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Given the text
Nel mezzo del cammin di nostra vita

mi ritrovai per una selva oscura

che la dritta via era smarrita. . .

Find the string “trova”

A more challenging example: Howmany times does the string
“110011” appear in the following text

0011110101011010011000110101111011010111
0110111001001010101011111011110110000101
1011000010111111011110011000011111000100
1001010010111011101011011110101001100101
0010111001000011111110010011011101011010
0110011011101001010010101000010100111110
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String Matching: Definitions

Given a text T
◮ T ∈ Σ

∗: finite alphabet Σ
◮ |T | = n: the length of T is n

Given a pattern P
◮ P ∈ Σ

∗: same finite alphabet Σ
◮ |P| = m: the length of P ism

Both T and P can be modeled as arrays
◮ T [1 . . . n] and P[1 . . .m]

Pattern P occurs with shi� s in T iff
◮ 0 ≤ s ≤ n −m
◮ T [s + i] = P[i] for all positions 1 ≤ i ≤ m
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Problem: find all s such that

◮ 0 ≤ s ≤ n −m

◮ T [s + i] = P[i] for 1 ≤ i ≤ m

n = 14
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Example

Problem: find all s such that

◮ 0 ≤ s ≤ n −m

◮ T [s + i] = P[i] for 1 ≤ i ≤ m

n = 14

T a b c a a b a a b a b a c a

P
s = 9

a b a

Result
s = 4
s = 7
s = 9
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Naïve Algorithm

For each position s in 0 . . . n−m, see if T [s + i] = P[i] for all 1 ≤ i ≤ m

NAIVE-STRING-MATCHING(T, P)

1 n = length(T)

2 m = length(P)

3 for s = 0 to n −m
4 if SUBSTRING-AT(T, P, s)

5 OUTPUT(s)

SUBSTRING-AT(T, P, s)

1 for i = 1 to length(P)
2 if T [s + i] , P[i]

3 return FALSE

4 return TRUE
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Complexity of the Naïve Algorithm

Complexity of NAIVE-STRING-MATCH is O((n −m + 1)m)

Worst case example

T = an, P = am

i.e.,

T =

n
︷  ︸︸  ︷

aa · · · a, P =

m
︷  ︸︸  ︷

aa · · · a

So, (n −m + 1)m is a tight bound, so the (worst-case) complexity of
NAIVE-STRING-MATCH is

Θ((n −m + 1)m)
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Improvement Strategy

Observation

T a b c a a b a a b a b a c a

P a b a

= = ,

What now?

◮ the naïve algorithm goes back to the second position in T and starts
from the beginning of P

◮ can’t we simply move along through T?

◮ why?
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Improvement Strategy (2)

Here’s a wrong but insightful strategy

WRONG-STRING-MATCHING(T, P)

1 n = length(T)

2 m = length(P)

3 q = 0 // number of characters matched in P
4 s = 1
5 while s ≤ n

6 s = s + 1
7 if T [s] == P[q + 1]
8 q = q + 1
9 if q == m
10 OUTPUT(s −m)

11 q = 0
12 else q = 0
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Example run ofWRONG-STRING-MATCHING

T p a g l i a i o b a g o r d o

P a g o Output: 10

Done. Perfect!

Complexity: Θ(n)
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What is wrong withWRONG-STRING-MATCHING?

T a a b a a a b a b a b a c a

P a a b

s

q+1

missed!

SoWRONG-STRING-MATCHING doesn’t work, but it tells us something
useful
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Where didWRONG-STRING-MATCHING go wrong?

T a a b a a a b a b a b a c a

P a a b

s

q+1

Wrong: by going all the way back to q = 0 we throw away a good
prefix of P that we alreadymatched
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Improvement Strategy (6)

Another example

T a b a b a b a c b a c b c a

P a b a b a c

OUTPUT(2)

We havematched “ababa”
◮ suffix “aba” can be reused as a prefix
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New Strategy

P[1 . . . q] is the prefix of Pmatched so far

Find the longest prefix of P that is also a suffix of P[2 . . . q]

◮ i.e., find 0 ≤ π < q such that P[q − π + 1 . . . q] = P[1 . . . π]
◮ π = 0 means that such a prefix does not exist

P a b a b a c

q+1

Restart from q = π

Iterate as usual

In essence, this is the Knuth-Morris-Pratt algorithm
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The Prefix Function

Given a pattern prefix P[1 . . . q], the longest prefix of P that is also a
suffix of P[2 . . . q] depends only on P and q

This prefix is identified by its length π (q)

Because π (q) depends only on P (and q), π can be computed at the
beginning by PREfiX-FUNCTION

◮ we represent π as an array of lengthm

Example

P a b a b a c

π 0 0 1 2 3 0



The Knuth-Morris-Pratt Algorithm

KMP-STRING-MATCHING(T, P)

1 n = length(T)

2 m = length(P)

3 π = PREfiX-FUNCTION(P)

4 q = 0 // number of character matched
5 for i = 1 to n // scan the text le�-to-right
6 while q > 0 and P[q + 1] , T [i]
7 q = π [q] // nomatch: go back using π
8 if P[q + 1] == T [i]
9 q = q + 1
10 if q == m
11 OUTPUT(i −m)

12 q = π [q] // go back for the next match
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Prefix Function Algorithm

Computing the prefix function amounts to finding all the occurrences
of a pattern P in itself

In fact, PREfiX-FUNCTION is remarkably similar to
KMP-STRING-MATCHING

PREfiX-FUNCTION(P)

1 m = length(P)

2 π [1] = 0
3 k = 0
4 for q = 2 tom
5 while k > 0 and P[k + 1] , P[q]
6 k = π [k]

7 if P[k + 1] == P[q]
8 k = k + 1
9 π [q] = k
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O(m) for the pre-processing of the pattern

The complexity analysis is non-trivial

Can we do better?
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Comments on KMP

Knuth-Morris-Pratt is Ω(n)

◮ KMP will always go through at least n character comparisons

◮ it fixes our “wrong” algorithm in the case of periodic patterns and texts

Perhaps there’s another algorithm that works better on the average
case
◮ e.g., in the absence of periodic patterns
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h e r e i s a s i m p l e e x a m p l e

e x a m p l e

Wematch the pattern right-to-le�

If we find a bad character α in the text, we can shi�

◮ so that the pattern skips α , if α is not in the pattern

◮ so that the pattern lines up with the rightmost occurrence of α in the
pattern, if the pattern contains α

◮ so that a pattern prefix lines up with a suffix of the current partial (or
complete) match

In essence, this is the Boyer-Moore algorithm
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Comments on Boyer-Moore

Like KMP, Boyer-Moore includes a pre-processing phase

The pre-processing is O(m)

The search phase is O(nm)

The search phase can be as low as O(n/m) in common cases

In practice, Boyer-Moore is the fastest string-matching algorithm for
most applications


