More on Sorting: Quick Sort and Heap Sort

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

March 24, 2022

Outline

- Another divide-and-conquer sorting algorithm
- The heap
- Heap sort

Algorithm		Complexity			
	worst	average	best		

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT				

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	Θ(<i>n</i> ²)	Θ(<i>n</i>)	yes

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT	Θ(<i>n</i> ²)	$\Theta(n^2)$	Θ(<i>n</i>)	yes

SELECTION-SORT

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	Θ(<i>n</i> ²)	Θ(<i>n</i>)	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes

BUBBLE-SORT

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	$\Theta(n^2)$	Θ(<i>n</i> ²)	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes

MERGE-SORT

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no

Algorithm		In place?		
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i> ²)	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$) no
??		$\Theta(n \log n)$		yes
??	$\Theta(n \log n)$			yes

- Basic step: partition A in three parts based on a chosen value $v \in A$
 - A_L contains the set of elements that are less than v
 - ► *A_v* contains the set of elements that are *equal to v*
 - ► *A_R* contains the set of elements that are *greater then v*

- **Basic step:** partition A in three parts based on a chosen value $v \in A$
 - A_L contains the set of elements that are less than v
 - ► *A_v* contains the set of elements that are *equal to v*
 - ► *A_R* contains the set of elements that are *greater then v*

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$

Basic step: partition A in three parts based on a chosen value $v \in A$

- A_L contains the set of elements that are less than v
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

Basic step: partition A in three parts based on a chosen value $v \in A$

- A_L contains the set of elements that are less than v
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

$$A_L = \langle 2, 4, 1 \rangle$$

Basic step: partition A in three parts based on a chosen value $v \in A$

- A_L contains the set of elements that are less than v
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_V = \langle 5, 5 \rangle$

Basic step: partition A in three parts based on a chosen value $v \in A$

- A_L contains the set of elements that are less than v
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

$$A_L = \langle 2, 4, 1 \rangle \quad A_V = \langle 5, 5 \rangle \quad A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$$

Basic step: partition A in three parts based on a chosen value v ∈ A

- A_L contains the set of elements that are less than v
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ we pick a splitting value, say v = 5

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_v = \langle 5, 5 \rangle$ $A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$

Can we use the same idea for sorting A?

Basic step: partition A in three parts based on a chosen value $v \in A$

- A_L contains the set of elements that are less than v
- ► *A_v* contains the set of elements that are *equal to v*
- ► *A_R* contains the set of elements that are *greater then v*

E.g., $A = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$ we pick a splitting value, say v = 5

$$A_L = \langle 2, 4, 1 \rangle$$
 $A_v = \langle 5, 5 \rangle$ $A_R = \langle 36, 21, 8, 13, 11, 20 \rangle$

Can we use the same idea for sorting A?

Can we partition A **in place**?

Problem: sorting

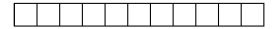
- Problem: sorting
- *Idea:* rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v

- Problem: sorting
- *Idea:* rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v

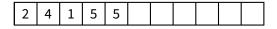
2	36	5	21	8	13	11	20	5	4	1	
---	----	---	----	---	----	----	----	---	---	---	--

- Problem: sorting
- *Idea:* rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v

- Problem: sorting
- *Idea*: rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v



- Problem: sorting
- *Idea:* rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v

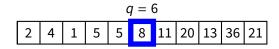


- Problem: sorting
- *Idea*: rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v

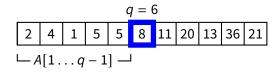
- Problem: sorting
- *Idea*: rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v

2 4 1 5 5	8	11	20	13	36	21
-----------	---	----	----	----	----	----

- Problem: sorting
- *Idea*: rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v



- Problem: sorting
- *Idea*: rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v



