Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

April 26, 2022

# Outline

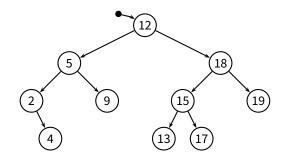
#### Red-black trees

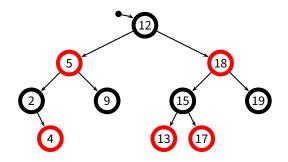
## **Summary on Binary Search Trees**

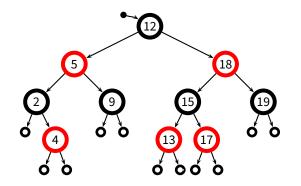
- Binary search trees
  - embody the *divide-and-conquer* search strategy
  - **SEARCH**, **INSERT**, **MIN**, and **MAX** are O(h), where *h* is the *height of the tree*
  - in general,  $h(n) = \Omega(\log n)$  and h(n) = O(n)
  - ▶ *randomization* can make the worst-case scenario h(n) = n highly unlikely

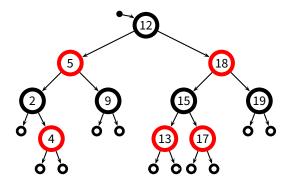
## **Summary on Binary Search Trees**

- Binary search trees
  - embody the *divide-and-conquer* search strategy
  - **SEARCH**, **INSERT**, **MIN**, and **MAX** are O(h), where *h* is the *height of the tree*
  - in general,  $h(n) = \Omega(\log n)$  and h(n) = O(n)
  - *randomization* can make the worst-case scenario h(n) = n highly unlikely
- Problem
  - worst-case scenario is unlikely but still possible
  - simply bad cases are even more probable

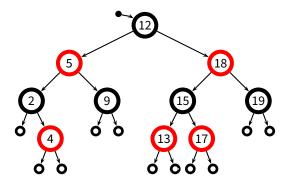




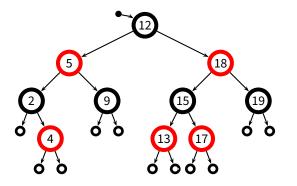




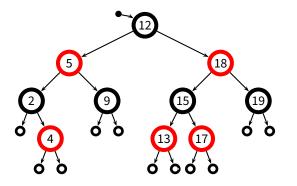
Red-black-tree property



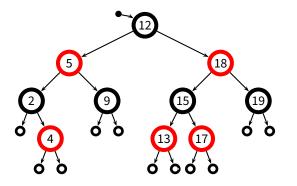
- Red-black-tree property
  - 1. every node is either **red** or **black**



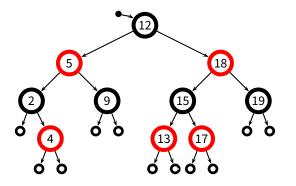
- Red-black-tree property
  - 1. every node is either **red** or **black**
  - 2. the root is **black**



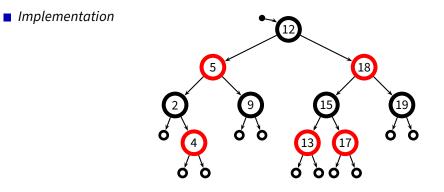
- Red-black-tree property
  - 1. every node is either **red** or **black**
  - 2. the root is **black**
  - 3. every (NIL) leaf is **black**

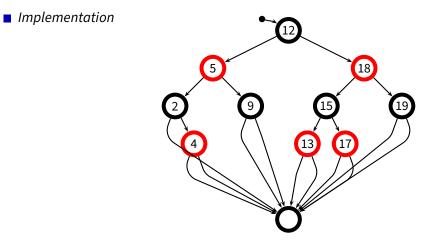


- Red-black-tree property
  - 1. every node is either **red** or **black**
  - 2. the root is **black**
  - 3. every (NIL) leaf is **black**
  - 4. if a node is **red**, then both its children are **black**

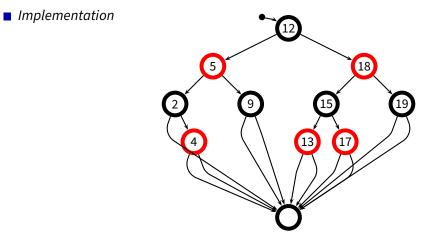


- Red-black-tree property
  - 1. every node is either **red** or **black**
  - 2. the root is **black**
  - 3. every (NIL) leaf is **black**
  - 4. if a node is **red**, then both its children are **black**
  - 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)





we use a common "sentinel" node to represent leaf nodes



- we use a common "sentinel" node to represent leaf nodes
- the sentinel is also the parent of the root node

