Primality Testing

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

December 12, 2008

Outline

■ Basic modular arithmetic

■ Fermat's little theorem

■ Probabilistic primality testing

■ Problem: given an ℓ-bit integer n, find whether n is prime

■ Problem: given an ℓ-bit integer n, find whether n is prime

■ Naïve solution

```
NAÏVE-PRIMALITY(n)
1 for i = 2 to \lfloor\sqrt{}{n}\rfloor
2 if n=0 mod i // i.e., idivides n
3 return FALSE
4 return TRUE
```

■ Problem: given an ℓ-bit integer n, find whether n is prime

■ Naïve solution

```
NAÏVE-PRIMALITY(n)
1 for i = 2 to \lfloor\sqrt{}{n}\rfloor
2 if n=0 mod i // i.e., }i\mathrm{ divides }
3 return FALSE
4 return TRUE
```

This algorithm is intractable because it has a running time

$$
T(\ell)=\Theta(\sqrt{n})=\Theta\left(2^{\ell / 2}\right)
$$

- exactly \sqrt{n} steps if n is prime

A Randomized Primality Test

■ Main idea: we use Fermat's little theorem as a "yes/no" test

- more accurately, we have a "maybe/no" test
- "no"-n is composite
- "maybe"-50/50 chance that n is prime

■ Main idea: we use Fermat's little theorem as a "yes/no" test

- more accurately, we have a "maybe/no" test
- "no"-n is composite
- "maybe"-50/50 chance that n is prime
- we repeat the test k times, and if all the k tests say "maybe," then we conclude that n is prime

A Randomized Primality Test

■ Main idea: we use Fermat's little theorem as a "yes/no" test

- more accurately, we have a "maybe/no" test
- "no"-n is composite
- "maybe"-50/50 chance that n is prime
- we repeat the test k times, and if all the k tests say "maybe," then we conclude that n is prime
- there is a chance that we are wrong, but that chance vanishes exponentially with k

A Randomized Primality Test

■ Main idea: we use Fermat's little theorem as a "yes/no" test

- more accurately, we have a "maybe/no" test
- "no"-n is composite
- "maybe"-50/50 chance that n is prime
- we repeat the test k times, and if all the k tests say "maybe," then we conclude that n is prime
- there is a chance that we are wrong, but that chance vanishes exponentially with k

■ Ingredients

- simple modular arithmetic

Modular Arithmetic

■ Last night I started working on my lecture at 20:00, and it took me 7 hours to finish it

Question: at what time did I finish my lecture?

Modular Arithmetic

■ Last night I started working on my lecture at 20:00, and it took me 7 hours to finish it

Question: at what time did I finish my lecture?
finish-time $=3$

Modular Arithmetic

■ Last night I started working on my lecture at 20:00, and it took me 7 hours to finish it

Question: at what time did I finish my lecture?

$$
\text { finish-time }=3 \equiv 20+7 \quad(\bmod 24)
$$

Modular Arithmetic

■ Last night I started working on my lecture at 20:00, and it took me 7 hours to finish it

Question: at what time did I finish my lecture?

$$
\text { finish-time }=3 \equiv 20+7 \quad(\bmod 24)
$$

Question: what if it took me 37 hours?

Modular Arithmetic

■ Last night I started working on my lecture at 20:00, and it took me 7 hours to finish it

Question: at what time did I finish my lecture?

$$
\text { finish-time }=3 \equiv 20+7 \quad(\bmod 24)
$$

Question: what if it took me 37 hours?

$$
9 \equiv 20+37 \quad(\bmod 24)
$$

■ Definition: " x is equivalent to y, modulo N "

$$
x \equiv y \quad(\bmod N) \quad \Leftrightarrow \quad N \text { divides }(x-y) \text { or }(y-x)
$$

- Simple exercises
- ? $\equiv 45+45(\bmod 60)$
- Simple exercises
- $30 \equiv 45+45(\bmod 60)$

■ Simple exercises

- $30 \equiv 45+45(\bmod 60)$
- ? $\equiv 201(\bmod 60)$

■ Simple exercises

- $30 \equiv 45+45(\bmod 60)$
- $21 \equiv 201(\bmod 60)$
- Simple exercises
- $30 \equiv 45+45(\bmod 60)$
- $21 \equiv 201(\bmod 60)$
- ? $\equiv 4717382910421(\bmod 10)$
- Simple exercises
- $30 \equiv 45+45(\bmod 60)$
- $21 \equiv 201(\bmod 60)$
- $1 \equiv 4717382910421(\bmod 10)$
- Simple exercises
- $30 \equiv 45+45(\bmod 60)$
- $21 \equiv 201(\bmod 60)$
- $1 \equiv 4717382910421(\bmod 10)$
- ? $\equiv 4717382910421(\bmod 9)$
- Simple exercises
- $30 \equiv 45+45(\bmod 60)$
- $21 \equiv 201(\bmod 60)$
- $1 \equiv 4717382910421(\bmod 10)$
- $4 \equiv 4717382910421(\bmod 9)$
- Simple exercises
- $30 \equiv 45+45(\bmod 60)$
- $21 \equiv 201(\bmod 60)$
- $1 \equiv 4717382910421(\bmod 10)$
- $4 \equiv 4717382910421(\bmod 9)$
- ? $\equiv 4717382910421(\bmod 3)$
- Simple exercises
- $30 \equiv 45+45(\bmod 60)$
- $21 \equiv 201(\bmod 60)$
- $1 \equiv 4717382910421(\bmod 10)$
- $4 \equiv 4717382910421(\bmod 9)$
- $1 \equiv 4717382910421(\bmod 3)$
- Simple exercises
- $30 \equiv 45+45(\bmod 60)$
- $21 \equiv 201(\bmod 60)$
- $1 \equiv 4717382910421(\bmod 10)$
- $4 \equiv 4717382910421(\bmod 9)$
- $1 \equiv 4717382910421(\bmod 3)$
- ? $\equiv 2976146201360+10436201964293(\bmod 3)$

Equivalence Classes

- An equivalence relation

$$
x \equiv y \quad(\bmod m)
$$

Equivalence Classes

- An equivalence relation

$$
x \equiv y \quad(\bmod m)
$$

■ In the modulo- m world, all integers are in m equivalence classes

- e.g.,

$$
2 \equiv 5 \equiv 8 \cdots \equiv-1 \equiv-4 \equiv \cdots \quad(\bmod 3)
$$

Equivalence Classes

- An equivalence relation

$$
x \equiv y \quad(\bmod m)
$$

■ In the modulo- m world, all integers are in m equivalence classes

- e.g.,

$$
2 \equiv 5 \equiv 8 \cdots \equiv-1 \equiv-4 \equiv \cdots \quad(\bmod 3)
$$

■ Values in the same equivalence classes are interchangeable in arithmetic operations

- $x \equiv x^{\prime}(\bmod m) \wedge y \equiv y^{\prime}(\bmod m) \Rightarrow x+y \equiv x^{\prime}+y^{\prime}(\bmod m)$
- $x \equiv x^{\prime}(\bmod m) \wedge y \equiv y^{\prime}(\bmod m) \Rightarrow x y \equiv x^{\prime} y^{\prime}(\bmod m)$

Equivalence Classes (2)

$■ x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$
$\square x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

Equivalence Classes (2)

$\square x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis

Equivalence Classes (2)

$\square x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$

Equivalence Classes (2)

$\square x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x+y=q_{x} m+r_{x}+q_{y} m+r_{y}=\left(q_{x}+q_{y}\right) m+r_{x}+r_{y}$

Equivalence Classes (2)

$\square x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
$-x+y=q_{x} m+r_{x}+q_{y} m+r_{y}=\left(q_{x}+q_{y}\right) m+r_{x}+r_{y} \equiv r_{x}+r_{y}(\bmod m)$
$■ x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x+y=q_{x} m+r_{x}+q_{y} m+r_{y}=\left(q_{x}+q_{y}\right) m+r_{x}+r_{y} \equiv r_{x}+r_{y}(\bmod m)$

■ $x \equiv r_{x}(\bmod m) \wedge 0 \leq r_{x}<m \quad \Rightarrow \quad x y \equiv r_{x} y(\bmod m)$
$■ x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x+y=q_{x} m+r_{x}+q_{y} m+r_{y}=\left(q_{x}+q_{y}\right) m+r_{x}+r_{y} \equiv r_{x}+r_{y}(\bmod m)$

■ $x \equiv r_{x}(\bmod m) \wedge 0 \leq r_{x}<m \quad \Rightarrow \quad x y \equiv r_{x} y(\bmod m)$

Proof:

$■ x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x+y=q_{x} m+r_{x}+q_{y} m+r_{y}=\left(q_{x}+q_{y}\right) m+r_{x}+r_{y} \equiv r_{x}+r_{y}(\bmod m)$

■ $x \equiv r_{x}(\bmod m) \wedge 0 \leq r_{x}<m \quad \Rightarrow \quad x y \equiv r_{x} y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
$■ x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x+y=q_{x} m+r_{x}+q_{y} m+r_{y}=\left(q_{x}+q_{y}\right) m+r_{x}+r_{y} \equiv r_{x}+r_{y}(\bmod m)$

■ $x \equiv r_{x}(\bmod m) \wedge 0 \leq r_{x}<m \quad \Rightarrow \quad x y \equiv r_{x} y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$

Equivalence Classes (2)

$\square x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x+y=q_{x} m+r_{x}+q_{y} m+r_{y}=\left(q_{x}+q_{y}\right) m+r_{x}+r_{y} \equiv r_{x}+r_{y}(\bmod m)$

■ $x \equiv r_{x}(\bmod m) \wedge 0 \leq r_{x}<m \quad \Rightarrow \quad x y \equiv r_{x} y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x y=\left(q_{x} m+r_{x}\right)\left(q_{y} m+r_{y}\right)=\left(q_{x} q_{y}\right) m^{2}+\left(q_{x} r_{y}+q_{y} r_{x}\right) m+r_{x} r_{y}$

Equivalence Classes (2)

$\square x \equiv r_{x}(\bmod m) \quad \Rightarrow \quad x+y \equiv r_{x}+y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x+y=q_{x} m+r_{x}+q_{y} m+r_{y}=\left(q_{x}+q_{y}\right) m+r_{x}+r_{y} \equiv r_{x}+r_{y}(\bmod m)$

■ $x \equiv r_{x}(\bmod m) \wedge 0 \leq r_{x}<m \quad \Rightarrow \quad x y \equiv r_{x} y(\bmod m)$

Proof:

- $x=q_{x} m+r_{x}$, from the hypothesis
- let $y=q_{y} m+r_{y}$
- $x y=\left(q_{x} m+r_{x}\right)\left(q_{y} m+r_{y}\right)=\left(q_{x} q_{y}\right) m^{2}+\left(q_{x} r_{y}+q_{y} r_{x}\right) m+r_{x} r_{y} \equiv r_{x} r_{y}$ $(\bmod m)$

Equivalence Classes (3)

- Simple exercises

Equivalence Classes (3)

- Simple exercises
- ? $\equiv 483921097 \times 891720476436(\bmod 10)$

Equivalence Classes (3)

- Simple exercises
- $2 \equiv 7 \times 6 \equiv 483921097 \times 891720476436(\bmod 10)$

Equivalence Classes (3)

- Simple exercises
- $2 \equiv 7 \times 6 \equiv 483921097 \times 891720476436(\bmod 10)$
- ? $\equiv 483921097+891720476436(\bmod 5)$

Equivalence Classes (3)

- Simple exercises
- $2 \equiv 7 \times 6 \equiv 483921097 \times 891720476436(\bmod 10)$
- $3 \equiv 2+1 \equiv 483921097+891720476436(\bmod 5)$

Equivalence Classes (3)

- Simple exercises
- $2 \equiv 7 \times 6 \equiv 483921097 \times 891720476436(\bmod 10)$
- $3 \equiv 2+1 \equiv 483921097+891720476436(\bmod 5)$
- ? $\equiv 483921097 \times 891720476436(\bmod 9)$

Equivalence Classes (3)

- Simple exercises
- $2 \equiv 7 \times 6 \equiv 483921097 \times 891720476436(\bmod 10)$
- $3 \equiv 2+1 \equiv 483921097+891720476436(\bmod 5)$
- $3 \equiv 7 \times 3 \equiv 483921097 \times 891720476436(\bmod 9)$

Equivalence Classes (3)

- Simple exercises
- $2 \equiv 7 \times 6 \equiv 483921097 \times 891720476436(\bmod 10)$
- $3 \equiv 2+1 \equiv 483921097+891720476436(\bmod 5)$
- $3 \equiv 7 \times 3 \equiv 483921097 \times 891720476436(\bmod 9)$
- ? $\equiv 86544127367 \times 61922483628096(\bmod 3)$

Equivalence Classes (3)

■ Simple exercises

- $2 \equiv 7 \times 6 \equiv 483921097 \times 891720476436(\bmod 10)$
- $3 \equiv 2+1 \equiv 483921097+891720476436(\bmod 5)$
- $3 \equiv 7 \times 3 \equiv 483921097 \times 891720476436(\bmod 9)$
- $0 \equiv 86544127367 \times 0 \equiv 86544127367 \times 61922483628096(\bmod 3)$

Equivalence Classes (3)

■ Simple exercises

- $2 \equiv 7 \times 6 \equiv 483921097 \times 891720476436(\bmod 10)$
- $3 \equiv 2+1 \equiv 483921097+891720476436(\bmod 5)$
- $3 \equiv 7 \times 3 \equiv 483921097 \times 891720476436(\bmod 9)$
- $0 \equiv 86544127367 \times 0 \equiv 86544127367 \times 61922483628096(\bmod 3)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

- Examples

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

- Examples
- $1 \times ? \equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$
- $7 \times$? $\equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$
- $7 \times 3 \equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$
- $7 \times 3 \equiv 1(\bmod 10)$
- $3 x$? $\equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$
- $7 \times 3 \equiv 1(\bmod 10)$
- $3 \times 7 \equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$
- $7 \times 3 \equiv 1(\bmod 10)$
- $3 \times 7 \equiv 1(\bmod 10)$
- $9 \times ? \equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$
- $7 \times 3 \equiv 1(\bmod 10)$
- $3 \times 7 \equiv 1(\bmod 10)$
- $9 \times 9 \equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$
- $7 \times 3 \equiv 1(\bmod 10)$
- $3 \times 7 \equiv 1(\bmod 10)$
- $9 \times 9 \equiv 1(\bmod 10)$
- $4 \times ? \equiv 1(\bmod 10)$

Multiplicative Inverse (Modulo N)

- The multiplicative inverse $(\bmod N)$ of a is an integer x such that

$$
a x \equiv 1 \quad(\bmod N)
$$

■ Examples

- $1 \times 1 \equiv 1(\bmod 10)$
- $7 \times 3 \equiv 1(\bmod 10)$
- $3 \times 7 \equiv 1(\bmod 10)$
- $9 \times 9 \equiv 1(\bmod 10)$
- $4 \times$? $\equiv 1(\bmod 10)$

4 does not have an inverse (modulo 10)

Multiplicative Inverse (Modulo N) (2)

■ For all a, a has a multiplicative inverse (modulo N) if and only if $\operatorname{gcd}(a, N)=1$

Proof:

- let a^{-1} denote a^{\prime} s inverse (modulo N), then there is an integer q such that

$$
a a^{-1}=q N+1
$$

Multiplicative Inverse (Modulo N) (2)

■ For all a, a has a multiplicative inverse (modulo N) if and only if $\operatorname{gcd}(a, N)=1$

Proof:

- let a^{-1} denote a^{\prime} s inverse (modulo N), then there is an integer q such that

$$
a a^{-1}=q N+1
$$

- dividing both sides by $\operatorname{gcd}(a, N)$, we get

$$
\frac{a a^{-1}}{\operatorname{gcd}(a, N)}=\frac{q N}{\operatorname{gcd}(a, N)}+\frac{1}{\operatorname{gcd}(a, N)}
$$

Multiplicative Inverse (Modulo N) (2)

■ For all a, a has a multiplicative inverse (modulo N) if and only if $\operatorname{gcd}(a, N)=1$

Proof:

- let a^{-1} denote a^{\prime} s inverse (modulo N), then there is an integer q such that

$$
a a^{-1}=q N+1
$$

- dividing both sides by $\operatorname{gcd}(a, N)$, we get

$$
\frac{a a^{-1}}{\operatorname{gcd}(a, N)}=\frac{q N}{\operatorname{gcd}(a, N)}+\frac{1}{\operatorname{gcd}(a, N)}
$$

- since $\operatorname{gcd}(a, N)$ divides both a and N, then the first two fractions are integers, so the last fraction, $1 / \operatorname{gcd}(a, N)$, must also be an integer, which requires that $\operatorname{gcd}(a, N)=1$

Summary on Modulo Arithmetic

- In additions and multiplications (modulo N) we can always replace x with r if $x \equiv r(\bmod N)$

Summary on Modulo Arithmetic

- In additions and multiplications (modulo N) we can always replace x with r if $x \equiv r(\bmod N)$
- for simplicity, we always use the (unique) $r<N$ as the representative of its equivalence class

Summary on Modulo Arithmetic

■ In additions and multiplications (modulo N) we can always replace x with r if $x \equiv r(\bmod N)$

- for simplicity, we always use the (unique) $r<N$ as the representative of its equivalence class

■ Each a relatively prime to N has a multiplicative inverse (modulo N) that we denote as a^{-1}

$$
a a^{-1} \equiv 1 \quad(\bmod N) \quad \text { if } \operatorname{gcd}(a, N)=1
$$

Fermat's Little Theorem

Fermat's Little Theorem

- If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Fermat's Little Theorem

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof:

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$

Fermat's Little Theorem

- If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof:

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S;

Fermat's Little Theorem

- If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof:

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S; i.e., for each $y \in S$ there is exactly one element $x \in S$ such that $a x \equiv y$ $(\bmod P)$

Fermat's Little Theorem

- If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof:

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S; i.e., for each $y \in S$ there is exactly one element $x \in S$ such that $a x \equiv y$ $(\bmod P)$

Proof:

- by contradiction, suppose $\exists x^{\prime} \neq x$ such that $a x \equiv y(\bmod P)$ and $a x^{\prime} \equiv y$ $(\bmod P)$

Fermat's Little Theorem

- If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof:

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S; i.e., for each $y \in S$ there is exactly one element $x \in S$ such that $a x \equiv y$ $(\bmod P)$

Proof:

- by contradiction, suppose $\exists x^{\prime} \neq x$ such that $a x \equiv y(\bmod P)$ and $a x^{\prime} \equiv y$ $(\bmod P)$
- since P is prime, then $\operatorname{gcd}(a, N)=1$, therefore a has a multiplicative inverse a^{-1} (modulo P)

Fermat's Little Theorem

- If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof:

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S; i.e., for each $y \in S$ there is exactly one element $x \in S$ such that $a x \equiv y$ $(\bmod P)$

Proof:

- by contradiction, suppose $\exists x^{\prime} \neq x$ such that $a x \equiv y(\bmod P)$ and $a x^{\prime} \equiv y$ $(\bmod P)$
- since P is prime, then $\operatorname{gcd}(a, N)=1$, therefore a has a multiplicative inverse a^{-1} (modulo P)
- so, multiplying $a x \equiv y(\bmod P)$ and $a x^{\prime} \equiv y(\bmod P)$ by a^{-1}, we have $x \equiv y(\bmod P)$ and $x^{\prime} \equiv y(\bmod P)$, which means that $x \equiv x^{\prime}(\bmod P)$, which is a contradiction

Fermat's Little Theorem (2)

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof: (continued)

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S; i.e., for each $y \in S$ there is exactly one element $x \in S$ such that $a x \equiv y$ $(\bmod P)$

Fermat's Little Theorem (2)

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof: (continued)

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S; i.e., for each $y \in S$ there is exactly one element $x \in S$ such that $a x \equiv y$ $(\bmod P)$

$$
\{1,2, \ldots, P-1\}=\{a, 2 a, \ldots,(P-1) a\} \quad(\bmod P)
$$

Fermat's Little Theorem (2)

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof: (continued)

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S; i.e., for each $y \in S$ there is exactly one element $x \in S$ such that $a x \equiv y$ $(\bmod P)$

$$
\{1,2, \ldots, P-1\}=\{a, 2 a, \ldots,(P-1) a\} \quad(\bmod P)
$$

- multiplying together all the elements on each side, we get

$$
(P-1)!\equiv a^{P-1}(P-1)!\quad(\bmod P)
$$

Fermat's Little Theorem (2)

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Proof: (continued)

- let $S=\{1,2, \ldots, P-1\}$ and $0<a<P$
- multiplying the elements of S by $a(\bmod P)$ yields a permutation of S; i.e., for each $y \in S$ there is exactly one element $x \in S$ such that $a x \equiv y$ $(\bmod P)$

$$
\{1,2, \ldots, P-1\}=\{a, 2 a, \ldots,(P-1) a\} \quad(\bmod P)
$$

- multiplying together all the elements on each side, we get

$$
(P-1)!\equiv a^{P-1}(P-1)!\quad(\bmod P)
$$

- $(P-1)$! also has a multiplicative inverse, so

$$
1 \equiv a^{P-1} \quad(\bmod P)
$$

Using Fermat's Little Theorem

- If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

Using Fermat's Little Theorem

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

■ This suggests a test: given N

- $a^{N-1} \not \equiv 1(\bmod N)$

Using Fermat's Little Theorem

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

■ This suggests a test: given N

- $a^{N-1} \not \equiv 1(\bmod N)$, then we must conclude that N is composite

Using Fermat's Little Theorem

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

■ This suggests a test: given N

- $a^{N-1} \not \equiv 1(\bmod N)$, then we must conclude that N is composite
- $a^{N-1} \equiv 1(\bmod N)$

Using Fermat's Little Theorem

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

■ This suggests a test: given N

- $a^{N-1} \not \equiv 1(\bmod N)$, then we must conclude that N is composite
- $a^{N-1} \equiv 1(\bmod N)$, we can not say much

Using Fermat's Little Theorem

■ If P is prime, then for all $1 \leq a \leq P-1$

$$
a^{P-1} \equiv 1 \quad(\bmod P)
$$

■ This suggests a test: given N

- $a^{N-1} \not \equiv 1(\bmod N)$, then we must conclude that N is composite
- $a^{N-1} \equiv 1(\bmod N)$, we can not say much

■ However, another lemma gives us a way to measure the probability that a composite N passes the test

How Many False Positives?

How Many False Positives?

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a^{N-1} \not \equiv 1(\bmod N)$ holds for at least half the choices of a

How Many False Positives?

- If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a^{N-1} \not \equiv 1(\bmod N)$ holds for at least half the choices of a

■ I.e., if there is one a that "exposes" N as a composite, by failing the test of Fermat's little theorem, then at least half of the choices of a expose N as a composite

How Many False Positives?

- If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a^{N-1} \not \equiv 1(\bmod N)$ holds for at least half the choices of a

■ I.e., if there is one a that "exposes" N as a composite, by failing the test of Fermat's little theorem, then at least half of the choices of a expose N as a composite

Proof:

How Many False Positives?

- If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a^{N-1} \not \equiv 1(\bmod N)$ holds for at least half the choices of a

■ I.e., if there is one a that "exposes" N as a composite, by failing the test of Fermat's little theorem, then at least half of the choices of a expose N as a composite

Proof:

- fix a such that $a^{N-1} \not \equiv 1(\bmod N)$ (hypothesis)
- for each $b<N$ that passes the test $b^{N-1} \equiv 1(\bmod N)$, there is a "twin" value $c=a b$, that fails the test

How Many False Positives?

- If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a^{N-1} \not \equiv 1(\bmod N)$ holds for at least half the choices of a

■ I.e., if there is one a that "exposes" N as a composite, by failing the test of Fermat's little theorem, then at least half of the choices of a expose N as a composite

Proof:

- fix a such that $a^{N-1} \not \equiv 1(\bmod N)$ (hypothesis)
- for each $b<N$ that passes the test $b^{N-1} \equiv 1(\bmod N)$, there is a "twin" value $c=a b$, that fails the test. In fact,

$$
c^{N-1}=(a b)^{N-1}=a^{N-1} b^{N-1} \not \equiv 1 \quad(\bmod N)
$$

How Many False Positives?

- If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a^{N-1} \not \equiv 1(\bmod N)$ holds for at least half the choices of a

■ I.e., if there is one a that "exposes" N as a composite, by failing the test of Fermat's little theorem, then at least half of the choices of a expose N as a composite

Proof:

- fix a such that $a^{N-1} \not \equiv 1(\bmod N)$ (hypothesis)
- for each $b<N$ that passes the test $b^{N-1} \equiv 1(\bmod N)$, there is a "twin" value $c=a b$, that fails the test. In fact,

$$
c^{N-1}=(a b)^{N-1}=a^{N-1} b^{N-1} \not \equiv 1 \quad(\bmod N)
$$

- two distinct $b<N$ and $b^{\prime}<N$, with $b \neq b^{\prime}$, that pass the test have distinct "twins" $a b$ and $a b^{\prime}$

How Many False Positives?

- If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a^{N-1} \not \equiv 1(\bmod N)$ holds for at least half the choices of a

■ I.e., if there is one a that "exposes" N as a composite, by failing the test of Fermat's little theorem, then at least half of the choices of a expose N as a composite

Proof:

- fix a such that $a^{N-1} \not \equiv 1(\bmod N)$ (hypothesis)
- for each $b<N$ that passes the test $b^{N-1} \equiv 1(\bmod N)$, there is a "twin" value $c=a b$, that fails the test. In fact,

$$
c^{N-1}=(a b)^{N-1}=a^{N-1} b^{N-1} \not \equiv 1 \quad(\bmod N)
$$

- two distinct $b<N$ and $b^{\prime}<N$, with $b \neq b^{\prime}$, that pass the test have distinct "twins" $a b$ and $a b^{\prime}$; proof: by contradiction, assume $a b \equiv a b^{\prime}$, then multiply by $a^{-1}(\bmod N)$, you immediately get a contradiction

A Probabilistic Test

A Probabilistic Test

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

A Probabilistic Test

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

■ Probabilistic test

A Probabilistic Test

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

■ Probabilistic test

- choose $a<N$ and relatively prime to N (easy)

A Probabilistic Test

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

■ Probabilistic test

- choose $a<N$ and relatively prime to N (easy)
- if $a^{N-1} \not \equiv 1(\bmod N)$

A Probabilistic Test

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

■ Probabilistic test

- choose $a<N$ and relatively prime to N (easy)
- if $a^{N-1} \not \equiv 1(\bmod N)$, then we conclude that N is composite

A Probabilistic Test

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

■ Probabilistic test

- choose $a<N$ and relatively prime to N (easy)
- if $a^{N-1} \not \equiv 1(\bmod N)$, then we conclude that N is composite
- if $a^{N-1} \equiv 1(\bmod N)$

A Probabilistic Test

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

■ Probabilistic test

- choose $a<N$ and relatively prime to N (easy)
- if $a^{N-1} \not \equiv 1(\bmod N)$, then we conclude that N is composite
- if $a^{N-1} \equiv 1(\bmod N), N$ is prime with probability $1 / 2$

A Probabilistic Test

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

■ Probabilistic test

- choose $a<N$ and relatively prime to N (easy)
- if $a^{N-1} \not \equiv 1(\bmod N)$, then we conclude that N is composite
- if $a^{N-1} \equiv 1(\bmod N), N$ is prime with probability $1 / 2$

■ Repeat the test k times, with different choices of a, and if N passes all k tests, then we can say that N is prime with probability $1-2^{-k}$

Modular Exponentiation

Modular Exponentiation

■ How do we compute $a^{N}(\bmod M)$?

- remember that N may be a huge number here

Modular Exponentiation

■ How do we compute $a^{N}(\bmod M)$?

- remember that N may be a huge number here

■ Idea: think of the binary representation of N. E.g.,

$$
N=1189=2^{10}+2^{7}+2^{5}+2^{2}+1=10010100101_{\mathrm{two}}
$$

Modular Exponentiation

■ How do we compute $a^{N}(\bmod M)$?

- remember that N may be a huge number here

■ Idea: think of the binary representation of N. E.g.,

$$
\begin{aligned}
& N=1189=2^{10}+2^{7}+2^{5}+2^{2}+1=10010100101_{\mathrm{two}} \\
& \text { so } a^{N}=a^{2^{10}} \cdot a^{2^{7}} \cdot a^{2^{5}} \cdot a^{2^{2}} \cdot a^{1}
\end{aligned}
$$

Modular Exponentiation

■ How do we compute $a^{N}(\bmod M)$?

- remember that N may be a huge number here

■ Idea: think of the binary representation of N. E.g.,

$$
N=1189=2^{10}+2^{7}+2^{5}+2^{2}+1=10010100101_{\mathrm{two}}
$$

so $a^{N}=a^{2^{10}} \cdot a^{2^{7}} \cdot a^{2^{5}} \cdot a^{2^{2}} \cdot a^{1}$

$$
\begin{aligned}
& \operatorname{Exp}-\operatorname{Mod}(a, N, M) / / \text { computes } a^{N} \bmod M \\
& 1 \quad x=1 \\
& 2 \text { while } N>0 \\
& \text { if } N \equiv 1 \bmod 2 \\
& x=x a \bmod M \\
& a=a^{2} \bmod M \\
& N=\lfloor N / 2\rfloor \\
& \text { return } x
\end{aligned}
$$

One Last Problem

One Last Problem

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

One Last Problem

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

- i.e., if there is at least one "witness" then. . .

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

- i.e., if there is at least one "witness" then...
- There may be composites N such that no a would fail the test

One Last Problem

■ If $a^{N-1} \not \equiv 1(\bmod N)$ for some $a<N$ relatively prime to N, then $a t$ least half the choices of a are such that $a^{N-1} \not \equiv 1(\bmod N)$.

- i.e., if there is at least one "witness" then...

■ There may be composites N such that no a would fail the test

■ Indeed, there are such numbers (e.g., $N=561$)

- called Carmichael numbers
- infinitely many, but extremely rare
- their prevalence within the first N integers vanishes with $N \rightarrow \infty$
- there is a more refined test that detects Carmichael (composite) numbers

