Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

May 8, 2012

Outline

Examples

Las Vegas and Monte Carlo algorithms

More examples

QUICKSORT(*A*, *begin*, *end*)

```
1 if begin < end
```

2

- q =**PARTITION**(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

- A[1...q-1] contain elements that are less than or equal to v
- A[q] = v is the "pivot" value ($v \in A$)
- A[q+1...n] contain elements that are greater than v

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

- A[1...q-1] contain elements that are less than or equal to v
- A[q] = v is the "pivot" value ($v \in A$)
- A[q+1...n] contain elements that are greater than v

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

• A[1...q-1] contain elements that are less than or equal to v

•
$$A[q] = v$$
 is the "pivot" value ($v \in A$)

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

• A[1...q-1] contain elements that are less than or equal to v

•
$$A[q] = v$$
 is the "pivot" value ($v \in A$)

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

• A[1...q-1] contain elements that are less than or equal to v

•
$$A[q] = v$$
 is the "pivot" value ($v \in A$)

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

• A[1...q-1] contain elements that are less than or equal to v

•
$$A[q] = v$$
 is the "pivot" value ($v \in A$)

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

• A[1...q-1] contain elements that are less than or equal to v

•
$$A[q] = v$$
 is the "pivot" value ($v \in A$)

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

• A[1...q-1] contain elements that are less than or equal to v

•
$$A[q] = v$$
 is the "pivot" value ($v \in A$)

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

• A[1...q-1] contain elements that are less than or equal to v

•
$$A[q] = v$$
 is the "pivot" value ($v \in A$)

QUICKSORT(A, begin, end) 1 if begin < end 2 q = PARTITION(A, begin, end) 3 QUICKSORT(A, begin, q - 1) 4 QUICKSORT(A, q + 1, end)

Idea: *partition* the sequence *A*[1...*n*] in three parts

• A[1...q-1] contain elements that are less than or equal to v

•
$$A[q] = v$$
 is the "pivot" value ($v \in A$)

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that...

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that...

Conquer: sort $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that...

• Conquer: sort $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$

Combine: nothing to do here

▶ it is all in the *partition* algorithm

Divide: partition A in $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that...

Conquer: sort $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$

Combine: nothing to do here

• it is all in the *partition* algorithm

```
PARTITION (A, begin, end)

1 q = begin

2 v = A[end] // we deterministically choose v

3 for i = begin to end

4 if A[i] \le v

5 swap(A[i], A[q])

6 q = q + 1

7 return q - 1
```

QUICKSORT(*A*, *begin*, *end*)

```
1 if begin < end
```

2

- q =**PARTITION**(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

QUICKSORT(*A*, *begin*, *end*)

1 **if** begin < end

- q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q 1)
- 4 **QUICKSORT**(A, q + 1, end)

Worst case:
$$q = 1$$
 or $q = n$

2

QUICKSORT(*A*, begin, end) if begin < end 1 2 q = PARTITION(A, begin, end)3

- **QUICKSORT**(A, begin, q 1)4
 - **QUICKSORT**(A, q + 1, end)

Worst case: q = 1 or q = n

► the partition transforms P of size n in P of size n - 1, so $T(n) = T(n-1) + \Theta(n)$

QUICKSORT(A, begin, end)1if begin < end</td>2q = PARTITION(A, begin, end)3QUICKSORT(A, begin, q - 1)4QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n

• the partition transforms *P* of size *n* in *P* of size n - 1, so $T(n) = T(n - 1) + \Theta(n)$

$$T(n) = \Theta(n^2)$$

QUICKSORT(*A*, begin, end) if begin < end 1 2

$$q = Partition(A, begin, end)$$

3 **QUICKSORT**
$$(A, begin, q - 1)$$

QUICKSORT
$$(A, q + 1, end)$$

Worst case:
$$q = 1$$
 or $q = n$

4

▶ the partition transforms P of size n in P of size n − 1, so $T(n) = T(n-1) + \Theta(n)$

$$T(n) = \Theta(n^2)$$

Best case: $q = \lceil n/2 \rceil$

QUICKSORT(A, begin, end)

if begin < end 1

- q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q - 1)4
 - **QUICKSORT**(A, q + 1, end)

Worst case: q = 1 or q = n

2

► the partition transforms P of size n in P of size n - 1, so $T(n) = T(n-1) + \Theta(n)$

$$T(n) = \Theta(n^2)$$

Best case: $q = \lceil n/2 \rceil$

• the partition transforms P of size n into two problems P of size |n/2|and $\lceil n/2 \rceil - 1$, respectively; so $T(n) = 2T(n/2) + \Theta(n)$

QUICKSORT(A, begin, end)

if begin < end 1

- q = PARTITION(A, begin, end)
- 3 **QUICKSORT**(A, begin, q - 1)4
 - **QUICKSORT**(A, q + 1, end)