#### Implementation

T represents the tree, which consists of a set of *nodes* 

#### Implementation

- T represents the tree, which consists of a set of *nodes*
- T. root is the root node of tree T

#### Implementation

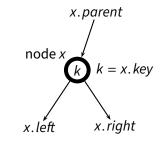
- *T* represents the tree, which consists of a set of *nodes*
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T

#### Implementation

- *T* represents the tree, which consists of a set of *nodes*
- ► *T.root* is the root node of tree *T*
- T.nil is the "sentinel" node of tree T

#### Nodes

- x.parent is the parent of node x
- x. key is the key stored in node x
- x. left is the left child of node x
- x.right is the right child of node x

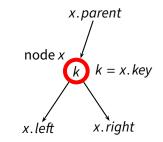


#### Implementation

- *T* represents the tree, which consists of a set of *nodes*
- ► *T.root* is the root node of tree *T*
- T.nil is the "sentinel" node of tree T

#### Nodes

- x.parent is the parent of node x
- x.key is the key stored in node x
- x. left is the left child of node x
- x.right is the right child of node x
- $x. color \in \{RED, BLACK\}$  is the color of node x



**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ . **Proof:** 

1. prove that  $\forall x : size(x) \ge 2^{bh(x)} - 1$ :

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### **Proof:**

1. prove that  $\forall x : size(x) \ge 2^{bh(x)} - 1$ : **proof:** (by induction)

1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### **Proof:**

- 1. prove that  $\forall x : size(x) \ge 2^{bh(x)} 1$ : **proof:** (by induction)
  - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
  - 1.2 *induction step:* consider  $y_1, y_2$ , and x such that  $y_1$ . parent =  $y_2$ . parent = x; prove that

$$size(y_1) \ge 2^{bh(y_1)} - 1 \land size(y_2) \ge 2^{bh(y_2)} - 1 \Rightarrow size(x) \ge 2^{bh(x)} - 1$$

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### Proof:

- 1. prove that  $\forall x : size(x) \ge 2^{bh(x)} 1$ : **proof:** (by induction)
  - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
  - 1.2 *induction step:* consider  $y_1, y_2$ , and x such that  $y_1$ . parent =  $y_2$ . parent = x; prove that

$$size(y_1) \ge 2^{bh(y_1)} - 1 \land size(y_2) \ge 2^{bh(y_2)} - 1 \Rightarrow size(x) \ge 2^{bh(x)} - 1$$

#### proof:

 $size(x) = size(y_1) + size(y_2) + 1$ 

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### **Proof:**

- 1. prove that  $\forall x : size(x) \ge 2^{bh(x)} 1$ : **proof:** (by induction)
  - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
  - 1.2 *induction step:* consider  $y_1, y_2$ , and x such that  $y_1$ . *parent* =  $y_2$ . *parent* = x; prove that

$$size(y_1) \ge 2^{bh(y_1)} - 1 \land size(y_2) \ge 2^{bh(y_2)} - 1 \Rightarrow size(x) \ge 2^{bh(x)} - 1$$

$$size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$$

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### **Proof:**

- 1. prove that  $\forall x : size(x) \ge 2^{bh(x)} 1$ : **proof:** (by induction)
  - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
  - 1.2 *induction step:* consider  $y_1, y_2$ , and x such that  $y_1$ . *parent* =  $y_2$ . *parent* = x; prove that

$$size(y_1) \ge 2^{bh(y_1)} - 1 \land size(y_2) \ge 2^{bh(y_2)} - 1 \Rightarrow size(x) \ge 2^{bh(x)} - 1$$

$$size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$$
  
Let  $bh(y) = bh(y_1) = bh(y_2)$ , since  $bh(y_1) = bh(y_2)$  by rule 5

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### **Proof:**

- 1. prove that  $\forall x : size(x) \ge 2^{bh(x)} 1$ : **proof:** (by induction)
  - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
  - 1.2 *induction step:* consider  $y_1, y_2$ , and x such that  $y_1$ . *parent* =  $y_2$ . *parent* = x; prove that

$$size(y_1) \ge 2^{bh(y_1)} - 1 \land size(y_2) \ge 2^{bh(y_2)} - 1 \Rightarrow size(x) \ge 2^{bh(x)} - 1$$

$$size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$$
  
Let  $bh(y) = bh(y_1) = bh(y_2)$ , since  $bh(y_1) = bh(y_2)$  by rule 5  
Thus  $size(x) \ge 2(2^{bh(y)} - 1) + 1$ 

