
Randomized Algorithms

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

May 8, 2012

Outline

Examples

Las Vegas and Monte Carlo algorithms

More examples

Remember Quick-Sort?

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8 v = 8

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8 v = 8

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8 v = 8

2 4 1 5 5

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8 v = 8

2 4 1 5 5 8

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8 v = 8

2 4 1 5 5 8 11 20 13 36 21

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8 v = 8

2 4 1 5 5 8 11 20 13 36 21

q = 6

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8 v = 8

2 4 1 5 5 8 11 20 13 36 21

q = 6

A[1 . . . q − 1]

Remember Quick-Sort?

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Idea: partition the sequence A[1 . . . n] in three parts

◮ A[1 . . . q − 1] contain elements that are less than or equal to v

◮ A[q] = v is the “pivot” value (v ∈ A)

◮ A[q + 1 . . . n] contain elements that are greater than v

2 36 5 21 1 13 11 20 5 4 8 v = 8

2 4 1 5 5 8 11 20 13 36 21

q = 6

A[1 . . . q − 1] A[q + 1 . . . n]

A Classic Divide-and-Conquer

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that. . .

A Classic Divide-and-Conquer

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that. . .

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]

A Classic Divide-and-Conquer

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that. . .

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]

Combine: nothing to do here

◮ it is all in the partition algorithm

A Classic Divide-and-Conquer

Divide: partition A in A[1 . . . q − 1] and A[q + 1 . . . n] such that. . .

Conquer: sort A[1 . . . q − 1] and A[q + 1 . . . n]

Combine: nothing to do here

◮ it is all in the partition algorithm

PARTITION(A, begin, end)

1 q = begin

2 v = A[end] //we deterministically choose v
3 for i = begin to end

4 if A[i] ≤ v

5 swap(A[i], A[q])

6 q = q + 1
7 return q − 1

Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n

Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n

◮ the partition transforms P of size n in P of size n − 1, so
T (n) = T (n − 1) + Θ(n)

Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n

◮ the partition transforms P of size n in P of size n − 1, so
T (n) = T (n − 1) + Θ(n)

T (n) = Θ(n2)

Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n

◮ the partition transforms P of size n in P of size n − 1, so
T (n) = T (n − 1) + Θ(n)

T (n) = Θ(n2)

Best case: q = ⌈n/2⌉

Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n

◮ the partition transforms P of size n in P of size n − 1, so
T (n) = T (n − 1) + Θ(n)

T (n) = Θ(n2)

Best case: q = ⌈n/2⌉

◮ the partition transforms P of size n into two problems P of size ⌊n/2⌋
and ⌈n/2⌉ − 1, respectively; so T (n) = 2T (n/2) + Θ(n)

Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n

◮ the partition transforms P of size n in P of size n − 1, so
T (n) = T (n − 1) + Θ(n)

T (n) = Θ(n2)

Best case: q = ⌈n/2⌉

◮ the partition transforms P of size n into two problems P of size ⌊n/2⌋
and ⌈n/2⌉ − 1, respectively; so T (n) = 2T (n/2) + Θ(n)

T (n) = Θ(n log n)

Complexity of QUICKSORT

QUICKSORT(A, begin, end)

1 if begin < end

2 q = PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Worst case: q = 1 or q = n not so improbable!

◮ the partition transforms P of size n in P of size n − 1, so
T (n) = T (n − 1) + Θ(n)

T (n) = Θ(n2)

Best case: q = ⌈n/2⌉

◮ the partition transforms P of size n into two problems P of size ⌊n/2⌋
and ⌈n/2⌉ − 1, respectively; so T (n) = 2T (n/2) + Θ(n)

T (n) = Θ(n log n)

A Randomized Solution

A Randomized Solution

Simple

RANDOMIZED-PARTITION(A, begin, end)

1 i = RANDOM(begin, end)

2 swap(A[i], A[end])

3 return PARTITION(A, begin, end)

