# Inter-Autonomous-System Routing: Border Gateway Protocol

Antonio Carzaniga

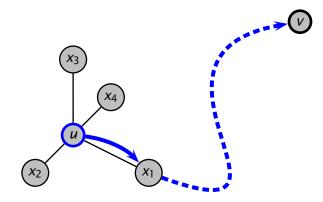
Faculty of Informatics University of Lugano

December 10, 2014



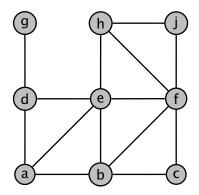
#### Hierarchical routing

BGP

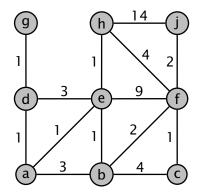

# Routing

# Routing

Goal: each router u must be able to compute, for each other router v, the next-hop neighbor x that is on the least-cost path from u to v


# Routing

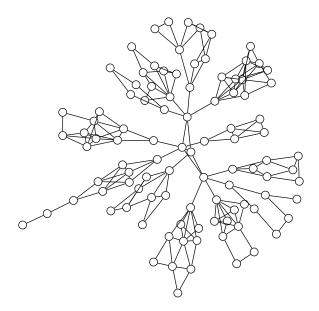
Goal: each router u must be able to compute, for each other router v, the next-hop neighbor x that is on the least-cost path from u to v




So far we have studied routing over a "flat" network model

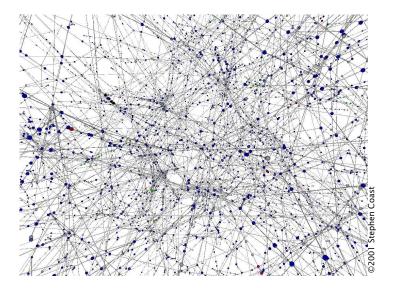
So far we have studied routing over a "flat" network model



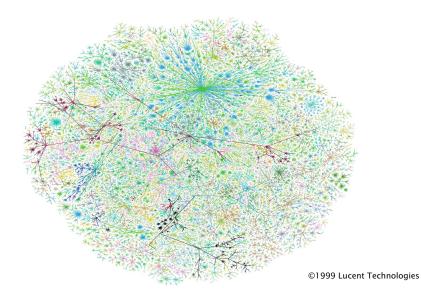

So far we have studied routing over a "flat" network model



Also, our objective has been to find the least-cost paths between sources and destinations


# **More Realistic Topologies**

# **More Realistic Topologies**




### **Even More Realistic**

### **Even More Realistic**



# An Internet Map



### Scalability

hundreds of millions of hosts in today's Internet

### Scalability

- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive

### Scalability

- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive
- forwarding would also be too expensive

#### Scalability

- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive
- forwarding would also be too expensive
- Administrative autonomy

### Scalability

- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive
- forwarding would also be too expensive

#### Administrative autonomy

 one organization might want to run a distance-vector routing protocol, while another might want to run a link-state protocol

### Scalability

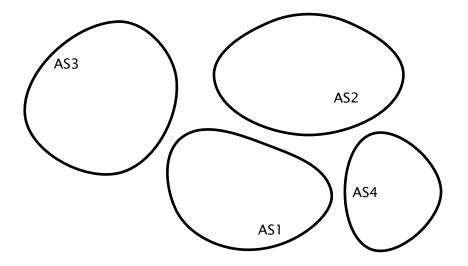
- hundreds of millions of hosts in today's Internet
- transmitting routing information (e.g., LSAs) would be too expensive
- forwarding would also be too expensive

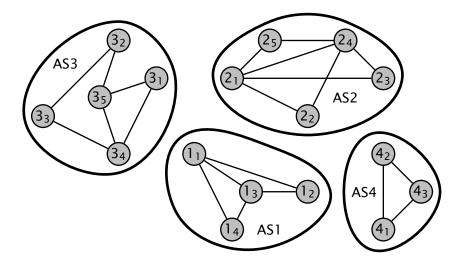
#### Administrative autonomy

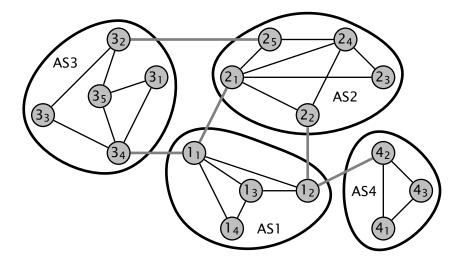
- one organization might want to run a distance-vector routing protocol, while another might want to run a link-state protocol
- an organization might not want to expose its internal network structure