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### **Proof:**

- 1. prove that  $\forall x : size(x) \ge 2^{bh(x)} 1$ : **proof:** (by induction)
  - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
  - 1.2 *induction step:* consider  $y_1, y_2$ , and x such that  $y_1$ . *parent* =  $y_2$ . *parent* = x; prove that

$$size(y_1) \ge 2^{bh(y_1)} - 1 \land size(y_2) \ge 2^{bh(y_2)} - 1 \Rightarrow size(x) \ge 2^{bh(x)} - 1$$

$$size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$$
  
Let  $bh(y) = bh(y_1) = bh(y_2)$ , since  $bh(y_1) = bh(y_2)$  by rule 5  
Thus  $size(x) \ge 2(2^{bh(y)} - 1) + 1 = 2^{bh(y)+1} - 1$ 

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### **Proof:**

- 1. prove that  $\forall x : size(x) \ge 2^{bh(x)} 1$ : **proof:** (by induction)
  - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
  - 1.2 *induction step:* consider  $y_1, y_2$ , and x such that  $y_1$ . parent =  $y_2$ . parent = x; prove that

$$size(y_1) \ge 2^{bh(y_1)} - 1 \land size(y_2) \ge 2^{bh(y_2)} - 1 \Rightarrow size(x) \ge 2^{bh(x)} - 1$$

$$size(x) = size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1$$
  
Let  $bh(y) = bh(y_1) = bh(y_2)$ , since  $bh(y_1) = bh(y_2)$  by rule 5  
Thus  $size(x) \ge 2(2^{bh(y)} - 1) + 1 = 2^{bh(y)+1} - 1$   
Either  $bh(x) = bh(y)$ , if  $color(x) = RED$ , or  $bh(x) = bh(y) + 1$ , if  $color(x) = BLACK$ 

**Lemma:** the height h(x) of a red-black tree with n = size(x) internal nodes is at most  $2 \log(n + 1)$ .

#### **Proof:**

- 1. prove that  $\forall x : size(x) \ge 2^{bh(x)} 1$ : **proof:** (by induction)
  - 1.1 **base case:** x is a leaf, so size(x) = 0 and bh(x) = 0
  - 1.2 *induction step:* consider  $y_1, y_2$ , and x such that  $y_1$ . parent =  $y_2$ . parent = x; prove that

$$size(y_1) \ge 2^{bh(y_1)} - 1 \land size(y_2) \ge 2^{bh(y_2)} - 1 \Rightarrow size(x) \ge 2^{bh(x)} - 1$$

$$\begin{aligned} size(x) &= size(y_1) + size(y_2) + 1 \ge (2^{bh(y_1)} - 1) + (2^{bh(y_2)} - 1) + 1\\ \text{Let } bh(y) &= bh(y_1) = bh(y_2), \text{ since } bh(y_1) = bh(y_2) \text{ by rule 5}\\ \text{Thus } size(x) \ge 2(2^{bh(y)} - 1) + 1 = 2^{bh(y)+1} - 1\\ \text{Either } bh(x) &= bh(y), \text{ if } color(x) = \text{RED, or } bh(x) = bh(y) + 1, \text{ if } color(x) = \text{BLACK}\\ \text{Thus } size(x) \ge 2^{bh(x)} - 1. \end{aligned}$$

1.  $size(x) \ge 2^{bh(x)} - 1$  (from previous page)

- 1.  $size(x) \ge 2^{bh(x)} 1$  (from previous page)
- 2. Since every red node has black children, in every path from *x* to a leaf node, at least half the nodes are black

- 1.  $size(x) \ge 2^{bh(x)} 1$  (from previous page)
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus  $bh(x) \ge h(x)/2$

- 1.  $size(x) \ge 2^{bh(x)} 1$  (from previous page)
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus  $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2,  $n = size(x) \ge 2^{h(x)/2} 1$