- Problem: sorting
- *Idea*: rearrange the sequence A[1...n] in three parts based on a chosen "pivot" value $v \in A$
 - A[1...q-1] contain elements that are less than or equal to v
 - \blacktriangleright A[q] = v
 - A[q+1...n] contain elements that are greater than v

$$q = 6$$

$$2 \quad 4 \quad 1 \quad 5 \quad 5 \quad 8 \quad 11 \quad 20 \quad 13 \quad 36 \quad 21$$

$$- A[1 \dots q - 1] \quad - \quad - \quad A[q + 1 \dots n] \quad - \quad -$$

Divide:

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that

 $1 \leq i < q < j \leq n \Longrightarrow A[i] \leq A[q] \leq A[j]$

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that

 $1 \leq i < q < j \leq n \Longrightarrow A[i] \leq A[q] \leq A[j]$

Conquer:

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that

 $1 \leq i < q < j \leq n \Longrightarrow A[i] \leq A[q] \leq A[j]$

Conquer: sort $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$

Another Divide-and-Conquer for Sorting

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that

 $1 \leq i < q < j \leq n \Longrightarrow A[i] \leq A[q] \leq A[j]$

• Conquer: sort $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$

Combine:

Another Divide-and-Conquer for Sorting

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that

 $1 \le i < q < j \le n \Longrightarrow A[i] \le A[q] \le A[j]$

- **Conquer:** sort $A[1 \dots q 1]$ and $A[q + 1 \dots n]$
- **Combine:** nothing to do here
 - notice the difference with MERGESORT

Another Divide-and-Conquer for Sorting

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that

 $1 \le i < q < j \le n \Longrightarrow A[i] \le A[q] \le A[j]$

- **Conquer:** sort $A[1 \dots q 1]$ and $A[q + 1 \dots n]$
- **Combine:** nothing to do here
 - notice the difference with MERGESORT

QUICKSORT(*A*, *begin*, *end*)

1 **if** begin < end

- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right

- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element A[i] is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$

- Start with q = 1
 - i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element A[i] is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$

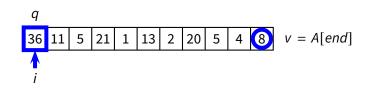
36 11 5	21 1	13 2	20	5	4	8	
---------	------	------	----	---	---	---	--

- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$

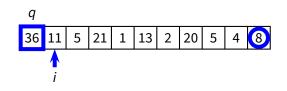
36
 11
 5
 21
 1
 13
 2
 20
 5
 4

$$\textcircled{3}$$
 $v = A[end]$

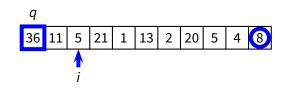
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



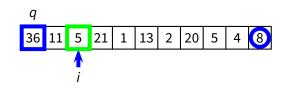
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



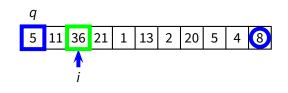
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element A[i] is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



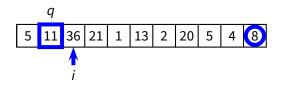
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



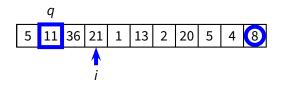
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



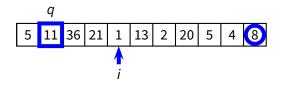
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element A[i] is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



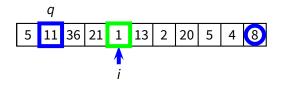
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



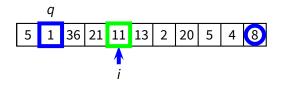
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



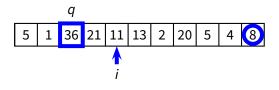
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element A[i] is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



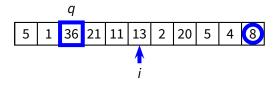
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



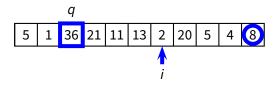
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



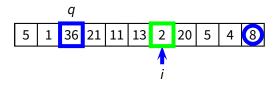
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



