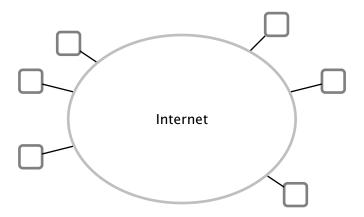
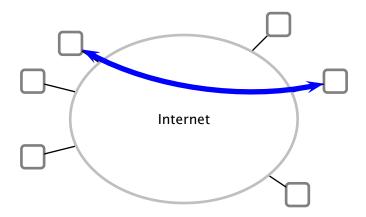
The Domain Name System

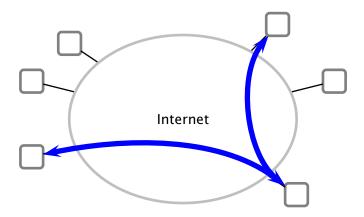
Antonio Carzaniga

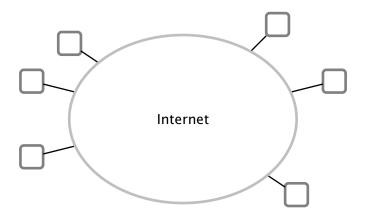

Faculty of Informatics University of Lugano

October 8, 2014


Outline

- IP addresses and host names
- DNS architecture
- DNS process
- DNS requests/replies


Internet applications involve end system communication


Internet applications involve end system communication

Internet applications involve end system communication

Internet applications involve end system communication

How does one end system address another end system?

■ An end system is *identified* and *addressed* by its *IP address*

- An end system is *identified* and *addressed* by its *IP address*
 - 32 bits (4 bytes) in IPv4
 - e.g., 195.176.181.10

- An end system is identified and addressed by its IP address
 - 32 bits (4 bytes) in IPv4
 - e.g., 195.176.181.10
 - ▶ 128 bits (16 bytes) in IPv6
 - e.g., fe80::211:43ff:fecd:30f5/64

- An end system is identified and addressed by its IP address
 - 32 bits (4 bytes) in IPv4
 - e.g., 195.176.181.10
 - ▶ 128 bits (16 bytes) in IPv6
 - e.g., fe80::211:43ff:fecd:30f5/64
- Advantages

- An end system is identified and addressed by its IP address
 - 32 bits (4 bytes) in IPv4
 - e.g., 195.176.181.10
 - ▶ 128 bits (16 bytes) in IPv6
 - e.g., fe80::211:43ff:fecd:30f5/64

Advantages

- computers (e.g., routers) are good at processing bits
- especially in small packs of a size that is a power of two

- An end system is identified and addressed by its IP address
 - 32 bits (4 bytes) in IPv4
 - e.g., 195.176.181.10
 - 128 bits (16 bytes) in IPv6
 - e.g., fe80::211:43ff:fecd:30f5/64

Advantages

- computers (e.g., routers) are good at processing bits
- especially in small packs of a size that is a power of two

Disadvantages

- An end system is identified and addressed by its IP address
 - 32 bits (4 bytes) in IPv4
 - e.g., 195.176.181.10
 - 128 bits (16 bytes) in IPv6
 - e.g., fe80::211:43ff:fecd:30f5/64

Advantages

- computers (e.g., routers) are good at processing bits
- especially in small packs of a size that is a power of two

Disadvantages

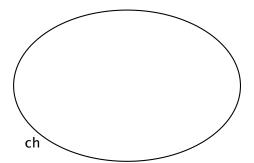
- not practical for use by people
- ▶ i.e., not mnemonic
- e.g., "look it up on 64.233.183.104!"

- Goal: help the human users of the Internet
 - human-readable, mnemonic addresses, aliases

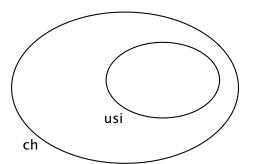
- Goal: help the human users of the Internet
 - human-readable, mnemonic addresses, aliases
- Solution: domain name system (DNS)

- Goal: help the human users of the Internet
 - human-readable, mnemonic addresses, aliases
- Solution: domain name system (DNS)
 - host names
 - e.g., www.google.com

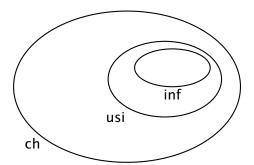
- Goal: help the human users of the Internet
 - human-readable, mnemonic addresses, aliases
- Solution: domain name system (DNS)
 - host names
 - e.g., www.google.com
- Primary function of the domain name system