Today's Internet is organized in *autonomous systems (ASs)* 

independent administrative domains

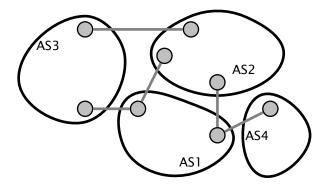

Today's Internet is organized in *autonomous systems* (ASs)


independent administrative domains


Gateway routers connect an autonomous system with other autonomous systems

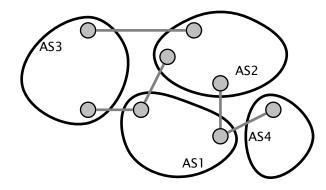
Today's Internet is organized in *autonomous systems* (ASs)

- independent administrative domains
- Gateway routers connect an autonomous system with other autonomous systems
- An intra-autonomous system routing protocol runs within an autonomous system (e.g., OSPF)
  - this protocol determines internal routes
    - ► internal router ↔ internal router
    - ► internal router ↔ gateway router
    - ▶ gateway router ↔ gateway router



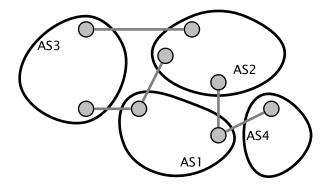






An inter-autonomous system routing protocol determines routing at the autonomous-system level

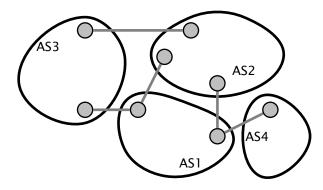
An inter-autonomous system routing protocol determines routing at the autonomous-system level




At AS3:  $AS1 \rightarrow$ 

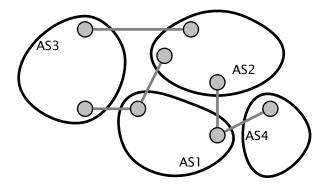
An inter-autonomous system routing protocol determines routing at the autonomous-system level




At AS3: AS1  $\rightarrow$  AS1;

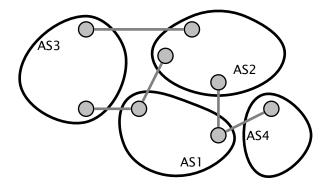
An inter-autonomous system routing protocol determines routing at the autonomous-system level




At AS3: AS1  $\rightarrow$  AS1; AS2  $\rightarrow$ 

An inter-autonomous system routing protocol determines routing at the autonomous-system level




At AS3: AS1  $\rightarrow$  AS1; AS2  $\rightarrow$  AS2;

An inter-autonomous system routing protocol determines routing at the autonomous-system level



At AS3: AS1  $\rightarrow$  AS1; AS2  $\rightarrow$  AS2; AS4  $\rightarrow$ 

An inter-autonomous system routing protocol determines routing at the autonomous-system level



At AS3: AS1  $\rightarrow$  AS1; AS2  $\rightarrow$  AS2; AS4  $\rightarrow$  AS1.

# **Hierarchical Routing**

- All routers within an AS compute their *intra-AS* routing information
  - using an intra-doman routing protocol

# **Hierarchical Routing**

- All routers within an AS compute their *intra-AS* routing information
  - using an intra-doman routing protocol
- Gateway routers figure out *inter-AS* routing information
  - using an inter-domain routing protocol

- All routers within an AS compute their *intra-AS* routing information
  - using an intra-doman routing protocol
- Gateway routers figure out *inter-AS* routing information
  - using an inter-domain routing protocol
- *inter-AS* routing information is propagated within an AS
  - using an appropriate protocol