- 1.  $size(x) \ge 2^{bh(x)} 1$  (from previous page)
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus  $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2,  $n = size(x) \ge 2^{h(x)/2} 1$ , therefore

 $h \le 2\log(n+1)$ 

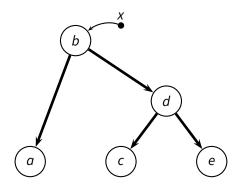
- 1.  $size(x) \ge 2^{bh(x)} 1$  (from previous page)
- 2. Since every red node has black children, in every path from x to a leaf node, at least half the nodes are black, thus  $bh(x) \ge h(x)/2$
- 3. From steps 1 and 2,  $n = size(x) \ge 2^{h(x)/2} 1$ , therefore

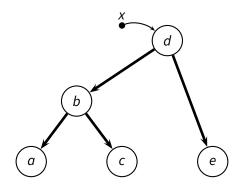
 $h \le 2\log(n+1)$ 

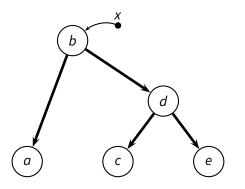
- A red-black tree works as a binary search tree for search, etc.
- So, the complexity of those operations is T(n) = O(h), that is

$$T(n) = O(\log n)$$

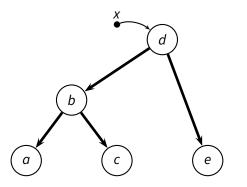
which is also the worst-case complexity







**•** x = Right-Rotate(x)



**•** x = Right-Rotate(x)

**•** x = Left-Rotate(x)

■ **RB-INSERT**(*T*, *z*) works as in a binary search tree

- **RB-INSERT**(*T*, *z*) works as in a binary search tree
- Except that it must preserve the *red-black-tree property*

- **RB-INSERT**(*T*, *z*) works as in a binary search tree
- Except that it must preserve the *red-black-tree property* 
  - 1. every node is either **red** or **black**
  - 2. the root is **black**
  - 3. every (NIL) leaf is **black**
  - 4. if a node is **red**, then both its children are **black**
  - 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)

- **RB-INSERT**(*T*, *z*) works as in a binary search tree
- Except that it must preserve the *red-black-tree property* 
  - 1. every node is either **red** or **black**
  - 2. the root is **black**
  - 3. every (NIL) leaf is **black**
  - 4. if a node is **red**, then both its children are **black**
  - 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)

General strategy

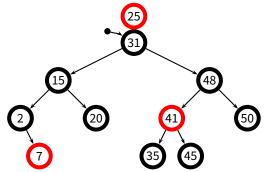
- **RB-INSERT**(*T*, *z*) works as in a binary search tree
- Except that it must preserve the *red-black-tree property* 
  - 1. every node is either **red** or **black**
  - 2. the root is **black**
  - 3. every (NIL) leaf is **black**
  - 4. if a node is **red**, then both its children are **black**
  - 5. for every node *x*, each path from *x* to its descendant leaves has the same number of **black** nodes *bh*(*x*) (the *black-height* of *x*)

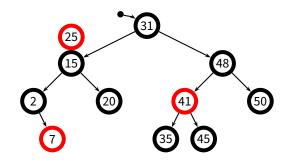
General strategy

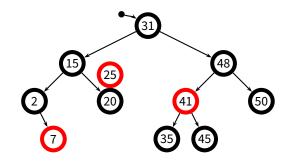
- 1. insert z as in a binary search tree
- 2. color z red so as to preserve property 5
- 3. fix the tree to correct possible violations of property 4

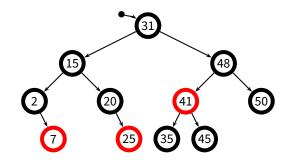
# **RB-INSERT**

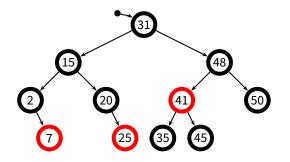
| <b>RB-INSERT</b> $(T, z)$ |   |                                 |
|---------------------------|---|---------------------------------|
|                           | 1 | y = T.nil                       |
|                           | 2 | x = T.root                      |
|                           | 3 | <b>while</b> $x \neq T.nil$     |
|                           | 4 | y = x                           |
|                           | 5 | <b>if</b> z.key < x.key         |
|                           | 6 | x = x.left                      |
|                           | 7 | <b>else</b> x = x.right         |
|                           | 8 | z.parent = y                    |
|                           | 9 | <b>if</b> y == T.nil            |
| 1                         | 0 | T.root = z                      |
| 1                         | 1 | <b>else if</b> z.key < y.key    |
| 1                         | 2 | y.left = z                      |
| 1                         | 3 | <b>else</b> y.right = z         |
| 1                         | 4 | z.left = z.right = T.nil        |
| 1                         | 5 | z.color = RED                   |
| 1                         | 6 | <b>RB-INSERT-FIXUP</b> $(T, z)$ |
| 100                       |   |                                 |