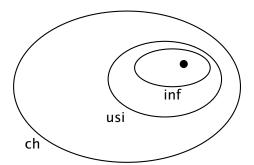

name → IP address

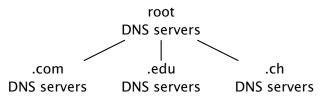
maps a name to an IP address

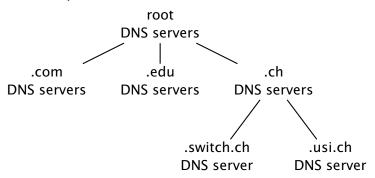

■ E.g., atelier.inf.usi.ch

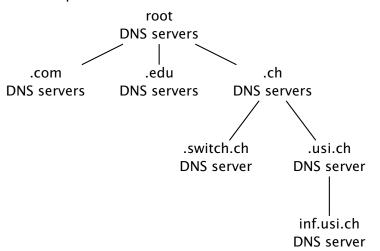
- E.g., atelier.inf.usi.ch
- Hierarchical name space


- E.g., atelier.inf.usi.ch
- Hierarchical name space
- Top-level domain

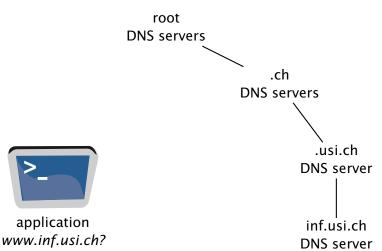

- E.g., atelier.inf(.usi.ch
- Hierarchical name space
- Top-level domain, ...

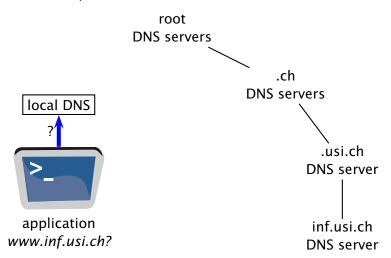


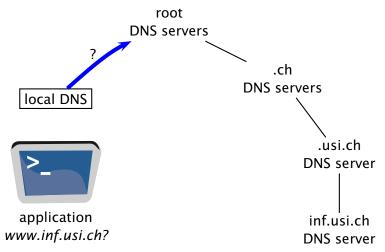

- E.g., atelier inf.usi.ch
- Hierarchical name space
- Top-level domain, ...

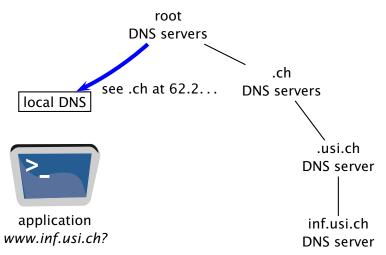


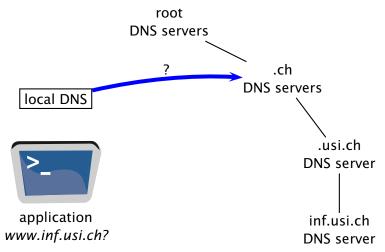
- E.g., atelier.inf.usi.ch
- Hierarchical name space
- Top-level domain, ...

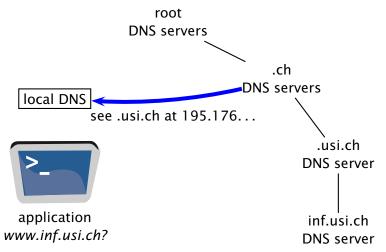


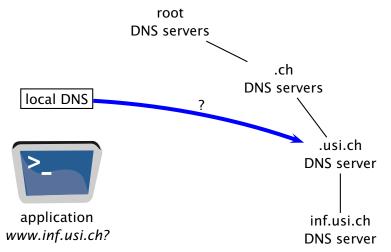

- Root servers: 13 "root" DNS servers know where the top-level servers are (labeled A through M)
 - see http://www.root-servers.org

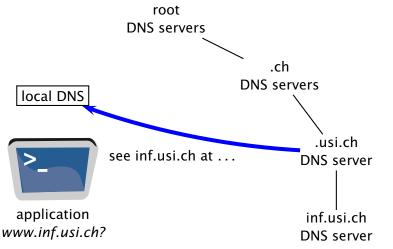

- Root servers: 13 "root" DNS servers know where the top-level servers are (labeled A through M)
 - see http://www.root-servers.org
- *Top-level domain servers:* each one is associated with a top-level domain (e.g., .com, .edu, .ch, .org, .tv)