- All routers within an AS compute their *intra-AS* routing information
  - using an intra-doman routing protocol
- Gateway routers figure out *inter-AS* routing information
  - using an inter-domain routing protocol
- *inter-AS* routing information is propagated within an AS
  - using an appropriate protocol
- Both inter-AS and intra-AS routing information is used to compile the forwarding tables

 Destinations within the same autonomous system are reached as usual

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?
  - *inter-AS* information is used to figure out that x is reachable through gateway  $G_x$

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?
  - *inter-AS* information is used to figure out that x is reachable through gateway  $G_x$
  - *intra-AS* information is used to figure out how to reach  $G_x$  within the AS

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?
  - inter-AS information is used to figure out that x is reachable through gateway G<sub>x</sub>
  - *intra-AS* information is used to figure out how to reach  $G_x$  within the AS
  - what if x is reachable through multiple gateway routers  $G_x, G'_x, \ldots$ ?

- Destinations within the same autonomous system are reached as usual
- What about a destination *x* outside the autonomous system?
  - *inter-AS* information is used to figure out that x is reachable through gateway  $G_x$
  - *intra-AS* information is used to figure out how to reach  $G_x$  within the AS
  - what if x is reachable through multiple gateway routers  $G_x, G'_x, \ldots$ ?
    - use *intra-AS* routing information to determine the costs of the (least-cost) paths to  $G_x, G'_x, \ldots$
    - "hot-potato" routing: send it through the closest gateway

Administrative autonomy

- Administrative autonomy
  - each autonomous system decides what intra-AS routing to use

#### Administrative autonomy

- each autonomous system decides what intra-AS routing to use
- an autonomous system needs to expose only minimal information about the internal structure of its network
  - essentially only (sub)net addresses

#### Administrative autonomy

- each autonomous system decides what intra-AS routing to use
- an autonomous system needs to expose only minimal information about the internal structure of its network
  - essentially only (sub)net addresses
- Scalability

#### Administrative autonomy

- each autonomous system decides what intra-AS routing to use
- an autonomous system needs to expose only minimal information about the internal structure of its network
  - essentially only (sub)net addresses

#### Scalability

routers within an autonomous system need to know very little about the internal structure of other autonomous systems

#### Administrative autonomy

- each autonomous system decides what intra-AS routing to use
- an autonomous system needs to expose only minimal information about the internal structure of its network
  - essentially only (sub)net addresses

#### Scalability

- routers within an autonomous system need to know very little about the internal structure of other autonomous systems
  - essentially only (sub)net addresses

#### Administrative autonomy

- each autonomous system decides what intra-AS routing to use
- an autonomous system needs to expose only minimal information about the internal structure of its network
  - essentially only (sub)net addresses

#### Scalability

- routers within an autonomous system need to know very little about the internal structure of other autonomous systems
  - essentially only (sub)net addresses
- External subnet addresses are likely to "aggregate" in groups that admit compact representations
  - this process is called supernetting

© 2005-2007 Antonio Carzaniga

The Border Gateway Protocol (BGP) is the inter-AS routing protocol in today's Internet

provides reachability information from neighbor ASs

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS
- determines good routes to all outside subnets

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS
- determines good routes to all outside subnets
  - based on reachability information

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS
- determines good routes to all outside subnets
  - based on reachability information
  - based on policies

- provides reachability information from neighbor ASs
- transmits reachability information to all internal routers within an AS
- determines good routes to all outside subnets
  - based on reachability information
  - based on policies
- BGP is a path-vector protocol

BGP session: a semi-permanent connection between two routers

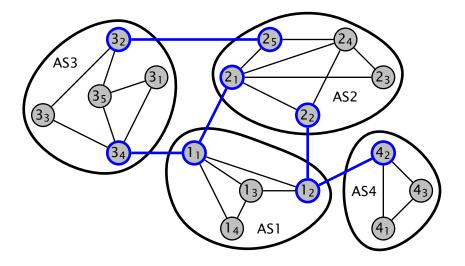
BGP session: a semi-permanent connection between two routers

■ *BGP peers:* two routers engaged in a BGP session

BGP sessions are established over TCP

BGP session: a semi-permanent connection between two routers

■ *BGP peers:* two routers engaged in a BGP session


- BGP sessions are established over TCP
- BGP external session (eBGP): a session across two autonomous systems