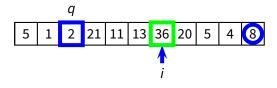
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



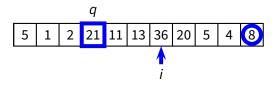
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



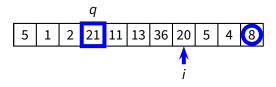
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



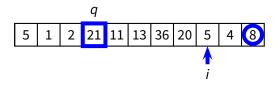
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



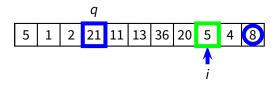
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element A[i] is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



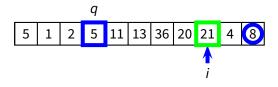
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



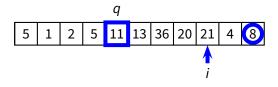
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



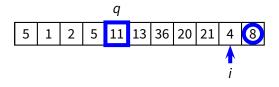
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



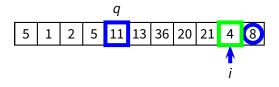
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



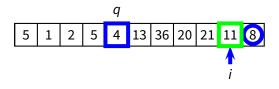
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



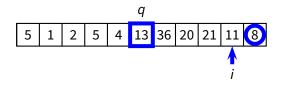
- Start with q = 1
 - i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



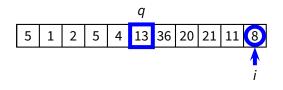
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



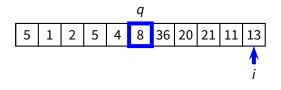
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



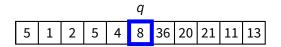
- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element *A*[*i*] is less than or equal to pivot, then swap it with the current *q* position and shift *q* to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



- Start with q = 1
 - ▶ i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element A[i] is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
 - begin $\leq k < q \Rightarrow A[k] \leq v$
 - ▶ $q < k < i \Rightarrow A[k] > v$



Complete QUICKSORT Algorithm

PARTITION (A, begin, end)1q = begin2v = A[end]3for i = begin to end4if $A[i] \le v$ 5swap A[i] and A[q]6q = q + 17return q - 1

QUICKSORT(*A*, *begin*, *end*)

- 1 **if** begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

Complexity of PARTITION

PARTITION (A, begin, end) 1 q = begin2 v = A[end]3 for i = begin to end 4 if $A[i] \le v$ 5 swap A[i] and A[q]6 q = q + 17 return q - 1

Complexity of PARTITION

PARTITION (A, begin, end) 1 q = begin2 v = A[end]3 for i = begin to end 4 if $A[i] \le v$ 5 swap A[i] and A[q]6 q = q + 17 return q - 1

 $T(n) = \Theta(n)$

QUICKSORT(*A*, *begin*, *end*)

- **if** begin < end
- q = PARTITION(A, begin, end)
- **QUICKSORT**(A, begin, q 1)
- **QUICKSORT**(A, q + 1, end)

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

Worst case

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

Worst case

$$\bullet q = begin \text{ or } q = end$$

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

Worst case

•
$$q = begin \text{ or } q = end$$

• the partition transforms *P* of size *n* in *P* of size n - 1

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

Worst case

 \blacktriangleright q = begin or q = end

▶ the partition transforms *P* of size *n* in *P* of size *n* − 1

 $T(n) = T(n-1) + \Theta(n)$

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

Worst case

•
$$q = begin \text{ or } q = end$$

• the partition transforms *P* of size *n* in *P* of size n - 1

$$T(n) = T(n-1) + \Theta(n)$$

$$T(n) = \Theta(n^2)$$

QUICKSORT(*A*, *begin*, *end*)

- **if** begin < end
- q = PARTITION(A, begin, end)
- **QUICKSORT**(A, begin, q 1)
- **QUICKSORT**(A, q + 1, end)

