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Primality Test

Problem: given an ℓ-bit integer n, find whether n is prime

Naïve solution

NAÏVE-PRIMALITY(n)
1 for i = 2 to ⌊

√
n⌋

2 if n = 0 mod i // i.e., i divides n
3 return FALSE

4 return TRUE

This algorithm is intractable because it has a running time

T (ℓ) = Θ(
√
n) = Θ(2ℓ/2)

◮ exactly
√
n steps if n is prime
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A Randomized Primality Test

Main idea: we use Fermat’s little theorem as a “yes/no” test

◮ more accurately, we have a “maybe/no” test

◮ “no”—n is composite

◮ “maybe”—50/50 chance that n is prime

◮ we repeat the test k times, and if all the k tests say “maybe,” then we
conclude that n is prime

◮ there is a chance that we are wrong, but that chance vanishes
exponentiallywith k

Ingredients

◮ simplemodular arithmetic
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Modular Arithmetic

Last night I started working onmy lecture at 20:00, and it tookme 7
hours to finish it

Question: at what time did I finish my lecture?

finish-time = 3 ≡ 20 + 7 (mod 24)

Question:what if it tookme 37 hours?

9 ≡ 20 + 37 (mod 24)

Definition: “x is equivalent to y, modulo N”

x ≡ y (mod N) ⇔ N divides (x − y) or (y − x)
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Simple exercises

◮ 30 ≡ 45 + 45 (mod 60)

◮ 21 ≡ 201 (mod 60)
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Modular Arithmetic (2)

Simple exercises

◮ 30 ≡ 45 + 45 (mod 60)

◮ 21 ≡ 201 (mod 60)

◮ 1 ≡ 4717382910421 (mod 10)

◮ 4 ≡ 4717382910421 (mod 9)

◮ 1 ≡ 4717382910421 (mod 3)

◮ ? ≡ 2976146201360 + 10436201964293 (mod 3)



Equivalence Classes

An equivalence relation

x ≡ y (mod m)



Equivalence Classes

An equivalence relation

x ≡ y (mod m)

In the modulo-m world, all integers are inm equivalence classes

◮ e.g.,

2 ≡ 5 ≡ 8 · · · ≡ −1 ≡ −4 ≡ · · · (mod 3)



Equivalence Classes

An equivalence relation

x ≡ y (mod m)

In the modulo-m world, all integers are inm equivalence classes

◮ e.g.,

2 ≡ 5 ≡ 8 · · · ≡ −1 ≡ −4 ≡ · · · (mod 3)

Values in the same equivalence classes are interchangeable in
arithmetic operations

◮ x ≡ x′ (mod m) ∧ y ≡ y′ (mod m) ⇒ x + y ≡ x′ + y′ (mod m)
◮ x ≡ x′ (mod m) ∧ y ≡ y′ (mod m) ⇒ xy ≡ x′y′ (mod m)
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Equivalence Classes (2)

x ≡ rx (mod m) ⇒ x + y ≡ rx + y (mod m)
Proof:
◮ x = qxm + rx , from the hypothesis

◮ let y = qym + ry
◮ x + y = qxm + rx + qym + ry = (qx + qy)m + rx + ry ≡ rx + ry (mod m)

x ≡ rx (mod m) ∧ 0 ≤ rx < m ⇒ xy ≡ rxy (mod m)
Proof:
◮ x = qxm + rx , from the hypothesis

◮ let y = qym + ry
◮ xy = (qxm + rx) (qym + ry) = (qxqy)m2 + (qxry + qyrx)m + rxry ≡ rxry

(mod m)
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Themultiplicative inverse (mod N) of a is an integer x such that

ax ≡ 1 (mod N)

Examples

◮ 1 × 1 ≡ 1 (mod 10)

◮ 7 × 3 ≡ 1 (mod 10)

◮ 3 × 7 ≡ 1 (mod 10)

◮ 9 × 9 ≡ 1 (mod 10)

◮ 4 × ? ≡ 1 (mod 10)

4 does not have an inverse (modulo 10)
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Multiplicative Inverse (Modulo N) (2)

For all a, a has a multiplicative inverse (modulo N) if and only if
gcd(a,N) = 1

Proof:

◮ let a−1 denote a’s inverse (modulo N), then there is an integer q such
that

aa−1 = qN + 1

◮ dividing both sides by gcd(a,N), we get

aa−1

gcd(a,N) =
qN

gcd(a,N) +
1

gcd(a,N)

◮ since gcd(a,N) divides both a and N, then the first two fractions are
integers, so the last fraction, 1/gcd(a,N), must also be an integer,
which requires that gcd(a,N) = 1
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Summary onModulo Arithmetic