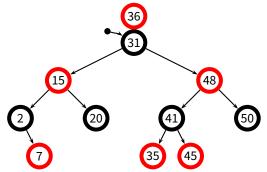


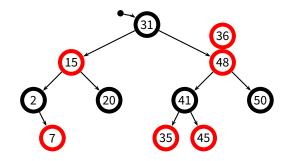


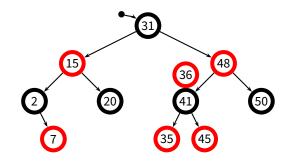


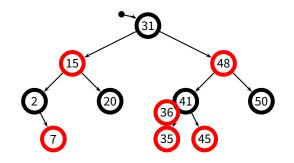


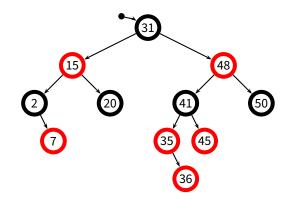
■ *z*'s parent is **black**, so no fixup needed

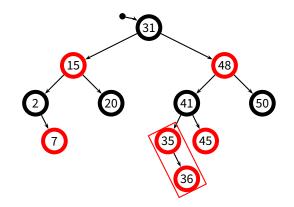


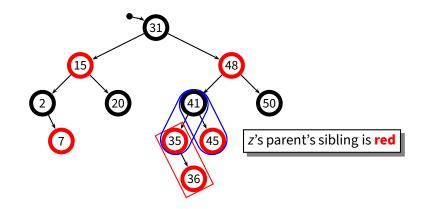


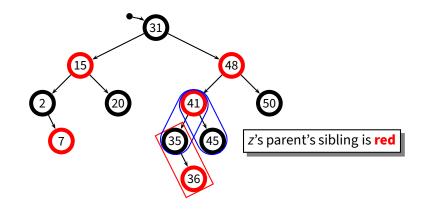


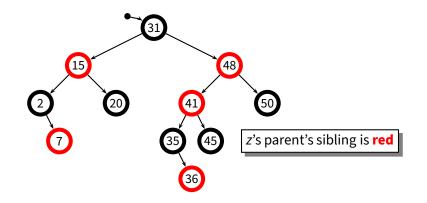


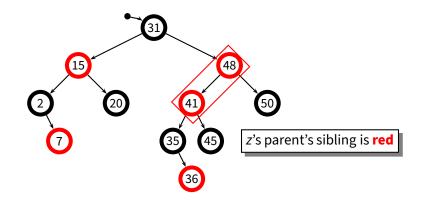


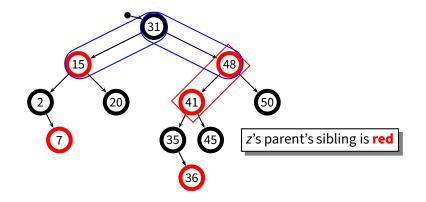


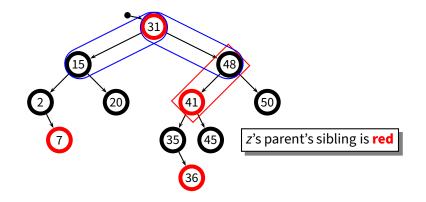


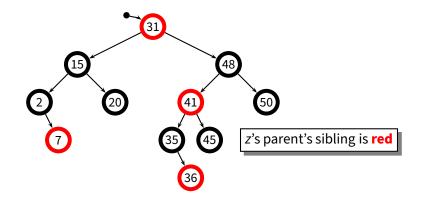


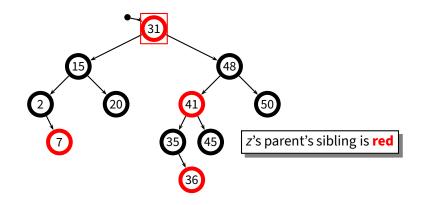


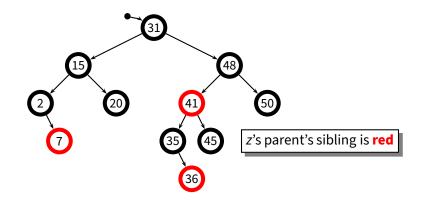


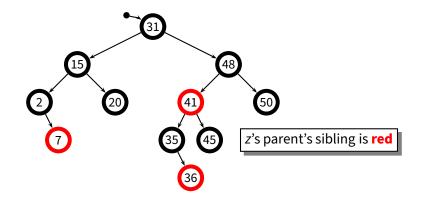