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

- ▶ $q = \lceil n/2 \rceil$
- ► the partition transforms P of size n into two problems P of size [n/2] and [n/2] 1, respectively

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

- ▶ $q = \lceil n/2 \rceil$
- ► the partition transforms P of size n into two problems P of size [n/2] and [n/2] 1, respectively

$$T(n) = 2T(n/2) + \Theta(n)$$

QUICKSORT(*A*, *begin*, *end*)

- 1 if begin < end
- 2 q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

- ▶ $q = \lceil n/2 \rceil$
- ► the partition transforms P of size n into two problems P of size [n/2] and [n/2] 1, respectively

$$T(n) = 2T(n/2) + \Theta(n)$$

$$T(n) = \Theta(n \log n)$$

Algorithm	Complexity			In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no
QUICKSORT				

Algorithm	Complexity			In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$) no
QUICKSORT	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$) yes

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i> ²)	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no
QUICKSORT	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes
??	$\Theta(n \log n)$			yes

Our first real *data structure*

- Our first real *data structure*
- Interface

- Our first real data structure
- Interface
 - **BUILD-MAX-HEAP**(*A*) rearranges *A* into a max-heap
 - ► **HEAP-INSERT**(*H*, *key*) inserts *key* in the heap
 - ► **HEAP-EXTRACT-MAX**(*H*) extracts the maximum key
 - ► *H. heap-size* is the number of keys in *H*

- Our first real data structure
- Interface
 - **BUILD-MAX-HEAP**(*A*) rearranges *A* into a max-heap
 - ► **HEAP-INSERT**(*H*, *key*) inserts *key* in the heap
 - ► **HEAP-EXTRACT-MAX**(*H*) extracts the maximum key
 - ► *H. heap-size* is the number of keys in *H*
- Two kinds of binary heaps

- Our first real data structure
- Interface
 - **BUILD-MAX-HEAP**(A) rearranges A into a max-heap
 - ► **HEAP-INSERT**(*H*, *key*) inserts *key* in the heap
 - ► **HEAP-EXTRACT-MAX**(*H*) extracts the maximum key
 - ► *H. heap-size* is the number of keys in *H*
- Two kinds of binary heaps
 - max-heaps

- Our first real data structure
- Interface
 - **BUILD-MAX-HEAP**(A) rearranges A into a max-heap
 - ► **HEAP-INSERT**(*H*, *key*) inserts *key* in the heap
 - ► **HEAP-EXTRACT-MAX**(*H*) extracts the maximum key
 - ► *H. heap-size* is the number of keys in *H*
- Two kinds of binary heaps
 - max-heaps
 - min-heaps

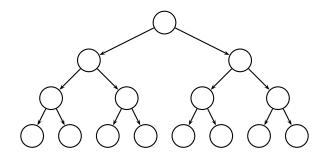
- Our first real data structure
- Interface
 - **BUILD-MAX-HEAP**(A) rearranges A into a max-heap
 - ► **HEAP-INSERT**(*H*, *key*) inserts *key* in the heap
 - ► **HEAP-EXTRACT-MAX**(*H*) extracts the maximum key
 - H. heap-size is the number of keys in H
- Two kinds of binary heaps
 - max-heaps
 - min-heaps
- Useful applications

- Our first real data structure
- Interface
 - **BUILD-MAX-HEAP**(A) rearranges A into a max-heap
 - ► **HEAP-INSERT**(*H*, *key*) inserts *key* in the heap
 - ► **HEAP-EXTRACT-MAX**(*H*) extracts the maximum key
 - H. heap-size is the number of keys in H
- Two kinds of binary heaps
 - max-heaps
 - min-heaps
- Useful applications
 - sorting

