac{\ell}{R_{1}}
\end{gathered}
$$

Two Hops (Stream)

$$
\begin{gathered}
\left(R_{1}<R_{2}\right) \quad d_{1}, R_{1} \\
d_{\text {end-end }} \\
=d_{1}+\frac{\ell}{R_{1}}+d_{x}
\end{gathered}
$$

Two Hops (Stream)

$$
\begin{gathered}
\left(R_{1}<R_{2}\right) \quad d_{\text {end-end }}, R_{1} \quad d_{2}, R_{2} \\
d_{1}+\frac{\ell}{R_{1}}+d_{x}+d_{2} \quad \mathrm{sec}
\end{gathered}
$$

Two Hops (Stream)

$\left(R_{1}<R_{2}\right) \quad d_{\text {end-end }} \quad=d_{1}+\frac{\ell}{R_{1}}+d_{x}+d_{2} \quad$ sec
$\left(R_{1} \geq R_{2}\right)$

Two Hops (Stream)

$$
\begin{array}{lll}
\left(R_{1}<R_{2}\right) & d_{\text {end-end }} & =d_{1}+\frac{\ell}{R_{1}}+d_{x}+d_{2}
\end{array} \quad \text { sec }
$$

Store-And-Forward (Packet)

Store-And-Forward (Packet)

Store-And-Forward (Packet)

Store-And-Forward (Packet)

Store-And-Forward (Packet)

Store-And-Forward (Packet)

Store-And-Forward (Packet)

Store-And-Forward (Packet)

Store-And-Forward (Packet)

Store-And-Forward (Packet)

$$
d_{\text {end-end }}=N\left(d_{p}+\frac{\ell}{R}+d_{x}\right)
$$