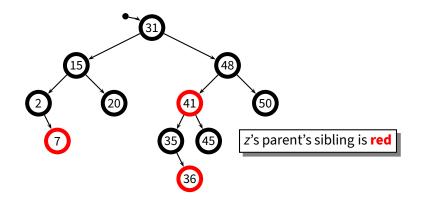




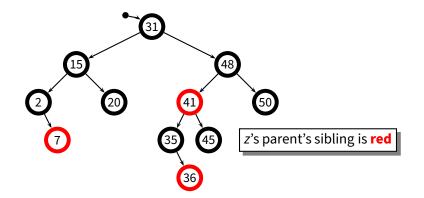




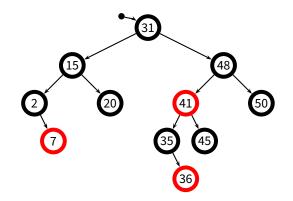
A **black** node can become **red** and transfer its **black** color to its two children

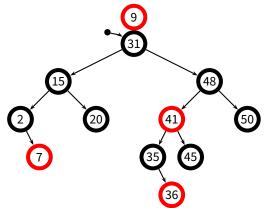


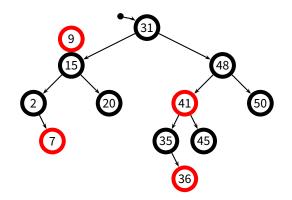
- A **black** node can become **red** and transfer its **black** color to its two children
- This may cause other **red**-**red** conflicts, so we iterate...

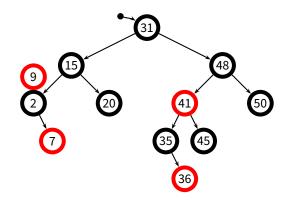


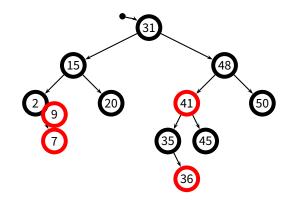
- A **black** node can become **red** and transfer its **black** color to its two children
- This may cause other **red**-**red** conflicts, so we iterate...
- The root can change to **black** without causing conflicts