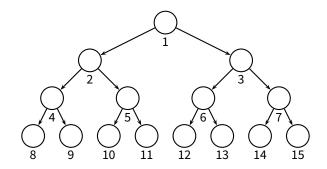
- Our first real data structure
- Interface
 - **BUILD-MAX-HEAP**(A) rearranges A into a max-heap
 - ► **HEAP-INSERT**(*H*, *key*) inserts *key* in the heap
 - ► **HEAP-EXTRACT-MAX**(*H*) extracts the maximum key
 - H. heap-size is the number of keys in H
- Two kinds of binary heaps
 - max-heaps
 - min-heaps
- Useful applications
 - sorting
 - priority queue

Conceptually a full binary tree

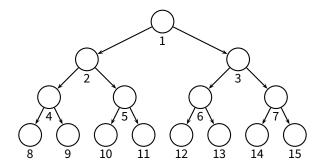
Conceptually a full binary tree



Conceptually a full binary tree

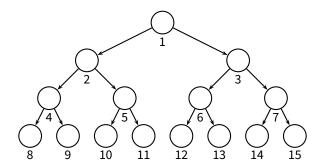


Conceptually a full binary tree

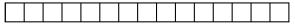


Implemented as an array

Conceptually a full binary tree

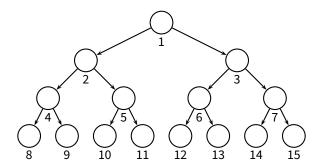


Implemented as an array

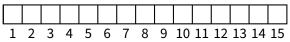


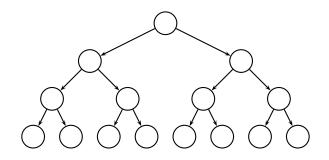
Binary Heap: Structure

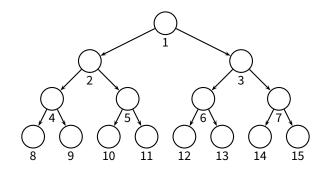
Conceptually a full binary tree

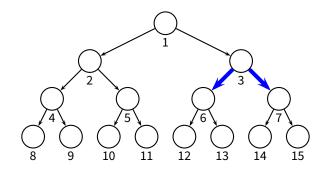


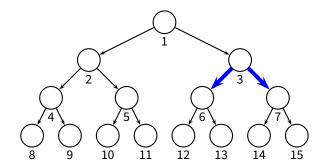
Implemented as an array



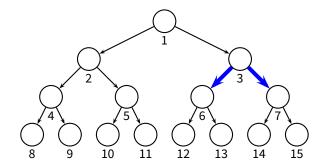




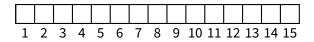


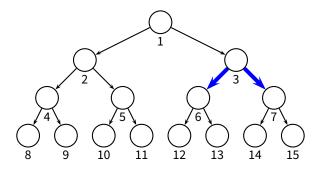


PARENT(i)return $\lfloor i/2 \rfloor$ LEFT(i)return 2iRIGHT(i)return 2i + 1

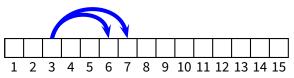


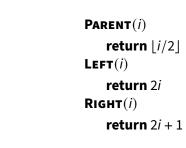
PARENT(i)return $\lfloor i/2 \rfloor$ LEFT(i)return 2iRIGHT(i)return 2i + 1

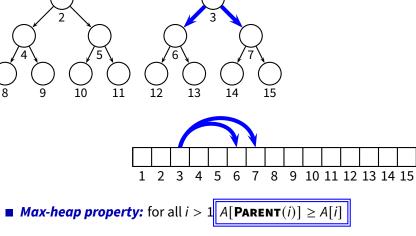




PARENT(i)return $\lfloor i/2 \rfloor$ LEFT(i)return 2iRIGHT(i)return 2i + 1



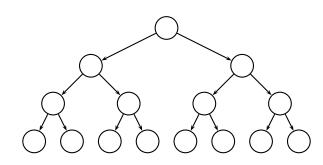




• Max-heap property: for all i > 1 $A[PARENT(i)] \ge A[i]$

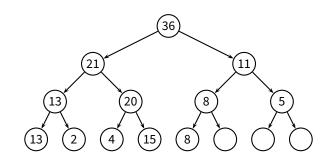
■ Max-heap property: for all i > 1 $A[PARENT(i)] \ge A[i]$

