Dynamic Programming

Antonio Carzaniga

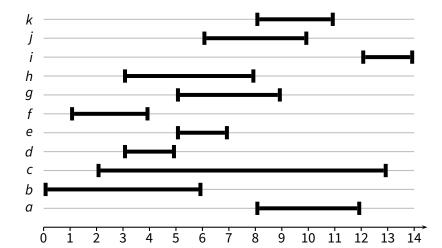
Faculty of Informatics Università della Svizzera italiana

May 24, 2022

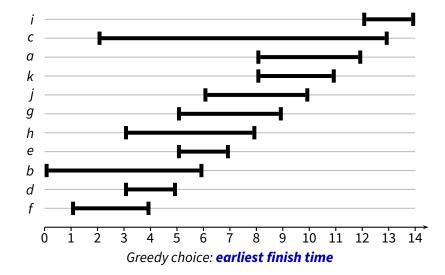
Outline

- Examples
- Dynamic programming strategy
- More examples

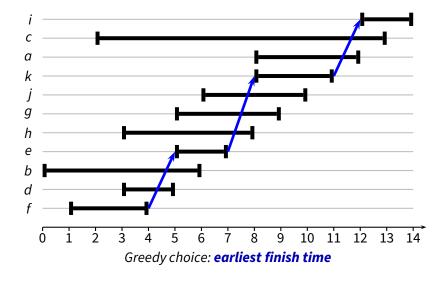
Activity-Selection Problem



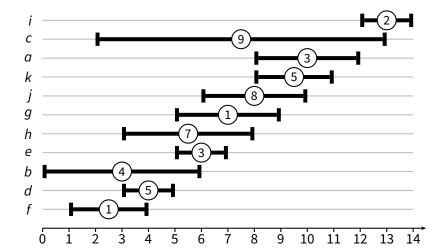
Activity-Selection Problem



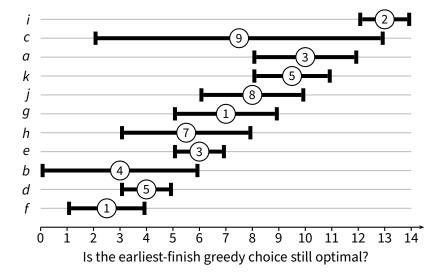
Activity-Selection Problem



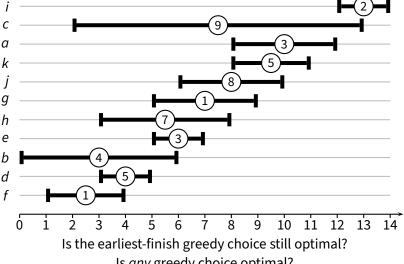
Weighted Activity-Selection Problem



Weighted Activity-Selection Problem

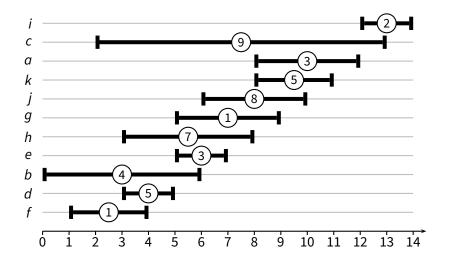


Weighted Activity-Selection Problem

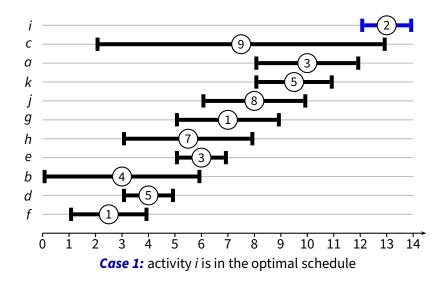


Is any greedy choice optimal?

