
String Matching Algorithms

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

December 22, 2011

Outline

Problem definition

Naïve algorithm

Knuth-Morris-Pratt algorithm

Boyer-Moore algorithm

Problem

Problem

Given the text
Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura

che la dritta via era smarrita. . .

Find the string “trova”

Problem

Given the text
Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura

che la dritta via era smarrita. . .

Find the string “trova”

A more challenging example: Howmany times does the string
“110011” appear in the following text

0011110101011010011000110101111011010111
0110111001001010101011111011110110000101
1011000010111111011110011000011111000100
1001010010111011101011011110101001100101
0010111001000011111110010011011101011010
0110011011101001010010101000010100111110

Problem

Given the text
Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura

che la dritta via era smarrita. . .

Find the string “trova”

A more challenging example: Howmany times does the string
“110011” appear in the following text

0011110101011010011000110101111011010111
0110111001001010101011111011110110000101
1011000010111111011110011000011111000100
1001010010111011101011011110101001100101
0010111001000011111110010011011101011010
0110011011101001010010101000010100111110

String Matching: Definitions

Given a text T
◮ T ∈ Σ

∗: finite alphabet Σ
◮ |T | = n: the length of T is n

String Matching: Definitions

Given a text T
◮ T ∈ Σ

∗: finite alphabet Σ
◮ |T | = n: the length of T is n

Given a pattern P
◮ P ∈ Σ

∗: same finite alphabet Σ
◮ |P| = m: the length of P ism

String Matching: Definitions

Given a text T
◮ T ∈ Σ

∗: finite alphabet Σ
◮ |T | = n: the length of T is n

Given a pattern P
◮ P ∈ Σ

∗: same finite alphabet Σ
◮ |P| = m: the length of P ism

Both T and P can be modeled as arrays
◮ T [1 . . . n] and P[1 . . .m]

String Matching: Definitions

Given a text T
◮ T ∈ Σ

∗: finite alphabet Σ
◮ |T | = n: the length of T is n

Given a pattern P
◮ P ∈ Σ

∗: same finite alphabet Σ
◮ |P| = m: the length of P ism

Both T and P can be modeled as arrays
◮ T [1 . . . n] and P[1 . . .m]

Pattern P occurs with shi� s in T iff
◮ 0 ≤ s ≤ n −m
◮ T [s + i] = P[i] for all positions 1 ≤ i ≤ m

Example

Problem: find all s such that

◮ 0 ≤ s ≤ n −m

◮ T [s + i] = P[i] for 1 ≤ i ≤ m

Example

Problem: find all s such that

◮ 0 ≤ s ≤ n −m

◮ T [s + i] = P[i] for 1 ≤ i ≤ m

n = 14

T a b c a a b a a b a b a c a

Example

Problem: find all s such that

◮ 0 ≤ s ≤ n −m

◮ T [s + i] = P[i] for 1 ≤ i ≤ m

n = 14

T a b c a a b a a b a b a c a

P

m = 3

a b a

Result

Example

Problem: find all s such that

◮ 0 ≤ s ≤ n −m

◮ T [s + i] = P[i] for 1 ≤ i ≤ m

n = 14

T a b c a a b a a b a b a c a

P
s = 4

a b a

Result
s = 4

Example

Problem: find all s such that

◮ 0 ≤ s ≤ n −m

◮ T [s + i] = P[i] for 1 ≤ i ≤ m

n = 14

T a b c a a b a a b a b a c a

P
s = 7

a b a

Result
s = 4
s = 7

Example

Problem: find all s such that

◮ 0 ≤ s ≤ n −m

◮ T [s + i] = P[i] for 1 ≤ i ≤ m

n = 14

T a b c a a b a a b a b a c a

P
s = 9

a b a

Result
s = 4
s = 7
s = 9

Naïve Algorithm

Naïve Algorithm

For each position s in 0 . . . n−m, see if T [s + i] = P[i] for all 1 ≤ i ≤ m

Naïve Algorithm

For each position s in 0 . . . n−m, see if T [s + i] = P[i] for all 1 ≤ i ≤ m

NAIVE-STRING-MATCHING(T, P)

1 n = length(T)

2 m = length(P)

3 for s = 0 to n −m
4 if SUBSTRING-AT(T, P, s)

5 OUTPUT(s)

Naïve Algorithm

For each position s in 0 . . . n−m, see if T [s + i] = P[i] for all 1 ≤ i ≤ m

NAIVE-STRING-MATCHING(T, P)

1 n = length(T)

2 m = length(P)