E.g.,



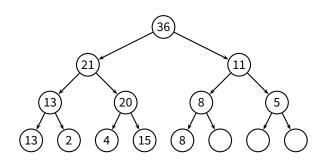
• Max-heap property: for all i > 1 $A[PARENT(i)] \ge A[i]$

E.g.,



• Max-heap property: for all i > 1 $A[PARENT(i)] \ge A[i]$

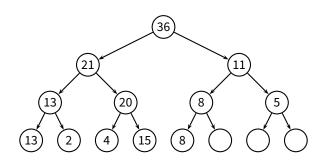
E.g.,



■ Where is the max element?

• Max-heap property: for all i > 1 $A[PARENT(i)] \ge A[i]$

E.g.,

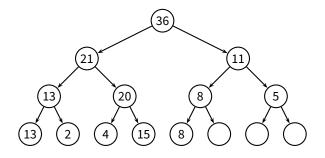


• Where is the max element?

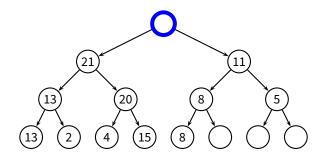
■ How can we implement **HEAP-Extract-Max**?

- extract the max key
- rearrange the heap to maintain the max-heap property

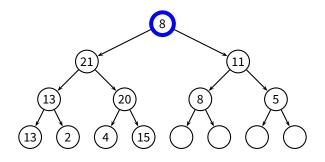
- extract the max key
- rearrange the heap to maintain the max-heap property



- extract the max key
- rearrange the heap to maintain the max-heap property

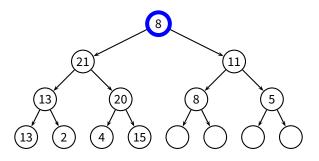


- extract the max key
- rearrange the heap to maintain the max-heap property



HEAP-EXTRACT-MAX procedure

- extract the max key
- rearrange the heap to maintain the max-heap property

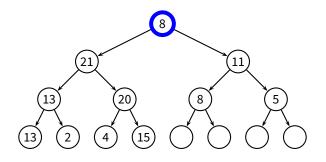


Now we have two subtrees where the *max-heap property* holds

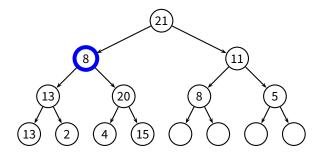
■ **MAX-HEAPIFY**(*A*, *i*) procedure

- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property

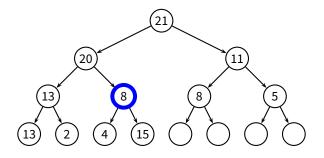
- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property



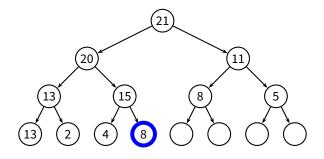
- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property



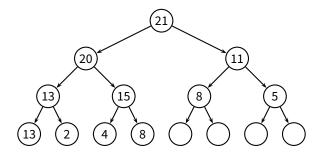
- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property



- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property



- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property



```
MAX-HEAPIFY(A, i)
    l = \text{LEFT}(i)
 1
 2 r = \mathbf{RiGHT}(i)
 3
    if l \leq A. heap-size and A[l] > A[i]
 4
          largest = l
    else largest = i
 5
    if r \leq A. heap-size and A[r] > A[largest]
 6
          largest = r
 7
     if largest \neq i
 8
          swap A[i] and A[largest]
 9
          MAX-HEAPIFY(A, largest)
10
```

MAX-HEAPIFY(A, i)l = LEFT(i)1 2 $r = \mathbf{RiGHT}(i)$ 3 if $l \leq A$. heap-size and A[l] > A[i]largest = l4 else largest = i5 6 if $r \leq A$. heap-size and A[r] > A[largest]7 largest = rif largest $\neq i$ 8 swap A[i] and A[largest] 9 **MAX-HEAPIFY**(A, largest) 10

Complexity of **Max-Heapify**?