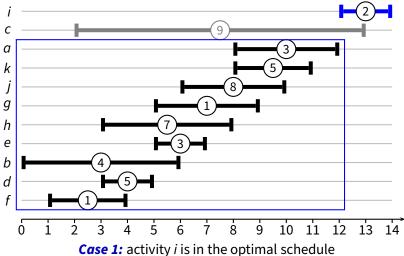
Case 1



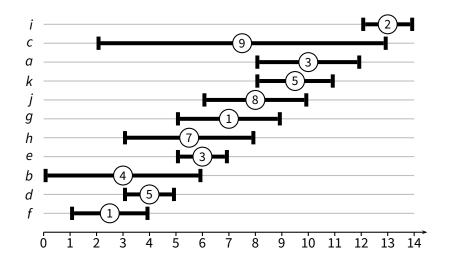
Case 1



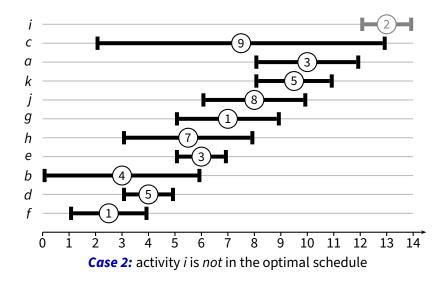
Case 1



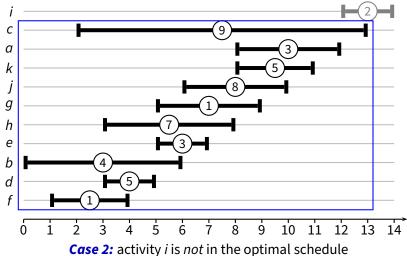
Case 2



Case 2



Case 2



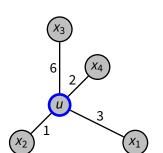
■ Given a graph G = (V, E) and a weight function w, we compute the shortest distance $D_u(v)$, from $u \in V$ to $v \in V$, using the Bellman-Ford equation

■ Given a graph G = (V, E) and a weight function w, we compute the shortest distance $D_{U}(v)$, from $u \in V$ to $v \in V$, using the Bellman-Ford equation

$$D_u(v) = \min_{x \in Adj(u)} [w(u, x) + D_x(v)]$$

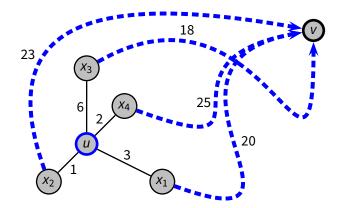
■ Given a graph G = (V, E) and a weight function w, we compute the shortest distance $D_u(v)$, from $u \in V$ to $v \in V$, using the Bellman-Ford equation

$$D_u(v) = \min_{x \in Adj(u)} [w(u, x) + D_x(v)]$$

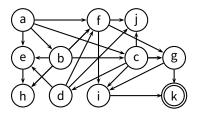


■ Given a graph G = (V, E) and a weight function w, we compute the shortest distance $D_u(v)$, from $u \in V$ to $v \in V$, using the Bellman-Ford equation

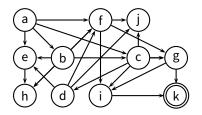
$$D_u(v) = \min_{x \in Adj(u)} [w(u, x) + D_x(v)]$$

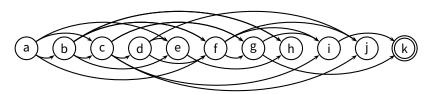


■ Given a *directed acyclic graph* G = (V, E), this one with unit weights, find the shortest distances to a given node

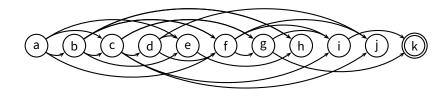


■ Given a *directed acyclic graph* G = (V, E), this one with unit weights, find the shortest distances to a given node

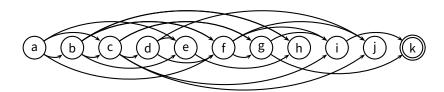




$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$

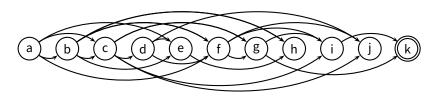


$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



■ Considering *V* in *topological order*

$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$

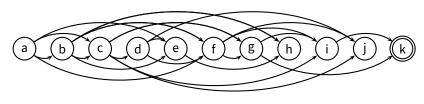


 ∞

0

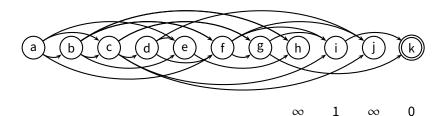
■ Considering *V* in *topological order*