BGP session: a semi-permanent connection between two routers

■ *BGP peers:* two routers engaged in a BGP session

- BGP sessions are established over TCP
- BGP external session (eBGP): a session across two autonomous systems
- BGP internal session (iBGP): a session within an autonomous system
  - note that internal sessions carry inter-AS information
  - intra-AS routing uses a separate protocol (e.g., OSPF)

# Gateway Routers and *eBGP*



© 2005-2007 Antonio Carzaniga

BGP advertisement: a router advertises routes to networks, much like an entry in a distance-vector

destinations are denoted by address prefixes

BGP advertisement: a router advertises routes to networks, much like an entry in a distance-vector

- destinations are denoted by address prefixes
- an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network

BGP advertisement: a router advertises routes to networks, much like an entry in a distance-vector

- destinations are denoted by address prefixes
- an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
- this is where a router may aggregate prefixes (a.k.a., "supernetting")

E.g.,

$$\begin{array}{c} 128.138.242.0/24 \\ 128.138.243.0/24 \\ \end{array} \right\} \rightarrow 128.138.242.0/23 \\ \end{array}$$

BGP advertisement: a router advertises routes to networks, much like an entry in a distance-vector

- destinations are denoted by address prefixes
- an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
- this is where a router may aggregate prefixes (a.k.a., "supernetting")

E.g.,

$$\left. \begin{array}{c} 128.138.242.0/24 \\ 128.138.243.0/24 \end{array} \right\} \rightarrow 128.138.242.0/23 \\ 191.224.128.0/22 \\ 191.224.136.0/21 \\ 191.224.132.0/22 \end{array} \right\} \rightarrow$$

BGP advertisement: a router advertises routes to networks, much like an entry in a distance-vector

- destinations are denoted by address prefixes
- an AS may or may not forward an advertisement for a foreign network; doing so means being willing to carry traffic for that network
- this is where a router may aggregate prefixes (a.k.a., "supernetting")

E.g.,

 $\left. \begin{array}{c} 128.138.242.0/24 \\ 128.138.243.0/24 \end{array} \right\} \rightarrow 128.138.242.0/23 \\ 191.224.128.0/22 \\ 191.224.136.0/21 \\ 191.224.132.0/22 \end{array} \right\} \rightarrow 191.224.128.0/20 \\ \end{array}$ 

 Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)

- Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)
- BGP attributes: a route advertisement includes a number of attributes
  - AS-PATH: sequence of ASNs through which the advertisement has been sent

- Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)
- BGP attributes: a route advertisement includes a number of attributes
  - AS-PATH: sequence of ASNs through which the advertisement has been sent
  - NEXT-HOP: specifies the interface (IP address) to use to forward packets towards the advertised destination
    - used to resolve ambiguous cases where an AS can be reached through multiple gateways (interfaces)

- Autonomous system number (ASN): a unique identifier for each AS (with more than one gateway)
- BGP attributes: a route advertisement includes a number of attributes
  - AS-PATH: sequence of ASNs through which the advertisement has been sent
  - NEXT-HOP: specifies the interface (IP address) to use to forward packets towards the advertised destination
    - used to resolve ambiguous cases where an AS can be reached through multiple gateways (interfaces)
- BGP import policy: used to decide whether to accept or reject the route advertisement
  - e.g., a router may not want to send its traffic through one of the AS listed in AS-PATH

- 1. Router preference: routes are ranked according to a *preference* value
  - configured at the router
  - or learned from another router within the same AS
  - essentially a configuration parameter for the AS

- 1. Router preference: routes are ranked according to a *preference* value
  - configured at the router
  - or learned from another router within the same AS
  - essentially a configuration parameter for the AS
- 2. Shortest AS-PATH

- 1. Router preference: routes are ranked according to a *preference* value
  - configured at the router
  - or learned from another router within the same AS
  - essentially a configuration parameter for the AS
- 2. Shortest AS-PATH
- 3. Closest NEXT-HOP router

- 1. Router preference: routes are ranked according to a *preference* value
  - configured at the router
  - or learned from another router within the same AS
  - essentially a configuration parameter for the AS
- 2. Shortest AS-PATH
- 3. Closest NEXT-HOP router

4. ...