MAX-HEAPIFY(A, i)l = LEFT(i)1 2 $r = \mathbf{RiGHT}(i)$ 3 if $l \leq A$. heap-size and A[l] > A[i]largest = l4 else largest = i5 6 if $r \leq A$. heap-size and A[r] > A[largest]7 largest = rif largest $\neq i$ 8 swap A[i] and A[largest] 9 **MAX-HEAPIFY**(A, largest) 10

Complexity of Max-HEAPIFY? The height of the tree!

MAX-HEAPIFY(A, i)l = LEFT(i)1 2 $r = \mathbf{RiGHT}(i)$ if $l \leq A$. heap-size and A[l] > A[i]3 largest = l4 else largest = i5 6 if $r \leq A$. heap-size and A[r] > A[largest]7 largest = rif largest $\neq i$ 8 swap A[i] and A[largest] 9 **MAX-HEAPIFY**(A, largest) 10

Complexity of Max-HEAPIFY? The height of the tree!

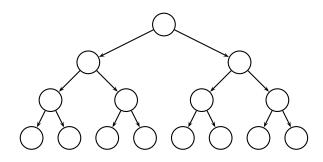
$$T(n) = \Theta(\log n)$$

Build-Max-Heap(A)

- 1 A.heap-size = length(A)
- 2 **for** $i = \lfloor length(A)/2 \rfloor$ **downto** 1
- 3 **Max-Heapify**(A, i)

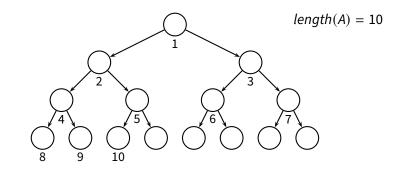
BUILD-MAX-HEAP(A)

- 1 A.heap-size = length(A)
- 2 **for** $i = \lfloor length(A)/2 \rfloor$ **downto** 1
- 3 **Max-Heapify**(A, i)



BUILD-MAX-HEAP(A)

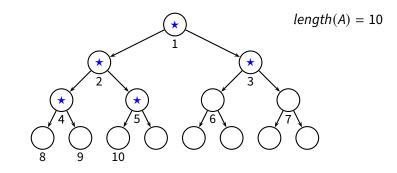
- 2 **for** $i = \lfloor length(A)/2 \rfloor$ **downto** 1
- 3 **Max-Heapify**(A, i)



BUILD-MAX-HEAP(A)

2 **for**
$$i = \lfloor length(A)/2 \rfloor$$
 downto 1

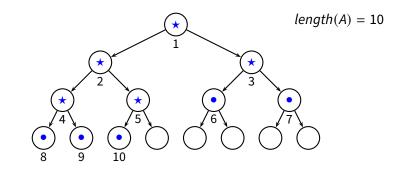
3 **Max-Heapify**(A, i)



BUILD-MAX-HEAP(A)

2 **for** $i = \lfloor length(A)/2 \rfloor$ **downto** 1

3 **Max-Heapify**(A, i)



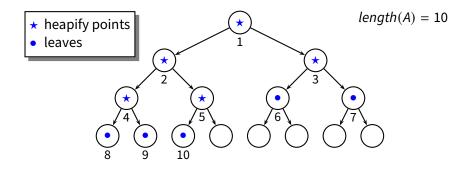
BUILD-MAX-HEAP(A)

3

1
$$A.heap-size = length(A)$$

2 **for** $i = \lfloor length(A)/2 \rfloor$ **downto** 1

Max-Heapify(A, i)