$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$

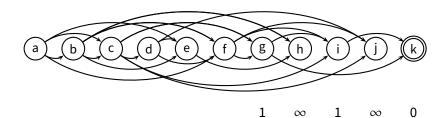


1 ∞

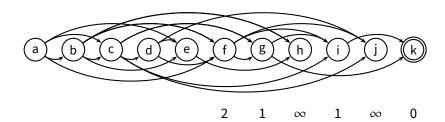
$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



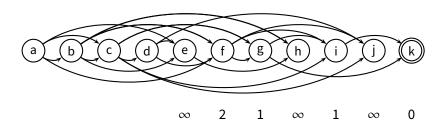
$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



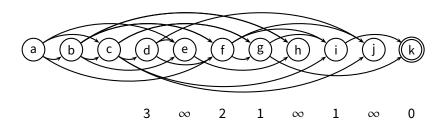
$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



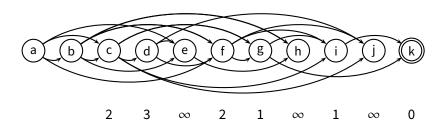
$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



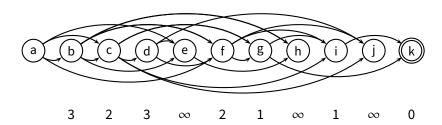
$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



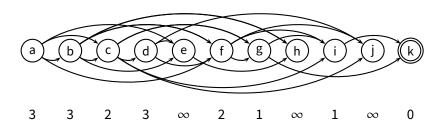
$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



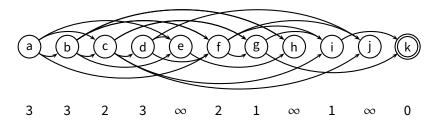
$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



$$D_x(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



$$D_X(k) = \min_{y \in Adj(x)} [w(x, y) + D_y(k)]$$



- Since *G* is a DAG, computing D_y with $y \in Adj(x)$ can be considered a *subproblem* of computing D_x
 - we build the solution bottom-up, storing the subproblem solutions

Longest Increasing Subsequence

■ Given a sequence of numbers a_1, a_2, \ldots, a_n , an *increasing subsequence* is any subset $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ such that $1 \le i_1 < i_2 < \cdots < i_k \le n$, and such that

$$a_{i_1} < a_{i_2} < \cdots < a_{i_k}$$

■ You must find the *longest increasing subsequence*

■ Given a sequence of numbers a_1, a_2, \ldots, a_n , an *increasing subsequence* is any subset $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ such that $1 \le i_1 < i_2 < \cdots < i_k \le n$, and such that

$$a_{i_1} < a_{i_2} < \cdots < a_{i_k}$$

- You must find the *longest increasing subsequence*
- **Example:** find (one of) the longest increasing subsequence in

■ Given a sequence of numbers a_1, a_2, \ldots, a_n , an *increasing subsequence* is any subset $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ such that $1 \le i_1 < i_2 < \cdots < i_k \le n$, and such that

$$a_{i_1} < a_{i_2} < \cdots < a_{i_k}$$

- You must find the *longest increasing subsequence*
- **Example:** find (one of) the longest increasing subsequence in

A maximal-length subsequence is

■ *Intuition:* let L(j) be the length of the longest subsequence ending at a_i

- Intuition: let L(j) be the length of the longest subsequence ending at a_i
 - e.g., in

5 2 8 6 3 6 9 7

we have

L(4) = 2

- Intuition: let L(j) be the length of the longest subsequence ending at a_i
 - e.g., in

5 2 8 6 3 6 9 7

we have

$$L(4) = 2$$

▶ this is our *subproblem structure*

- Intuition: let L(j) be the length of the longest subsequence ending at a_i
 - e.g., in

we have

$$L(4) = 2$$

- this is our *subproblem structure*
- Combining the subproblems

$$L(j) = 1 + \max\{L(i) \mid i < j \land a_i < a_j\}$$

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - longest sequence, shortest path, etc.

