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Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that. . .

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]

Combine: nothing to do here

◮ it is all in the partition algorithm

PARTITION(A, begin, end)

1 q = begin

2 v = A[end] //we deterministically choose v
3 for i = begin to end

4 if A[i] ≤ v

5 swap(A[i], A[q])

6 q = q + 1
7 return q − 1
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QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n not so improbable!
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RANDOMIZED-PARTITION(A, begin, end)

1 i = RANDOM(begin, end)

2 swap(A[i], A[end])

3 return PARTITION(A, begin, end)

QUICKSORT(A, begin, end)

1 if begin < end

2 q = RANDOMIZED-PARTITION(A, begin, end)
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TREE-RANDOMIZED-INSERT(t, z)

1 if t = NIL

2 return z

3 r = uniformly random value from {1, . . . , size(t) + 1}
4 if r = 1 // Pr[r = 1] = 1/(size(t) + 1)
5 size(z) = size(t) + 1
6 return TREE-ROOT-INSERT(t, z)

7 if key(z) < key(t)

8 le�(t) = TREE-RANDOMIZED-INSERT(le�(t), z)

9 else right(t) = TREE-RANDOMIZED-INSERT(right(t), z)

10 size(t) = size(t) + 1
11 return t
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General Idea

We develop randomized variants of algorithms

The idea is to make the algorithm run with their good complexity
with high probability on every input

The algorithm does not change that much, though

input randomization
deterministic
algorithm

However, we can do a lot more with randomized algorithms. . .
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Problem: find a zero bit

◮ Input: an array A, of n bits, containingmore or less the same number of
1s and 0s (hamming weight is roughly n/2)

◮ Output: i such that A[i] = 0, or NIL if none exists

Obvious solution

FIND-A-ZERO-BIT(A)

1 for i = 1 to |A|

2 if A[i] == 0
3 return i

4 return NIL

Problems?

◮ what if A is sorted in reverse order? (all 1-bits before the 0-bits)

◮ any deterministic search strategy is vulnerable
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A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

◮ expected iterations: 2

◮ worst-case: unbounded!

◮ Las Vegas

Take two

RANDOMIZED-FIND-A-ZERO-BIT2 (A)

1 for j = 1 to k
2 i = RANDOM(1, |A|)
3 if A[i] == 0
4 return i

5 return NIL

◮ worst-case iterations: k

◮ worst-case: wrong result!

◮ Monte Carlo
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S = 4 × 78/100 = 3.12
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Monte Carlo π

MONTE-CARLO-PI(n)

1 i = 0
2 for j = 1 to n
3 x = RANDOM(−1, 1)
4 y = RANDOM(−1, 1)
5 if x2 + y2 ≤ 1
6 i = i + 1
7 return 4i/n

The precision grows with n
◮ more specifically, the expected precision grows with n

It is also easy to think about a better (adaptive) stopping condition
other than going through n loops