A Randomized Solution

Simple

RANDOMIZED-PARTITION(A, begin, end)

1 i = RANDOM(begin, end)

2 swap(A[i], A[end])

3 return PARTITION(A, begin, end)

QUICKSORT(A, begin, end)

1 if begin < end

2 q = RANDOMIZED-PARTITION(A, begin, end)

3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q + 1, end)

Other Examples

Other Examples

TREE-RANDOMIZED-INSERT(t, z)

1 if t = NIL

2 return z

3 r = uniformly random value from {1, . . . , size(t) + 1}
4 if r = 1 // Pr[r = 1] = 1/(size(t) + 1)
5 size(z) = size(t) + 1
6 return TREE-ROOT-INSERT(t, z)

7 if key(z) < key(t)

8 le�(t) = TREE-RANDOMIZED-INSERT(le�(t), z)

9 else right(t) = TREE-RANDOMIZED-INSERT(right(t), z)

10 size(t) = size(t) + 1
11 return t

General Idea

General Idea

We develop randomized variants of algorithms

General Idea

We develop randomized variants of algorithms

The idea is to make the algorithm run with their good complexity
with high probability on every input

General Idea

We develop randomized variants of algorithms

The idea is to make the algorithm run with their good complexity
with high probability on every input

The algorithm does not change that much, though

input randomization
deterministic
algorithm

General Idea

We develop randomized variants of algorithms

The idea is to make the algorithm run with their good complexity
with high probability on every input

The algorithm does not change that much, though

input randomization
deterministic
algorithm

However, we can do a lot more with randomized algorithms. . .

Simple Example

Problem: find a zero bit

◮ Input: an array A, of n bits, containingmore or less the same number of
1s and 0s (hamming weight is roughly n/2)

◮ Output: i such that A[i] = 0, or NIL if none exists

Simple Example

Problem: find a zero bit

◮ Input: an array A, of n bits, containingmore or less the same number of
1s and 0s (hamming weight is roughly n/2)

◮ Output: i such that A[i] = 0, or NIL if none exists

Obvious solution

FIND-A-ZERO-BIT(A)

1 for i = 1 to |A|

2 if A[i] == 0
3 return i

4 return NIL

Simple Example

Problem: find a zero bit

◮ Input: an array A, of n bits, containingmore or less the same number of
1s and 0s (hamming weight is roughly n/2)

◮ Output: i such that A[i] = 0, or NIL if none exists

Obvious solution

FIND-A-ZERO-BIT(A)

1 for i = 1 to |A|

2 if A[i] == 0
3 return i

4 return NIL

Problems?

◮ what if A is sorted in reverse order? (all 1-bits before the 0-bits)

Simple Example

Problem: find a zero bit

◮ Input: an array A, of n bits, containingmore or less the same number of
1s and 0s (hamming weight is roughly n/2)

◮ Output: i such that A[i] = 0, or NIL if none exists

Obvious solution

FIND-A-ZERO-BIT(A)

1 for i = 1 to |A|

2 if A[i] == 0
3 return i

4 return NIL

Problems?

◮ what if A is sorted in reverse order? (all 1-bits before the 0-bits)

◮ any deterministic search strategy is vulnerable

A Randomized Algorithm

A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

◮ expected iterations: 2

A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

◮ expected iterations: 2

◮ worst-case:

A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

◮ expected iterations: 2

◮ worst-case: unbounded!

A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

◮ expected iterations: 2

◮ worst-case: unbounded!

Take two

RANDOMIZED-FIND-A-ZERO-BIT2 (A)

1 for j = 1 to k
2 i = RANDOM(1, |A|)
3 if A[i] == 0
4 return i

5 return NIL

A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

◮ expected iterations: 2

◮ worst-case: unbounded!

Take two

RANDOMIZED-FIND-A-ZERO-BIT2 (A)

1 for j = 1 to k
2 i = RANDOM(1, |A|)
3 if A[i] == 0
4 return i

5 return NIL

◮ worst-case iterations: k

A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

◮ expected iterations: 2

◮ worst-case: unbounded!

Take two

RANDOMIZED-FIND-A-ZERO-BIT2 (A)

1 for j = 1 to k
2 i = RANDOM(1, |A|)
3 if A[i] == 0
4 return i

5 return NIL

◮ worst-case iterations: k

◮ worst-case: wrong result!

A Randomized Algorithm

Take one

RANDOMIZED-FIND-A-ZERO-BIT1 (A)

1 repeat

2 i = RANDOM(1, |A|)
3 until A[i] == 0
4 return i

◮ expected iterations: 2

◮ worst-case: unbounded!

◮ Las Vegas

Take two

RANDOMIZED-FIND-A-ZERO-BIT2 (A)

1 for j = 1 to k
2 i = RANDOM(1, |A|)
3 if A[i] == 0
4 return i

5 return NIL

◮ worst-case iterations: k

◮ worst-case: wrong result!

◮ Monte Carlo

Simple Monte Carlo Algorithm

Simple Monte Carlo Algorithm

Problem: compute the surface of the unit disc
◮ you don’t know the value of π—youmay not even know that S = πr2,
but you know that a point

(x, y) is

{

outside the unit disc if x2 + y2 > 1

inside the unit disc if x2 + y2 ≤ 1

1

−1

−1 1

Simple Monte Carlo Algorithm

Problem: compute the surface of the unit disc
◮ you don’t know the value of π—youmay not even know that S = πr2,
but you know that a point

(x, y) is

{

outside the unit disc if x2 + y2 > 1

inside the unit disc if x2 + y2 ≤ 1

1

−1

−1 1

b
b

b

b

b
b b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bb
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b
b

b

b

b b

b

bb

b
b

b

bb b

b

b
b

b

b

b b

b

b

Simple Monte Carlo Algorithm

Problem: compute the surface of the unit disc
◮ you don’t know the value of π—youmay not even know that S = πr2,
but you know that a point

(x, y) is

{

outside the unit disc if x2 + y2 > 1

inside the unit disc if x2 + y2 ≤ 1

1

−1

−1 1

b
b

b

b

b
b b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bb
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b
b

b

b

b b

b

bb

b
b

b

bb b

b

b
b

b

b

b b

b

b

78 out of 100 points are inside

Simple Monte Carlo Algorithm

Problem: compute the surface of the unit disc
◮ you don’t know the value of π—youmay not even know that S = πr2,
but you know that a point

(x, y) is

{

outside the unit disc if x2 + y2 > 1

inside the unit disc if x2 + y2 ≤ 1

1

−1

−1 1

b
b

b

b

b
b b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bb
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b
b

b

b

b b

b

bb

b
b

b

bb b

b

b
b

b

b

b b

b

b

78 out of 100 points are inside

S = 4 × 78/100 = 3.12

Monte Carlo π

MONTE-CARLO-PI(n)

1 i = 0
2 for j = 1 to n
3 x = RANDOM(−1, 1)
4 y = RANDOM(−1, 1)
5 if x2 + y2 ≤ 1
6 i = i + 1
7 return 4i/n

Monte Carlo π

MONTE-CARLO-PI(n)

1 i = 0
2 for j = 1 to n
3 x = RANDOM(−1, 1)
4 y = RANDOM(−1, 1)
5 if x2 + y2 ≤ 1
6 i = i + 1
7 return 4i/n

The precision grows with n
◮ more specifically, the expected precision grows with n

Monte Carlo π

MONTE-CARLO-PI(n)

1 i = 0
2 for j = 1 to n
3 x = RANDOM(−1, 1)
4 y = RANDOM(−1, 1)
5 if x2 + y2 ≤ 1
6 i = i + 1
7 return 4i/n

The precision grows with n
◮ more specifically, the expected precision grows with n

It is also easy to think about a better (adaptive) stopping condition
other than going through n loops