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - longest sequence, shortest path, etc.
- General strategy

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - longest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - longest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems
 - must satisfy the optimal substructure property

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - longest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems
 - must satisfy the *optimal substructure* property
 - subproblems may overlap (indeed they should overlap!)

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - longest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems
 - must satisfy the optimal substructure property
 - subproblems may overlap (indeed they should overlap!)
 - solve the subproblems

- First, the name "dynamic programming"
 - does not mean writing a computer program
 - term used in the 1950s, when "programming" meant "planning"
- Problem domain
 - typically optimization problems
 - longest sequence, shortest path, etc.
- General strategy
 - decompose a problem in (smaller) subproblems
 - must satisfy the optimal substructure property
 - subproblems may overlap (indeed they should overlap!)
 - solve the subproblems
 - derive the solution from (one of) the solutions to the subproblems

■ **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from u to v

- **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from u to v
 - ▶ decompose $u \rightarrow v$ into $u \rightarrow w \rightarrow v$

- **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from U to V
 - ▶ decompose $u \rightsquigarrow v$ into $u \rightsquigarrow w \rightsquigarrow v$
 - easy to prove that, if $u \rightsquigarrow w \rightsquigarrow v$ is minimal, then $w \rightsquigarrow v$ is also minimal
 - this is the optimal substructure property

- **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from U to V
 - ightharpoonup decompose $u \sim v$ into $u \sim w \sim v$
 - easy to prove that, if $u \rightsquigarrow w \rightsquigarrow v$ is minimal, then $w \rightsquigarrow v$ is also minimal
 - this is the optimal substructure property
- Unweighted longest simple path: given G = (V, E), find the length of the longest simple (i.e., no cycles) path from u to v
 - we can also decompose $u \rightsquigarrow v$ into $u \rightsquigarrow w \rightsquigarrow v$
 - ▶ however, we can not prove that, if $u \rightsquigarrow w \rightsquigarrow v$ is maximal, then $w \rightsquigarrow v$ is also maximal

- **Unweighted shortest path:** given G = (V, E), find the length of the shortest path from U to V
 - ightharpoonup decompose $u \rightarrow v$ into $u \rightarrow w \rightarrow v$
 - easy to prove that, if $u \rightsquigarrow w \rightsquigarrow v$ is minimal, then $w \rightsquigarrow v$ is also minimal
 - this is the optimal substructure property
- Unweighted longest simple path: given G = (V, E), find the length of the longest simple (i.e., no cycles) path from u to v
 - we can also decompose $u \rightsquigarrow v$ into $u \rightsquigarrow w \rightsquigarrow v$
 - ▶ however, we can not prove that, if $u \rightsquigarrow w \rightsquigarrow v$ is maximal, then $w \rightsquigarrow v$ is also maximal
 - **exercise:** find a counter-example

Dynamic Programming vs. Divide-and-Conquer

■ Divide-and-conquer is also about decomposing a problem into subproblems

Dynamic Programming vs. Divide-and-Conquer

- Divide-and-conquer is also about decomposing a problem into subproblems
- Divide-and-conquer works by breaking the problem into significantly smaller subproblems
 - in dynamic programming, it is typical to reduce L(j) into L(j-1)
 - this is one reason why recursion does not work so well for dynamic programming

Dynamic Programming vs. Divide-and-Conquer

- Divide-and-conquer is also about decomposing a problem into subproblems
- Divide-and-conquer works by breaking the problem into significantly smaller subproblems
 - ▶ in dynamic programming, it is typical to reduce L(j) into L(j-1)
 - this is one reason why recursion does not work so well for dynamic programming
- Divide-and-conquer splits the problem into independent subproblems
 - in dynamic programming, subproblems typically overlap
 - pretty much the same argument as above

