A Quantitative View: Delay, Throughput, Loss

Antonio Carzaniga

Faculty of Informatics University of Lugano

September 23, 2014

© 2005-2011 Antonio Carzaniga

Outline

- Quantitative analysis of data transfer concepts for network applications
- Propagation delay and transmission rate
- Multi-hop scenario

How do we measure the "speed" and "capacity" of a network connection?

How do we measure the "speed" and "capacity" of a network connection?

Intuition

- water moving in a pipeline
- cars moving on a road

How do we measure the "speed" and "capacity" of a network connection?

Intuition

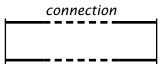
- water moving in a pipeline
- cars moving on a road

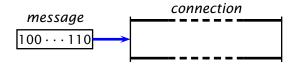
Delay or Latency

the time it takes for one bit to go through the connection (from one end to the other)

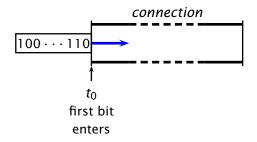
How do we measure the "speed" and "capacity" of a network connection?

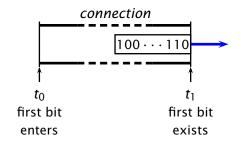
Intuition

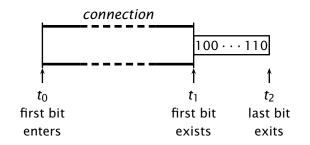

- water moving in a pipeline
- cars moving on a road


Delay or Latency

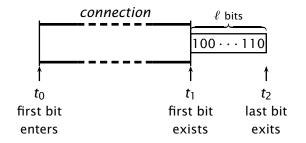
the time it takes for *one bit* to go through the connection (from one end to the other)

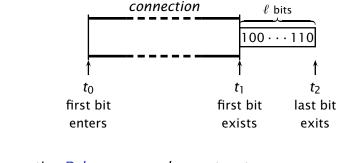

Transmission rate or Throughput


the amount of information that can get into (or out of) the connection in a time unit

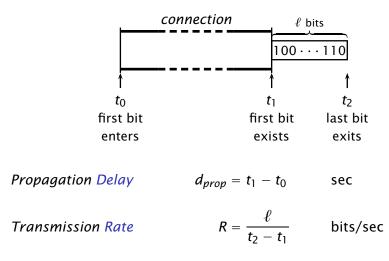


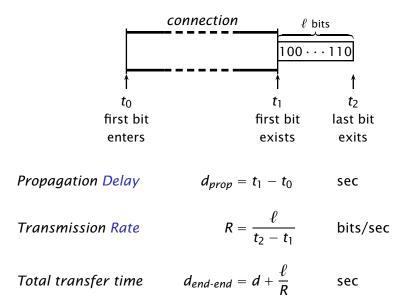
🛛 2005–2011 🛛 Antonio Carzaniga





© 2005–2011 Antonio Carzaniga


© 2005–2011 Antonio Carzaniga



Propagation Delay $d_{prop} = t_1 - t_0$ sec

© 2005–2011 Antonio Carzaniga

© 2005-2011 Antonio Carzaniga

How long does it take to tranfer a file between, say, Lugano and Zürich?

- How long does it take to tranfer a file between, say, Lugano and Zürich?
- How big is this file? And *how fast* is our connection?

- How long does it take to tranfer a file between, say, Lugano and Zürich?
- How big is this file? And *how fast* is our connection?

E.g., a (short) e-mail message

 ℓ = 4Kb d_{prop} = 500ms R = 1Mb/s $d_{end-end}$ = ?

- How long does it take to tranfer a file between, say, Lugano and Zürich?
- How big is this file? And *how fast* is our connection?

E.g., a (short) e-mail message

ł	=	4Kb
d _{prop}	=	500ms
R	=	1Mb/s
d _{end-end}	=	500ms + 4ms = 504ms

l	=	400 <i>Mb</i>
d _{prop}	=	500 <i>ms</i>
R	=	1 <i>Mb / s</i>
d _{end-end}	=	?

ℓ	=	400 <i>Mb</i>
d _{prop}	=	500 <i>ms</i>
R	=	1 <i>Mb</i> /s
d _{end-end}	=	500ms + 400s = 400.5s = 6'40''

ℓ	=	400 <i>Mb</i>
d _{prop}	=	500 <i>ms</i>
R	=	1 <i>Mb</i> /s
d _{end-end}	=	500ms + 400s = 400.5s = 6'40''

■ How about a bigger file? (E.g., 10 DVDs)

ℓ	=	400 <i>Mb</i>
d _{prop}	=	500 <i>ms</i>
R	=	1 <i>Mb</i> /s
d _{end-end}	=	500ms + 400s = 400.5s = 6'40''

■ How about a bigger file? (E.g., 10 DVDs)

l	=	40 <i>Gb</i>
d _{prop}	=	500 <i>ms</i>
R	=	1 <i>Mb/s</i>
d _{end-end}	=	?

