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1 ≤ i < q < j ≤ n⇒ A[i] ≤ A[q] ≤ A[j]
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Combine: nothing to do here

◮ notice the difference withMERGESORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)
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If an element A[i] is less than or equal to pivot, then swap it with the current q position
and shi� q to the right

Loop invariant

◮ begin ≤ k < q⇒ A[k] ≤ v

◮ q < k < i ⇒ A[k] > v

5 1 2 5 4 8 36 20 21 11 13

q
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QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case

◮ q = begin or q = end

◮ the partition transforms P of size n in P of size n − 1

T (n) = T (n − 1) + Θ(n)

T (n) = Θ(n2)
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QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Best case

◮ q = ⌈n/2⌉

◮ the partition transforms P of size n into two problems P of size ⌊n/2⌋ and ⌈n/2⌉ − 1,
respectively

T (n) = 2T (n/2) + Θ(n)

T (n) = Θ(n log n)
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SELECTION-SORT Θ(n2) Θ(n2) Θ(n2) yes
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Binary Heap

Our first real data structure

Interface

◮ BUILD-MAX-HEAP(A) rearranges A into amax-heap

◮ HEAP-INSERT(H, key) inserts key in the heap

◮ HEAP-EXTRACT-MAX(H) extracts the maximum key

◮ H.heap-size is the number of keys in H

Two kinds of binary heaps

◮ max-heaps

◮ min-heaps

Useful applications

◮ sorting

◮ priority queue
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Implemented as an array
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1
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8 9 10 11 12 13 14 15

PARENT(i)

return ⌊i/2⌋
LEFT(i)

return 2i
RIGHT(i)

return 2i + 1
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Max-heap property: for all i > 1, A[PARENT(i)] ≥ A[i]

E.g.,

36

21 11

13 20 8 5

13 2 4 15 8

Where is the max element?

How can we implement HEAP-EXTRACT-MAX?
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HEAP-EXTRACT-MAX procedure

◮ extract the max key

◮ rearrange the heap to maintain themax-heap property

8

21 11

13 20 8 5

13 2 4 15

Nowwe have two subtrees where themax-heap property holds
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MAX-HEAPIFY(A, i) procedure

◮ assume: themax-heap property holds in the subtrees of node i

◮ goal: rearrange the heap to maintain themax-heap property
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1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]
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6 if r ≤ A.heap-size and A[r] > A[largest]

7 largest = r

8 if largest , i

9 swap A[i] and A[largest]
10 MAX-HEAPIFY(A, largest)
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Max-Heapify

MAX-HEAPIFY(A, i)

1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else largest = i

6 if r ≤ A.heap-size and A[r] > A[largest]

7 largest = r

8 if largest , i

9 swap A[i] and A[largest]
10 MAX-HEAPIFY(A, largest)

Complexity of MAX-HEAPIFY? The height of the tree!

T (n) = Θ(log n)
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Heap Sort

Idea: we can use a heap to sort an array

HEAP-SORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = length(A) downto 1
3 swap A[i] and A[1]
4 A.heap-size = A.heap-size − 1
5 MAX-HEAPIFY(A, 1)

What is the complexity of HEAP-SORT?

T (n) = Θ(n log n)

Benefits

◮ in-place sorting; worst-case isΘ(n log n)
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