Dynamic Programming vs. Greedy

- Greedy: requires the *greedy-choice property*
 - greedy: greedy choice plus one subproblem
 - greedy choice typically before proceeding to the subproblem
 - no need to store the result of each subproblem

Dynamic Programming vs. Greedy

- Greedy: requires the *greedy-choice property*
 - greedy: greedy choice plus one subproblem
 - greedy choice typically before proceeding to the subproblem
 - no need to store the result of each subproblem
- Dynamic programming: more general
 - does not need the greedy-choice property
 - typically looks at several subproblems
 - "dynamically" choose one of them to obtain a global solution
 - typically works bottom-up
 - typically reuses solutions of the subproblems

Typical Subproblem Structures

- Prefix/suffix subproblems
 - ightharpoonup Input: x_1, x_2, \ldots, x_n
 - Subproblem: x_1, x_2, \ldots, x_i , with i < n
 - \triangleright O(n) subproblems

Typical Subproblem Structures

- Prefix/suffix subproblems
 - ightharpoonup Input: x_1, x_2, \ldots, x_n
 - Subproblem: x_1, x_2, \dots, x_i , with i < n
 - \triangleright O(n) subproblems
- Subsequence subproblems
 - ightharpoonup Input: x_1, x_2, \ldots, x_n
 - Subproblem: x_i, x_{i+1}, \dots, x_j , with $1 \le i < j \le n$

Typical Subproblem Structures

- Prefix/suffix subproblems
 - ightharpoonup Input: x_1, x_2, \ldots, x_n
 - Subproblem: x_1, x_2, \dots, x_i , with i < n
 - \triangleright O(n) subproblems
- Subsequence subproblems
 - ightharpoonup Input: x_1, x_2, \ldots, x_n
 - Subproblem: x_i, x_{i+1}, \dots, x_j , with $1 \le i < j \le n$
 - \triangleright $O(n^2)$ subproblems

■ Given two strings x and y, find the smallest set of edit operations that transform x into y

- Given two strings *x* and *y*, find the *smallest set of edit operations* that transform *x* into *y*
 - edit operations: delete, insert, and modify a single character
 - very important applications
 - spell checker
 - DNA sequencing

- Given two strings x and y, find the smallest set of edit operations that transform x into y
 - edit operations: delete, insert, and modify a single character
 - very important applications
 - spell checker
 - DNA sequencing
- **Example:** transform "Lugano" into "Zurigo"

- Given two strings x and y, find the smallest set of edit operations that transform x into y
 - edit operations: delete, insert, and modify a single character
 - very important applications
 - spell checker
 - DNA sequencing
- **Example:** transform "Lugano" into "Zurigo"

- Given two strings x and y, find the smallest set of edit operations that transform x into y
 - edit operations: delete, insert, and modify a single character
 - very important applications
 - spell checker
 - DNA sequencing
- **Example:** transform "Lugano" into "Zurigo"

- Given two strings x and y, find the smallest set of edit operations that transform x into y
 - edit operations: delete, insert, and modify a single character
 - very important applications
 - spell checker
 - DNA sequencing
- **Example:** transform "Lugano" into "Zurigo"

- Given two strings x and y, find the smallest set of edit operations that transform x into y
 - edit operations: delete, insert, and modify a single character
 - very important applications
 - spell checker
 - DNA sequencing
- **Example:** transform "Lugano" into "Zurigo"

Edit Distance (2)

- Align the two strings *x* and *y*, possibly inserting "gaps" between letters
 - a gap in the source means *insertion*
 - a gap in the destination means *deletion*
 - two different character in the same position means *modification*

- Align the two strings *x* and *y*, possibly inserting "gaps" between letters
 - a gap in the source means insertion
 - a gap in the destination means deletion
 - two different character in the same position means *modification*
- Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the edit distance

- Align the two strings *x* and *y*, possibly inserting "gaps" between letters
 - a gap in the source means *insertion*
 - a gap in the destination means deletion
 - two different character in the same position means *modification*
- Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the edit distance
- So, how do we solve this problem?