In additions andmultiplications (modulo N) we can always replace x
with r if x ≡ r (mod N)
◮ for simplicity, we always use the (unique) r < N as the representative
of its equivalence class

Each a relatively prime to N has amultiplicative inverse (modulo N)
that we denote as a−1

aa−1 ≡ 1 (mod N) if gcd(a,N) = 1
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Fermat’s Little Theorem

If P is prime, then for all 1 ≤ a ≤ P − 1

aP−1 ≡ 1 (mod P)

Proof:

◮ let S = {1, 2, . . . , P − 1} and 0 < a < P
◮ multiplying the elements of S by a (mod P) yields a permutation of S;
i.e., for each y ∈ S there is exactly one element x ∈ S such that ax ≡ y

(mod P)
Proof:

◮ by contradiction, suppose \x′ , x such that ax ≡ y (mod P) and ax′ ≡ y

(mod P)
◮ since P is prime, then gcd(a,N) = 1, therefore a has a multiplicative
inverse a−1 (modulo P)

◮ so, multiplying ax ≡ y (mod P) and ax′ ≡ y (mod P) by a−1, we have
x ≡ y (mod P) and x′ ≡ y (mod P), which means that x ≡ x′ (mod P),
which is a contradiction
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Fermat’s Little Theorem (2)

If P is prime, then for all 1 ≤ a ≤ P − 1

aP−1 ≡ 1 (mod P)
Proof: (continued)

◮ let S = {1, 2, . . . , P − 1} and 0 < a < P
◮ multiplying the elements of S by a (mod P) yields a permutation of S;
i.e., for each y ∈ S there is exactly one element x ∈ S such that ax ≡ y

(mod P)

{1, 2, . . . , P − 1} = {a, 2a, . . . , (P − 1)a} (mod P)

◮ multiplying together all the elements on each side, we get

(P − 1)! ≡ aP−1 (P − 1)! (mod P)

◮ (P − 1)! also has amultiplicative inverse, so

1 ≡ aP−1 (mod P)
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Using Fermat’s Little Theorem

If P is prime, then for all 1 ≤ a ≤ P − 1

aP−1 ≡ 1 (mod P)

This suggests a test: given N

◮ aN−1 . 1 (mod N), then wemust conclude that N is composite
◮ aN−1 ≡ 1 (mod N), we can not say much

However, another lemma gives us a way tomeasure the probability
that a composite N passes the test
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HowMany False Positives?

If aN−1 . 1 (mod N) for some a < N relatively prime to N, then
aN−1 . 1 (mod N) holds for at least half the choices of a

I.e., if there is one a that “exposes” N as a composite, by failing the
test of Fermat’s little theorem, then at least half of the choices of a
expose N as a composite

Proof:

◮ fix a such that aN−1 . 1 (mod N) (hypothesis)
◮ for each b < N that passes the test bN−1 ≡ 1 (mod N), there is a “twin”
value c = ab, that fails the test. In fact,

cN−1 = (ab)N−1 = aN−1bN−1 . 1 (mod N)

◮ two distinct b < N and b′ < N, with b , b′, that pass the test have
distinct “twins” ab and ab′; proof: by contradiction, assume ab ≡ ab′,
then multiply by a−1 (mod N), you immediately get a contradiction
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A Probabilistic Test

If aN−1 . 1 (mod N) for some a < N relatively prime to N, then at
least half the choices of a are such that aN−1 . 1 (mod N).

Probabilistic test

◮ choose a < N and relatively prime to N (easy)

◮ if aN−1 . 1 (mod N), then we conclude that N is composite
◮ if aN−1 ≡ 1 (mod N), N is primewith probability 1/2

Repeat the test k times, with different choices of a, and if N passes all
k tests, then we can say that N is primewith probability 1 − 2−k
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Modular Exponentiation

How do we compute aN (mod M)?
◮ remember that Nmay be a huge number here

Idea: think of the binary representation of N. E.g.,

N = 1189 = 210 + 27 + 25 + 22 + 1 = 10010100101two
so aN = a2

10 · a27 · a25 · a22 · a1

EXP-MOD(a,N,M)// computes aN mod M

1 x = 1
2 while N > 0
3 if N ≡ 1 mod 2
4 x = xa mod M

5 a = a2 mod M

6 N = ⌊N/2⌋
7 return x
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One Last Problem

If aN−1 . 1 (mod N) for some a < N relatively prime to N, then at
least half the choices of a are such that aN−1 . 1 (mod N).
◮ i.e., if there is at least one “witness” then.. .

There may be composites N such that no a would fail the test

Indeed, there are such numbers (e.g., N = 561)

◮ called Carmichael numbers

◮ infinitely many, but extremely rare

◮ their prevalence within the first N integers vanishes with N→ ∞
◮ there is a more refined test that detects Carmichael (composite)
numbers