ℓ	=	400 <i>Mb</i>
d _{prop}	=	500 <i>ms</i>
R	=	1 <i>Mb</i> /s
d _{end-end}	=	500ms + 400s = 400.5s = 6'40''

■ How about a bigger file? (E.g., 10 DVDs)

ł	=	40 <i>Gb</i>
d _{prop}	=	500 <i>ms</i>
R	=	1 <i>Mb / s</i>
d _{end-end}	=	$\epsilon + 40000s = 11h 6'40''$

How about going to Zürich on a Vespa?

2005-2011 Antonio Carzaniga

- How about going to Zürich on a Vespa?
 - assuming you can carry more or less 100 DVDs in your backpack
 - assuming it takes you four seconds to take the DVDs out of your backpack

- How about going to Zürich on a Vespa?
 - assuming you can carry more or less 100 DVDs in your backpack
 - assuming it takes you four seconds to take the DVDs out of your backpack

$$\ell$$
 = 40*Gb*
 d_{prop} = ?
 R =
 $d_{end-end}$ =

- How about going to Zürich on a Vespa?
 - assuming you can carry more or less 100 DVDs in your backpack
 - assuming it takes you four seconds to take the DVDs out of your backpack

$$\ell$$
 = 40*Gb*
 d_{prop} = 6*h*
 R = ?
 $d_{end-end}$ =

- How about going to Zürich on a Vespa?
 - assuming you can carry more or less 100 DVDs in your backpack
 - assuming it takes you four seconds to take the DVDs out of your backpack

$$\ell = 40Gb$$

$$d_{prop} = 6h$$

$$R = 100Gb/s$$

$$d_{end-end} = ?$$

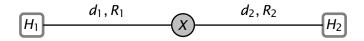
- How about going to Zürich on a Vespa?
 - assuming you can carry more or less 100 DVDs in your backpack
 - assuming it takes you four seconds to take the DVDs out of your backpack

$$\ell = 40Gb$$

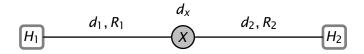
$$d_{prop} = 6h$$

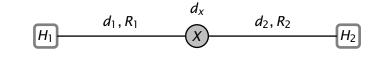
$$R = 100Gb/s$$

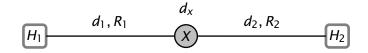
$$d_{end-end} = 6h$$

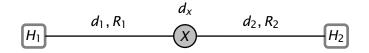

- How about going to Zürich on a Vespa?
 - assuming you can carry more or less 100 DVDs in your backpack
 - assuming it takes you four seconds to take the DVDs out of your backpack

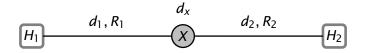
ł	=	40 <i>Gb</i>
d _{prop}	=	6 <i>h</i>
R	=	100 <i>Gb</i> /s
d _{end-end}	=	6 <i>h</i>


If you need to transfer 10 DVDs from Lugano to Zürich and time is crucial... then you might be better off riding your Vespa to Zürich rather than using the Internet

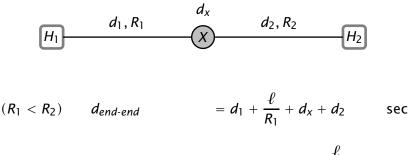

🛛 2005–2011 🛛 Antonio Carzaniga


2005-2011 Antonio Carzaniga


🛛 2005–2011 🛛 Antonio Carzaniga

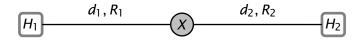

 $(R_1 < R_2) \qquad d_{end-end} \qquad = d_1 + \frac{\ell}{R_1}$

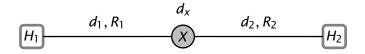
 $(R_1 < R_2) \qquad d_{end-end} \qquad = d_1 + \frac{\ell}{R_1} + d_x$



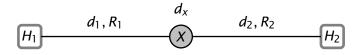
 $(R_1 < R_2)$ $d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x + d_2$ sec

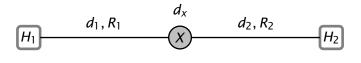
 $(R_1 < R_2)$ $d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x + d_2$ sec

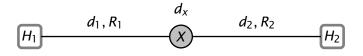

 $(R_1 \geq R_2)$

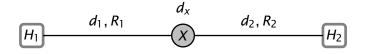


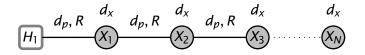
 $(R_1 \ge R_2)$ $d_{end-end} = d_1 + d_x + d_2 + \frac{\ell}{R_2}$ sec

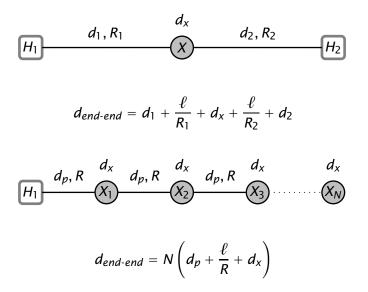

$$d_{end-end} = d_1 + d_x + d_2 + \frac{\ell}{\min\{R_1, R_2\}}$$
 sec






$$d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x$$


$$d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x + \frac{\ell}{R_2}$$



$$d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x + \frac{\ell}{R_2} + d_2$$

$$d_{end-end} = d_1 + \frac{\ell}{R_1} + d_x + \frac{\ell}{R_2} + d_2$$