Building a Heap

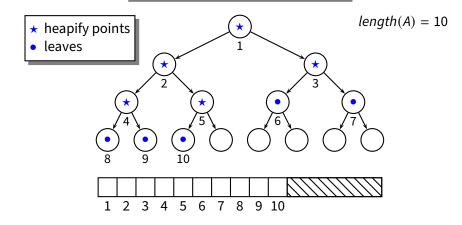
BUILD-MAX-HEAP(A)

3

1
$$A.heap-size = length(A)$$

2 **for** $i = \lfloor length(A)/2 \rfloor$ **downto** 1

Max-Heapify(A, i)



Building a Heap

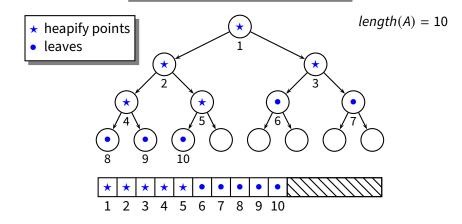
BUILD-MAX-HEAP(A)

3

1
$$A.heap-size = length(A)$$

2 **for** $i = \lfloor length(A)/2 \rfloor$ **downto** 1

Max-Heapify(A, i)



Idea: we can use a heap to sort an array

Idea: we can use a heap to sort an array

Heap-Sort(A)

1 BUILD-MAX-HEAP(A)

- 2 **for** i = length(A) **downto** 1
- 3 swap *A*[*i*] and *A*[1]
- 4 A.heap-size = A.heap-size 1

```
5 MAX-HEAPIFY(A, 1)
```

Idea: we can use a heap to sort an array

Heap-Sort(A)

- 1 **BUILD-MAX-HEAP**(A)
- 2 **for** i = length(A) **downto** 1
- 3 swap A[i] and A[1]
- 4 A.heap-size = A.heap-size 1

```
\textbf{Max-Heapify}(A, 1)
```

■ What is the complexity of **HEAP-SORT**?

5

■ Idea: we can use a heap to sort an array

Heap-Sort(A)

1 **BUILD-MAX-HEAP**(A)

- 2 **for** i = length(A) **downto** 1
- 3 swap *A*[*i*] and *A*[1]
- 4 A.heap-size = A.heap-size 1

Max-Heapify(A, 1)

■ What is the complexity of **HEAP-SORT**?

5

$$T(n) = \Theta(n \log n)$$

Idea: we can use a heap to sort an array

Heap-Sort(A)

- 1 **BUILD-MAX-HEAP**(A)
- 2 **for** i = length(A) **downto** 1
- 3 swap A[i] and A[1]
- 4 A. heap-size = A. heap-size 1

```
\textbf{Max-Heapify}(A,1)
```

■ What is the complexity of **HEAP-SORT**?

$$T(n) = \Theta(n \log n)$$

- Benefits
 - in-place sorting; worst-case is $\Theta(n \log n)$

5

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT				

Algorithm	Complexity			In place?	
	worst	average	best		
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes	

SELECTION-SORT

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta(n^2)$	Θ(<i>n</i> ²)	$\Theta(n^2)$	yes

BUBBLE-SORT

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	$\Theta(n^2)$	Θ(<i>n</i> ²)	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes

MERGE-SORT

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	Γ Θ(<i>n</i> ²)	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SOR	Γ Θ(<i>n</i> ²)	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	Γ Θ(<i>n</i> ²)	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$) no
QUICK-SORT				

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	• Θ(<i>n</i> ²)	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	Θ (<i>n</i> ²)	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$) no
QUICK-SORT	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$) yes

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	Θ (<i>n</i> ²)	$\Theta(n^2)$	Θ(<i>n</i> ²)	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$) no
QUICK-SORT	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$) yes
HEAP-SORT				

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	Θ(<i>n</i>)	yes
SELECTION-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
BUBBLE-SORT	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	yes
Merge-Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no
QUICK-SORT	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes
HEAP-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes