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Primality Test

B Problem: given an ¢-bit integer n, find whether n is prime

m Naive solution

NAIVE-PRIMALITY(N)

1 fori=2to [vn]

2 ifn=0 modi /i.e.idividesn
3 return FALSE

4 return TRUE

This algorithm is intractable because it has a running time
T(6) = ©(vVn) = ©(2?)

> exactly vn stepsifnis prime
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m Main idea: we use Fermat'’s little theorem as a “yes/no” test

>

>

>

more accurately, we have a “maybe/no” test
“no”—n is composite
“maybe”—50/50 chance that nis prime

we repeat the test k times, and if all the k tests say “maybe,” then we
conclude that nis prime

there is a chance that we are wrong, but that chance vanishes
exponentially with k

m Ingredients

>

simple modular arithmetic
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Modular Arithmetic

Last night | started working on my lecture at 20:00, and it took me 7
hours to finish it

Question: at what time did | finish my lecture?

finish-time =3 =20+7 (mod 24)

Question: what if it took me 37 hours?

9=20+37 (mod 24)

Definition: “x is equivalent toy, modulo N”

x=y (modN) <& Ndivides (x—y)or(y—x)
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Modular Arithmetic (2)

m Simple exercises

> 30 = 45+45 (mod 60)

> 21 =201 (mod 60)

> 1=4717382910421 (mod 10)
> 4 =4717382910421 (mod 9)
> 1 =4717382910421 (mod 3)

> 7 =2976146201360 + 10436201964293 (mod 3)
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Equivalence Classes

m An equivalence relation

x=y (mod m)

m In the modulo-m world, all integers are in m equivalence classes

> eg.,

m Values in the same equivalence classes are interchangeable in
arithmetic operations

> x=x'" (modmAy=y (modm)=x+y=x"+y (mod m)

> x=x’" (modm)Ay=y (mod m)= xy=x"y’ (mod m)
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Equivalence Classes (2)

Bx=r, (modm) = x+y=ry+y (mod m)
Proof:
> X = qym + ry, from the hypothesis
> lety=qgm+r,

> X+y=qm+rx+qm+r,=(qe+qy)m+rx+r, =ry+r, (mod m)

Bx=r, (modmMAOZSr,<m = xy=ry (modm)
Proof:
> X = qxm + Iy, from the hypothesis
> lety =qgm+r,

> xy = (qxm + 1) (Gym +1y) = (GuGy)m? + (Guly + GyL) M + Il = 1y
(mod m)
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Equivalence Classes (3)

m Simple exercises
> 2=7x6=483921097 x 891720476436 (mod 10)
> 3=2+1=483921097 + 891720476436 (mod 5)
> 3=7x3=483921097 x 891720476436 (mod 9)

> 0 = 86544127367 X 0 = 86544127367 X 61922483628096 (mod 3)
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Multiplicative Inverse (Modulo N)

m The multiplicative inverse (mod N) of a is an integer x such that

ax=1 (modN)
m Examples
» 1x1=1 (mod 10)
» 7x3 =1 (mod 10)
» 3x7=1 (mod 10)
» 9x9=1 (mod 10)

> 4x?=1 (mod 10)

4 does not have an inverse (modulo 10)
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Multiplicative Inverse (Modulo N) (2)

m Foralla, a has a multiplicative inverse (modulo N) if and only if
ged(a,N) =1

Proof:

> let a~! denote a’s inverse (modulo N), then there is an integer g such

that
aal=gN+1

» dividing both sides by gcd(a, N), we get

ag! gN 1

gcd(a,N)  ged(a,N)  ged(a, N)

» since gcd(a, N) divides both a and N, then the first two fractions are
integers, so the last fraction, 1/gcd(a, N), must also be an integer,
which requires that gcd(a,N) = 1
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Summary on Modulo Arithmetic

m In additions and multiplications (modulo N) we can always replace x
withrifx =r (mod N)

> for simplicity, we always use the (unique) r < N as the representative
of its equivalence class

m Each a relatively prime to N has a multiplicative inverse (modulo N)
that we denote asa™?!

aa '=1 (mod N) if gcd(a,N) =1
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Fermat’s Little Theorem

m IfPisprime,thenforalll <a<P-1

a®1=1 (modP)

Proof:
» letS=1{1,2,...,P-1}and0O<a <P

> multiplying the elements of Sby a (mod P) yields a permutation of S;
i.e., foreach y € Sthereis exactly one element x € Ssuchthatax =y
(mod P)

Proof:

> by contradiction, suppose 3x’ # x suchthatax =y (mod P)andax’ =y
(mod P)

> since Pis prime, then gcd(a, N) = 1, therefore a has a multiplicative
inverse a~1 (modulo P)

> so, multiplyingax = y (mod P) andax’ =y (mod P) by a1, we have
x=y (mod P)andx’ =y (mod P), which meansthatx = x’ (mod P),
which is a contradiction
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Fermat’s Little Theorem (2)

m If Pisprime,thenforalll <a<P-1

a”t=1 (modP)
Proof: (continued)
» letS=1{1,2,...,P-1}and0O<a <P

> multiplying the elements of Sby a (mod P) yields a permutation of S;
i.e., foreach y € Sthereis exactly one elementx € Ssuchthatax =y
(mod P)

{1,2,...,P-1} ={a,2q,...,(P-1)a} (mod P)
> multiplying together all the elements on each side, we get
(P-1!l=ad"1(P-1)! (mod P)

> (P -1)!also hasamultiplicative inverse, so

1=ad"1 (mod P)
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Using Fermat’s Little Theorem

m IfPisprime,thenforalll <a<P-1

a®1=1 (modP)

m This suggests a test: given N
> "1 %1 (mod N), then we must conclude that N is composite

» ¢"1 =1 (mod N), we can not say much

m However, another lemma gives us a way to measure the probability
that a composite N passes the test
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How Many False Positives?

m Ifa"1 21 (mod N) forsomea < N relatively prime to N, then
aV=1t £ 1 (mod N) holds for at least half the choices of a

B le., if thereis one a that “exposes” N as a composite, by failing the
test of Fermat’s little theorem, then at least half of the choices of a
expose N as a composite

Proof:
> fixasuchthata"=! £ 1 (mod N) (hypothesis)

> foreach b < Nthat passes the test b"~! =1 (mod N), there is a “twin”
value ¢ = ab, that fails the test. In fact,

AN =(ab)V =" "L £ 1 (mod N)

> twodistinctb < Nand b’ < N, with b # b’, that pass the test have
distinct “twins” ab and ab’



How Many False Positives?

m Ifa"1 21 (mod N) forsomea < N relatively prime to N, then
aV=1t £ 1 (mod N) holds for at least half the choices of a

B le., if thereis one a that “exposes” N as a composite, by failing the
test of Fermat’s little theorem, then at least half of the choices of a
expose N as a composite

Proof:

> fixasuchthata"=! £ 1 (mod N) (hypothesis)

> foreach b < Nthat passes the test b"~! =1 (mod N), there is a “twin”
value ¢ = ab, that fails the test. In fact,

AN =(ab)V =" "L £ 1 (mod N)

> twodistinctb < Nand b’ < N, with b # b’, that pass the test have
distinct “twins” ab and ab’; proof: by contradiction, assume ab = ab’,
then multiply by a=! (mod N), you immediately get a contradiction
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A Probabilistic Test

m Ifa""1 21 (mod N) forsomea < N relatively prime to N, then at
least halfthe choices of a are such that "~ £ 1 (mod N).

m Probabilistic test
» choose a < N and relatively prime to N (easy)
> ifa""! £ 1 (mod N), then we conclude that N is composite

» ifa""! =1 (mod N), Nis prime with probability 1/2

m Repeat the test k times, with different choices of a, and if N passes all
k tests, then we can say that N is prime with probability 1 — 2%
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Modular Exponentiation

m How do we compute a" (mod M)?
> remember that N may be a huge number here

m /dea: think of the binary representation of N. E.g.,

N =1189 =20 +27 + 25+ 2% + 1 = 100101001014,

10 7 5 2
sod"=a? 0% -a? -a* -dt

Exp-Mob(a, N, M)/ computes a" mod M
1 x=1

2 whileN >0

3 ifN=1 mod?2

4 X =xa mod M

5 a=a*> mod M

6 N = [N/2]

7 returnx




One Last Problem



One Last Problem

m Ifa""1 21 (mod N) forsomea < N relatively prime to N, then at
least halfthe choices of a are such that "~ £ 1 (mod N).



One Last Problem

m Ifa""1 21 (mod N) forsomea < N relatively prime to N, then at
least halfthe choices of a are such that "~ £ 1 (mod N).

> i.e., ifthere is at least one “witness” then...



One Last Problem
m Ifa""1 21 (mod N) forsomea < N relatively prime to N, then at
least halfthe choices of a are such that "~ £ 1 (mod N).

> i.e., ifthere is at least one “witness” then...

m There may be composites N such that no a would fail the test



One Last Problem

m Ifa""1 21 (mod N) forsomea < N relatively prime to N, then at
least halfthe choices of a are such that "~ £ 1 (mod N).

> i.e., ifthere is at least one “witness” then...

m There may be composites N such that no a would fail the test

m Indeed, there are such numbers (e.g., N = 561)
> called Carmichael numbers
> infinitely many, but extremely rare
> their prevalence within the first N integers vanishes with N — oo

> there is a more refined test that detects Carmichael (composite)
numbers