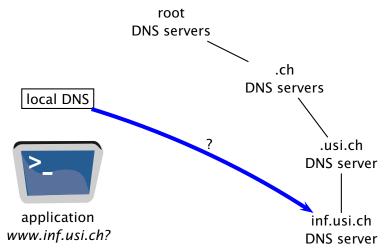

- Root servers: 13 "root" DNS servers know where the top-level servers are (labeled A through M)
 - see http://www.root-servers.org
- *Top-level domain servers:* each one is associated with a top-level domain (e.g., .com, .edu, .ch, .org, .tv)
- Authoritative servers: for each domain, there is an authoritative DNS server that holds the map of publicly-accessible hosts within that domain

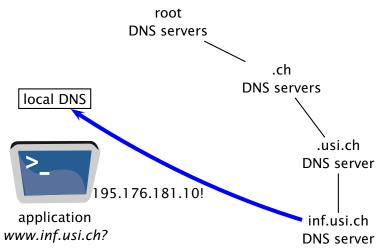

- Root servers: 13 "root" DNS servers know where the top-level servers are (labeled A through M)
 - see http://www.root-servers.org
- *Top-level domain servers:* each one is associated with a top-level domain (e.g., .com, .edu, .ch, .org, .tv)
- Authoritative servers: for each domain, there is an authoritative DNS server that holds the map of publicly-accessible hosts within that domain
- Most root "servers" as well as servers at lower levels are themselves implemented by a distributed set of machines

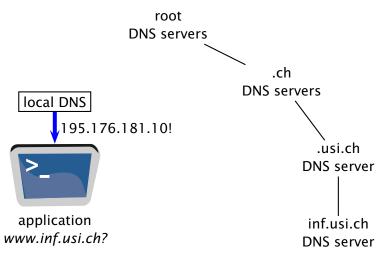


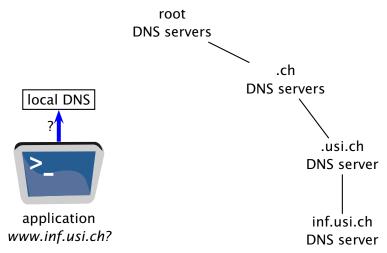




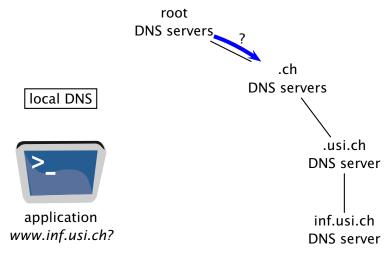


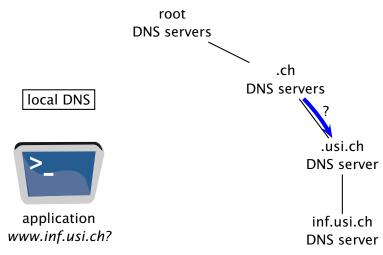


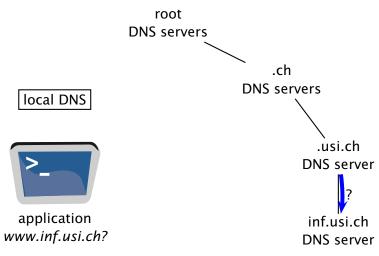


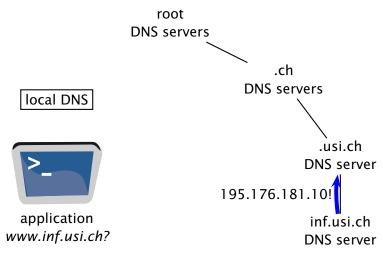


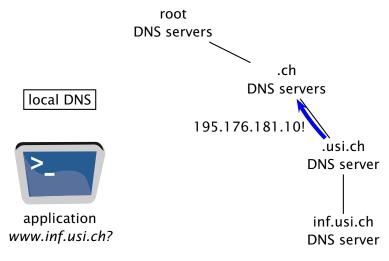


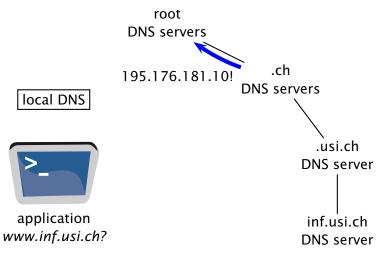


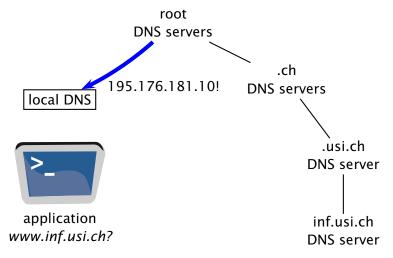


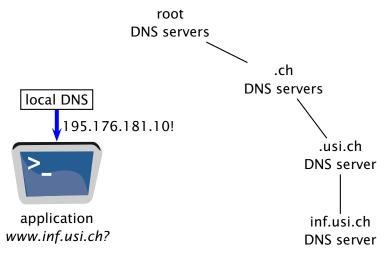












- A lot of messages just to figure out where to connect to!
 - ► DNS can indeed be a major bottleneck for some applications (typically, the Web)
 - it is also to a large extent a critical point of failure