3 for s = 0 to n −m
4 if SUBSTRING-AT(T, P, s)

5 OUTPUT(s)

SUBSTRING-AT(T, P, s)

1 for i = 1 to length(P)
2 if T [s + i] , P[i]

3 return FALSE

4 return TRUE

Complexity of the Naïve Algorithm

Complexity of the Naïve Algorithm

Complexity of NAIVE-STRING-MATCH is O((n −m + 1)m)

Complexity of the Naïve Algorithm

Complexity of NAIVE-STRING-MATCH is O((n −m + 1)m)

Worst case example

T = an, P = am

i.e.,

T =

n
︷ ︸︸ ︷

aa · · · a, P =

m
︷ ︸︸ ︷

aa · · · a

Complexity of the Naïve Algorithm

Complexity of NAIVE-STRING-MATCH is O((n −m + 1)m)

Worst case example

T = an, P = am

i.e.,

T =

n
︷ ︸︸ ︷

aa · · · a, P =

m
︷ ︸︸ ︷

aa · · · a

So, (n −m + 1)m is a tight bound, so the (worst-case) complexity of
NAIVE-STRING-MATCH is

Θ((n −m + 1)m)

Improvement Strategy

Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

=

Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

= =

Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

= = ,

Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

= = ,

What now?

Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

= = ,

What now?

◮ the naïve algorithm goes back to the second position in T and starts
from the beginning of P

Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

= = ,

What now?

◮ the naïve algorithm goes back to the second position in T and starts
from the beginning of P

◮ can’t we simply move along through T?

Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

= = ,

What now?

◮ the naïve algorithm goes back to the second position in T and starts
from the beginning of P

◮ can’t we simply move along through T?

◮ why?

Improvement Strategy (2)

Improvement Strategy (2)

Here’s a wrong but insightful strategy

Improvement Strategy (2)

Here’s a wrong but insightful strategy

WRONG-STRING-MATCHING(T, P)

1 n = length(T)

2 m = length(P)

3 q = 0 // number of characters matched in P
4 s = 1
5 while s ≤ n

6 s = s + 1
7 if T [s] == P[q + 1]
8 q = q + 1
9 if q == m
10 OUTPUT(s −m)

11 q = 0
12 else q = 0

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o

s

q+1

Output: 10

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o Output: 10

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o Output: 10

s

q+1

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o Output: 10

Done. Perfect!

Improvement Strategy (3)

Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o Output: 10

Done. Perfect!

Complexity: Θ(n)

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

OUTPUT(0)

s

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

missed!

Improvement Strategy (4)

What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

missed!

SoWRONG-STRING-MATCHING doesn’t work, but it tells us something
useful

Improvement Strategy (5)

Where didWRONG-STRING-MATCHING go wrong?

Improvement Strategy (5)

Where didWRONG-STRING-MATCHING go wrong?

T a a b a a a b a b a b a c a

P a a b

Improvement Strategy (5)

Where didWRONG-STRING-MATCHING go wrong?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (5)

Where didWRONG-STRING-MATCHING go wrong?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (5)

Where didWRONG-STRING-MATCHING go wrong?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (5)

Where didWRONG-STRING-MATCHING go wrong?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Improvement Strategy (5)

Where didWRONG-STRING-MATCHING go wrong?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Wrong: by going all the way back to q = 0 we throw away a good
prefix of P that we alreadymatched

Improvement Strategy (6)

Another example

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

We havematched “ababa”

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

We havematched “ababa”
◮ suffix “aba” can be reused as a prefix

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

We havematched “ababa”
◮ suffix “aba” can be reused as a prefix

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

We havematched “ababa”
◮ suffix “aba” can be reused as a prefix

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

We havematched “ababa”
◮ suffix “aba” can be reused as a prefix

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

s

q+1

We havematched “ababa”
◮ suffix “aba” can be reused as a prefix

Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

OUTPUT(2)

We havematched “ababa”
◮ suffix “aba” can be reused as a prefix

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

P a b a b a c

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

P a b a b a c

q+1

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

P a b a b a c

q+1
π = 3

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

P a b a b a c

q+1
π = 3

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

P a b a b a c

q+1

Restart from q = π

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

P a b a b a c

q+1

Restart from q = π

Iterate as usual

New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

P a b a b a c

q+1

Restart from q = π

Iterate as usual

In essence, this is the Knuth-Morris-Pratt algorithm

The Prefix Function

Given a pattern prefix P[1 . . . q], the longest prefix of P that is also a
suffix of P[2 . . . q] depends only on P and q