Worst case: q = 1 or q = n

2

► the partition transforms P of size n in P of size n - 1, so $T(n) = T(n-1) + \Theta(n)$

$$T(n) = \Theta(n^2)$$

Best case: $q = \lceil n/2 \rceil$

• the partition transforms P of size n into two problems P of size |n/2|and $\lceil n/2 \rceil - 1$, respectively; so $T(n) = 2T(n/2) + \Theta(n)$

$$T(n) = \Theta(n \log n)$$

- Best case: $q = \lceil n/2 \rceil$
 - ► the partition transforms *P* of size *n* into *two* problems *P* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil - 1$, respectively; so $T(n) = 2T(n/2) + \Theta(n)$

$$T(n) = \Theta(n \log n)$$

A Randomized Solution

A Randomized Solution

Simple

RANDOMIZED-PARTITION(*A*, *begin*, *end*)

- 1 i = RANDOM(begin, end)
- 2 swap(A[i], A[end])
- 3 return PARTITION(A, begin, end)

A Randomized Solution

Simple

RANDOMIZED-PARTITION(*A*, *begin*, *end*)

- 1 i = RANDOM(begin, end)
- 2 swap(A[i], A[end])
- 3 return PARTITION(A, begin, end)

Other Examples

Other Examples

TREE-RANDOMIZED-INSERT(t, z)

```
1 if t = NIL
```

```
2 return z
```

```
3 r = uniformly random value from \{1, \ldots, size(t) + 1\}
```

```
4 if r = 1 // \Pr[r = 1] = 1/(size(t) + 1)
```

```
5 size(z) = size(t) + 1
```

```
6 return TREE-ROOT-INSERT(t, z)
```

```
7 if key(z) < key(t)
```

```
8 left(t) = TREE-RANDOMIZED-INSERT(left(t), z)
```

```
9 else right(t) = TREE-RANDOMIZED-INSERT(right(t), z)
```

```
10 size(t) = size(t) + 1
```

```
11 return t
```

■ We develop *randomized variants* of algorithms

- We develop *randomized variants* of algorithms
- The idea is to make the algorithm run with their good complexity with high probability on every input

- We develop *randomized variants* of algorithms
- The idea is to make the algorithm run with their good complexity with high probability on every input
- The algorithm does not change that much, though

- We develop *randomized variants* of algorithms
- The idea is to make the algorithm run with their good complexity with high probability on every input
- The algorithm does not change that much, though

However, we can do a lot more with randomized algorithms...

Problem: *find a zero bit*

- Input: an array A, of n bits, containing more or less the same number of 1s and 0s (hamming weight is roughly n/2)
- Output: i such that A[i] = 0, or NIL if none exists

Problem: find a zero bit

- Input: an array A, of n bits, containing more or less the same number of 1s and 0s (hamming weight is roughly n/2)
- Output: i such that A[i] = 0, or NIL if none exists

Obvious solution

FIND-A-ZERO-BIT(A)
1 for i = 1 to |A|
2 if A[i] == 0
3 return i
4 return NIL

Problem: find a zero bit

- Input: an array A, of n bits, containing more or less the same number of 1s and 0s (hamming weight is roughly n/2)
- Output: i such that A[i] = 0, or NIL if none exists

Obvious solution

```
FIND-A-ZERO-BIT(A)
1 for i = 1 to |A|
2 if A[i] == 0
3 return i
4 return NIL
```

Problems?

what if A is sorted in reverse order? (all 1-bits before the 0-bits)

Problem: find a zero bit

- Input: an array A, of n bits, containing more or less the same number of 1s and 0s (hamming weight is roughly n/2)
- Output: i such that A[i] = 0, or NIL if none exists

Obvious solution

```
FIND-A-ZERO-BIT(A)

1 for i = 1 to |A|

2 if A[i] == 0

3 return i

4 return NIL
```

Problems?

- what if A is sorted in reverse order? (all 1-bits before the 0-bits)
- any *deterministic* search strategy is vulnerable

Take one

```
\label{eq:resonance} \textbf{Randomized-Find-A-Zero-Bit1}(A)
```

- 1 repeat
- 2 i = Random(1, |A|)
- 3 **until** *A*[*i*] == 0
- 4 return i

Take one

Randomized-Find-A-Zero-Bit1(A)

- 1 repeat
- 2 i = Random(1, |A|)
- 3 **until** *A*[*i*] == 0
- 4 return i

expected iterations: 2

Take one

Randomized-Find-A-Zero-Bit1(A)

- 1 repeat
- 2 i = Random(1, |A|)
- 3 **until** *A*[*i*] == 0
- 4 return i

- expected iterations: 2
- worst-case:

Take one

Randomized-Find-A-Zero-Bit1(A)

- 1 repeat
- 2 i = Random(1, |A|)
- 3 **until** *A*[*i*] == 0
- 4 return i

- expected iterations: 2
- worst-case: unbounded!