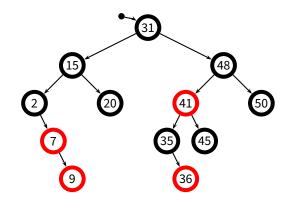


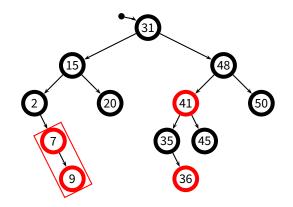


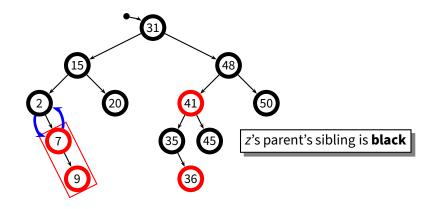


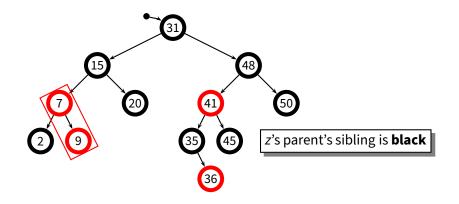


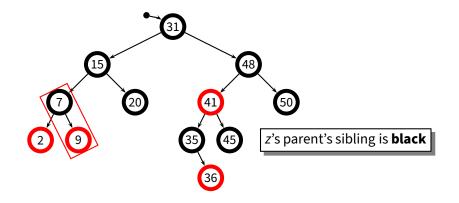


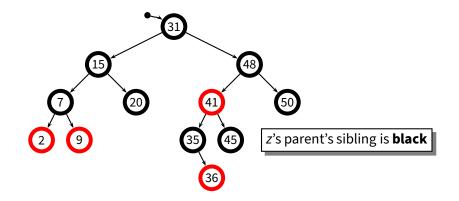




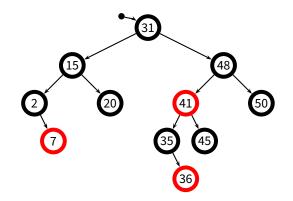


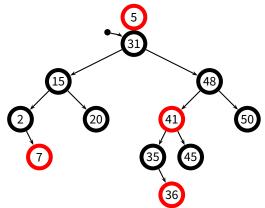


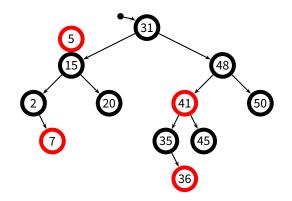


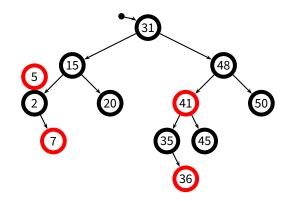


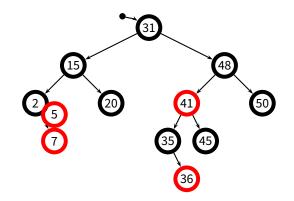
An *in-line* **red**-**red** conflicts can be resolved with a rotation plus a color switch

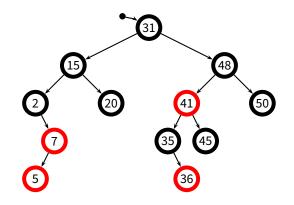


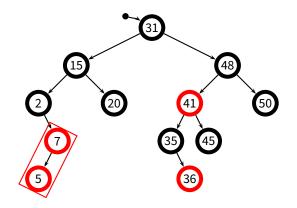


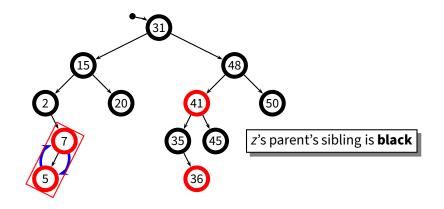


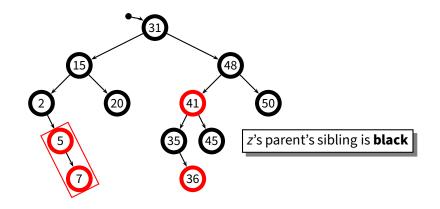


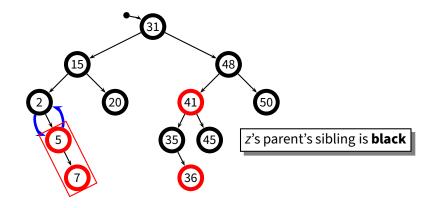


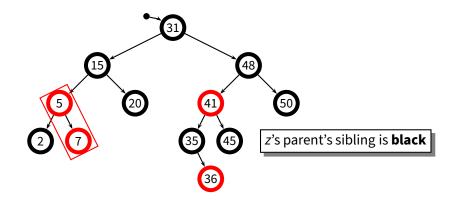


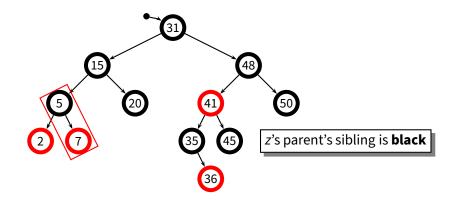


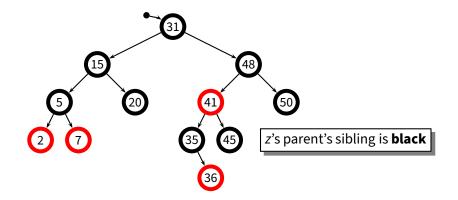












■ A *zig-zag* **red**-**red** conflicts can be resolved with a rotation to turn it into an *in-line* conflict, and then a rotation plus a color switch