The Prefix Function

Given a pattern prefix P[1 . . . q], the longest prefix of P that is also a
suffix of P[2 . . . q] depends only on P and q

This prefix is identified by its length π (q)

The Prefix Function

Given a pattern prefix P[1 . . . q], the longest prefix of P that is also a
suffix of P[2 . . . q] depends only on P and q

This prefix is identified by its length π (q)

Because π (q) depends only on P (and q), π can be computed at the
beginning by PREfiX-FUNCTION

◮ we represent π as an array of lengthm

The Prefix Function

Given a pattern prefix P[1 . . . q], the longest prefix of P that is also a
suffix of P[2 . . . q] depends only on P and q

This prefix is identified by its length π (q)

Because π (q) depends only on P (and q), π can be computed at the
beginning by PREfiX-FUNCTION

◮ we represent π as an array of lengthm

Example

P a b a b a c

The Prefix Function

Given a pattern prefix P[1 . . . q], the longest prefix of P that is also a
suffix of P[2 . . . q] depends only on P and q

This prefix is identified by its length π (q)

Because π (q) depends only on P (and q), π can be computed at the
beginning by PREfiX-FUNCTION

◮ we represent π as an array of lengthm

Example

P a b a b a c

π 0 0 1 2 3 0

The Knuth-Morris-Pratt Algorithm

KMP-STRING-MATCHING(T, P)

1 n = length(T)

2 m = length(P)

3 π = PREfiX-FUNCTION(P)

4 q = 0 // number of character matched
5 for i = 1 to n // scan the text le�-to-right
6 while q > 0 and P[q + 1] , T [i]
7 q = π [q] // nomatch: go back using π
8 if P[q + 1] == T [i]
9 q = q + 1
10 if q == m
11 OUTPUT(i −m)

12 q = π [q] // go back for the next match

Prefix Function Algorithm

Prefix Function Algorithm

Computing the prefix function amounts to finding all the occurrences
of a pattern P in itself

Prefix Function Algorithm

Computing the prefix function amounts to finding all the occurrences
of a pattern P in itself

In fact, PREfiX-FUNCTION is remarkably similar to
KMP-STRING-MATCHING

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0

q

k+1

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0

q

k+1

0

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0

k+1

0

q

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0

q

k+1

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0

q

k+1

1

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0

k+1

1

q

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1

q

k+1

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1

q

k+1

2

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1

k+1

2

q

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1 2

q

k+1

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1 2

q

k+1

3

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1 2

k+1

3

q

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1 2 3

q

k+1

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1 2 3

q

k+1

Prefix Function at Work

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k

P a b a b a c

π 0 0 1 2 3

q

k+1

0

Complexity of KMP

Complexity of KMP

O(n) for the search phase

Complexity of KMP

O(n) for the search phase

O(m) for the pre-processing of the pattern

Complexity of KMP

O(n) for the search phase

O(m) for the pre-processing of the pattern

The complexity analysis is non-trivial

Complexity of KMP

O(n) for the search phase

O(m) for the pre-processing of the pattern

The complexity analysis is non-trivial

Can we do better?

Comments on KMP

Knuth-Morris-Pratt is Ω(n)

◮ KMP will always go through at least n character comparisons

◮ it fixes our “wrong” algorithm in the case of periodic patterns and texts

Comments on KMP

Knuth-Morris-Pratt is Ω(n)

◮ KMP will always go through at least n character comparisons

◮ it fixes our “wrong” algorithm in the case of periodic patterns and texts

Perhaps there’s another algorithm that works better on the average
case
◮ e.g., in the absence of periodic patterns

A New Strategy

h e r e i s a s i m p l e e x a m p l e

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

A New Strategy

h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

In essence, this is the Boyer-Moore algorithm

Comments on Boyer-Moore

Comments on Boyer-Moore

Like KMP, Boyer-Moore includes a pre-processing phase

Comments on Boyer-Moore

Like KMP, Boyer-Moore includes a pre-processing phase

The pre-processing is O(m)

Comments on Boyer-Moore

Like KMP, Boyer-Moore includes a pre-processing phase

The pre-processing is O(m)

The search phase is O(nm)

Comments on Boyer-Moore

Like KMP, Boyer-Moore includes a pre-processing phase

The pre-processing is O(m)

The search phase is O(nm)

The search phase can be as low as O(n/m) in common cases

Comments on Boyer-Moore

Like KMP, Boyer-Moore includes a pre-processing phase

The pre-processing is O(m)

The search phase is O(nm)

The search phase can be as low as O(n/m) in common cases

In practice, Boyer-Moore is the fastest string-matching algorithm for
most applications