Take one

RANDOMIZED-FIND-A-ZERO-BIT1(A)

- 1 repeat
- 2 i = Random(1, |A|)
- 3 **until** *A*[*i*] == 0
- 4 return i

- expected iterations: 2
- worst-case: unbounded!

Take two

```
RANDOMIZED-FIND-A-ZERO-BIT2(A)1for j = 1 to k2i = RANDOM(1, |A|)3if A[i] == 04return i5return NIL
```

Take one

RANDOMIZED-FIND-A-ZERO-BIT1(A)

- repeat 1
- 2 i = Random(1, |A|)
- 3 until A[i] == 0
- 4 return i

- expected iterations: 2
- worst-case: unbounded!

Take two

4

RANDOMIZED-FIND-A-ZERO-BIT2(A)for j = 1 to k 1

```
2
          i = \text{Random}(1, |A|)
3
```

```
if A[i] == 0
```

```
return i
```

5 return NIL worst-case iterations: k

Take one

RANDOMIZED-FIND-A-ZERO-BIT1(A)

- 1 repeat
- 2 i = Random(1, |A|)
- 3 **until** *A*[*i*] == 0
- 4 return i

expected iterations: 2

worst-case: unbounded!

Take two

$\textbf{Randomized-Find-A-Zero-Bit}_{2}(A)$

```
1 for j = 1 to k

2 i = \text{RANDOM}(1, |A|)

3 if A[i] == 0

4 return i
```

5 return NIL

- worst-case iterations: k
- worst-case: wrong result!

Take one

RANDOMIZED-FIND-A-ZERO-BIT1(A)

- 1 repeat
- 2 i = Random(1, |A|)
- 3 **until** *A*[*i*] == 0
- 4 return i

- expected iterations: 2
- worst-case: unbounded!
- Las Vegas

Take two

$\textbf{Randomized-Find-A-Zero-Bit}_{2}(A)$

```
1 for j = 1 to k

2 i = \text{RANDOM}(1, |A|)

3 if A[i] == 0

4 return i
```

5 return NIL

- worst-case iterations: k
- worst-case: wrong result!
- Monte Carlo

- Problem: *compute the surface of the unit disc*
 - ► you don't know the value of π —you may not even know that $S = \pi r^2$, but you know that a point

$$(x,y) \quad \text{is } \begin{cases} outside \text{ the unit disc if } & x^2 + y^2 > 1\\ inside \text{ the unit disc if } & x^2 + y^2 \le 1 \end{cases}$$

- Problem: *compute the surface of the unit disc*
 - ► you don't know the value of π —you may not even know that $S = \pi r^2$, but you know that a point

$$(x,y) \quad \text{is} \begin{cases} outside \text{ the unit disc if} & x^2 + y^2 > 1\\ inside \text{ the unit disc if} & x^2 + y^2 \le 1 \end{cases}$$

- Problem: compute the surface of the unit disc
 - you don't know the value of π —you may not even know that $S = \pi r^2$, but you know that a point

$$(x, y) \quad \text{is} \begin{cases} outside \text{ the unit disc if } & x^2 + y^2 > 1\\ inside \text{ the unit disc if } & x^2 + y^2 \le 1 \end{cases}$$

- Problem: compute the surface of the unit disc
 - ▶ you don't know the value of π —you may not even know that $S = \pi r^2$, but you know that a point

Monte Carlo π

Monte-Carlo-Pi(n)

1
$$i = 0$$

2 for $j = 1$ to n
3 $x = \text{RANDOM}(-1, 1)$
4 $y = \text{RANDOM}(-1, 1)$
5 if $x^2 + y^2 \le 1$
6 $i = i + 1$
7 return $4i/n$

Monte Carlo π

MONTE-CARLO-PI(*n*)

1
$$i = 0$$

2 for $j = 1$ to n
3 $x = \text{RANDOM}(-1, 1)$
4 $y = \text{RANDOM}(-1, 1)$
5 if $x^2 + y^2 \le 1$
6 $i = i + 1$
7 return $4i/n$

■ The precision grows with *n*

more specifically, the *expected* precision grows with n

Monte Carlo π

MONTE-CARLO-PI(n)

1
$$i = 0$$

2 for $j = 1$ to n
3 $x = \text{RANDOM}(-1, 1)$
4 $y = \text{RANDOM}(-1, 1)$
5 if $x^2 + y^2 \le 1$
6 $i = i + 1$
7 return $4i/n$

- The precision grows with *n*
 - more specifically, the expected precision grows with n
- It is also easy to think about a better (adaptive) stopping condition other than going through n loops