- A lot of messages just to figure out where to connect to!
 - DNS can indeed be a major bottleneck for some applications (typically, the Web)
 - it is also to a large extent a critical point of failure
- It is a perfect demonstration of the "end-to-end principle"
 - it implements a (crucial) network functionality at the end-system level

- A lot of messages just to figure out where to connect to!
 - DNS can indeed be a major bottleneck for some applications (typically, the Web)
 - it is also to a large extent a critical point of failure
- It is a perfect demonstration of the "end-to-end principle"
 - it implements a (crucial) network functionality at the end-system level
- Any idea how to improve the performance and reliability of DNS?

DNS Caching

- Caching is clearly very important, as it can dramatically
 - improve the performance of DNS
 - reduce the load on the DNS infrastructure

DNS Caching

- Caching is clearly very important, as it can dramatically
 - improve the performance of DNS
 - reduce the load on the DNS infrastructure
- How does caching work in DNS?

DNS Caching

- Caching is clearly very important, as it can dramatically
 - improve the performance of DNS
 - reduce the load on the DNS infrastructure
- How does caching work in DNS?
- Same as always
 - ▶ a DNS server may cache a reply (i.e., the mapping) for a name n
 - if the server receives a subsequent request for n, it may respond directly with the cached address, even though the server is not the authoritative server for that domain

- DNS is essentially a "directory service" database
- The database contains resource records (RRs)

- DNS is essentially a "directory service" database
- The database contains resource records (RRs)

name	value	type	ttl
www.inf.usi.ch	195.176.181.10	Α	
research.inf.usi.ch	195.176.181.11	Α	

- DNS is essentially a "directory service" database
- The database contains resource records (RRs)

name	value	type	ttl
www.inf.usi.ch	195.176.181.10	Α	
research.inf.usi.ch	195.176.181.11	Α	

Name and value have the intuitive meaning

- DNS is essentially a "directory service" database
- The database contains resource records (RRs)

name	value	type	ttl
www.inf.usi.ch	195.176.181.10	Α	
research.inf.usi.ch	195.176.181.11	Α	

- Name and value have the intuitive meaning
- What about type?

A this is the main mapping host_name → address, so name is a host name and value is its (IP) address

A this is the main mapping host_name → address, so name is a host name and value is its (IP) address

NS this is a query for a name server, so *name* is a domain name and *value* is the *authoritative name server* for that domain. For example,

name	value	type	ttl
usi.ch	one.ti-edu.ch	NS	

A this is the main mapping host_name → address, so name is a host name and value is its (IP) address

NS this is a query for a name server, so *name* is a domain name and *value* is the *authoritative name server* for that domain. For example,

name	value	type	ttl
usi.ch	one.ti-edu.ch	NS	

CNAME this is a query for a *canonical name*. The canonical name is the "primary" name of a host. A host may have one or more mnemonic *aliases*. For example,

name	value	type	ttl
www.google.com	www.l.google.com	CNAME	

DNS Query Types (2)

DNS Query Types (2)

MX this is a query for the *mail exchange* server for a given domain, so *name* is a host or domain name and *value* is the name of the mail server that handles (incoming) mail for that host or domain. For example,

name	value	type	ttl
lu.usi.ch	spamfilter.usilu.net	MX	

DNS Query Types (2)

MX this is a query for the *mail exchange* server for a given domain, so *name* is a host or domain name and *value* is the name of the mail server that handles (incoming) mail for that host or domain. For example,

name	value	type	ttl
lu.usi.ch	spamfilter.usilu.net	MX	

... several other types

- DNS is a connectionless protocol
- Runs on top of UDP (port 53)

- DNS is a connectionless protocol
- Runs on top of UDP (port 53)
- DNS has query and reply messages
 - since DNS is connectionless, queries and replies are linked by an identifier

- DNS is a connectionless protocol
- Runs on top of UDP (port 53)
- DNS has *query* and *reply* messages
 - since DNS is connectionless, queries and replies are linked by an identifier
- Both queries and replies have the same format
 - a DNS message can carry queries and answers

DNS Message Format

DNS Message Format

0	31	
identification	flags	
# of queries	# of answers RRs	
# of authority RRs	# of additional RRs	
questions		
answers		
authority		
additional information		