- Align the two strings *x* and *y*, possibly inserting "gaps" between letters
 - a gap in the source means insertion
 - a gap in the destination means deletion
 - two different character in the same position means *modification*
- Many alignments are possible; the alignment with the smallest number of insertions, deletions, and modifications defines the edit distance
- So, how do we solve this problem?
- What are the subproblems?

■ *Idea*: consider a prefix of *x* and a prefix of *y*

- *Idea*: consider a prefix of *x* and a prefix of *y*
- Let E(i,j) be the smallest set of changes that turn the first i characters of x into the first j characters of y

- *Idea*: consider a prefix of *x* and a prefix of *y*
- Let E(i,j) be the smallest set of changes that turn the first i characters of x into the first j characters of y
- Now, the last column of the alignment of E(i,j) can have either
 - a gap for x (i.e., insertion)
 - a gap for y (i.e., deletion)
 - ▶ no gaps (i.e., modification iff $x[i] \neq y[j]$)

- *Idea*: consider a prefix of *x* and a prefix of *y*
- Let E(i,j) be the smallest set of changes that turn the first i characters of x into the first j characters of y
- Now, the last column of the alignment of E(i,j) can have either
 - a gap for x (i.e., insertion)
 - a gap for y (i.e., deletion)
 - ▶ no gaps (i.e., modification iff $x[i] \neq y[j]$)
- This suggests a way to combine the subproblems; let diff(i,j) = 1 iff $x[i] \neq y[j]$ or 0 otherwise

$$\begin{split} E(i,j) &= \min\{1 + E(i-1,j), \\ &1 + E(i,j-1), \\ &diff(i,j) + E(i-1,j-1)\} \end{split}$$

Knapsack

- Problem definition
 - ▶ *Input*: a set of *n* objects with their weights $w_1, w_2, \ldots w_n$ and their values $v_1, v_2, \ldots v_n$, and a maximum weight W
 - Output: a subset K of the objects such that $\sum_{i \in K} w_i \leq W$ and such that $\sum_{i \in K} v_i$ is maximal

Knapsack

- Problem definition
 - Input: a set of n objects with their weights $w_1, w_2, \dots w_n$ and their values $v_1, v_2, \dots v_n$, and a maximum weight W
 - Output: a subset K of the objects such that $\sum_{i \in K} w_i \leq W$ and such that $\sum_{i \in K} v_i$ is maximal
- Dynamic-programming solution
 - let K(w,j) be the maximum value achievable at maximum capacity w using the first j items (i.e., items 1...j)
 - considering the jth element, we can either "use it or loose it," so

$$K(w,j) = \max\{K(w-w_j, j-1) + v_j, K(w, j-1)\}$$

■ The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
 - No! As we already said, recursion doesn't quite work here

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
 - ▶ No! As we already said, recursion doesn't quite work here
 - ► Why?
- Remember Fibonacci?

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
 - No! As we already said, recursion doesn't quite work here
 - ► Why?
- Remember Fibonacci?

- The breakdown of a problem into subproblem suggests the use of a recursive function. Is that a good idea?
 - No! As we already said, recursion doesn't quite work here
 - ► Why?
- Remember Fibonacci?

■ Recursion solves the same problem over and over again

Memoization

- Problem: recursion solves the same problems repeatedly
- **Idea:** "cache" the results

Memoization

- Problem: recursion solves the same problems repeatedly
- **Idea:** "cache" the results

```
FIBONACCI(n)
   if n == 0
        return 0
  elseif n == 1
        return 1
   elseif (n,x) \in H // a hash table H "caches" results
6
        return x
   else x = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2)
8
        INSERT(H, n, x)
        return x
```

■ Idea also known as *memoization*

■ Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

■ Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

■ Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

■ Dynamic programming

1. break down the problem in subproblems

■ Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

Dynamic programming

1. break down the problem in subproblems—O(1), O(n), $O(n^2)$, ... subproblems

■ Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

■ Dynamic programming

- 1. break down the problem in subproblems—O(1), O(n), $O(n^2)$, ... subproblems
- 2. you solve the main problem by *choosing* one of the subproblems

■ Greedy

- 1. start with the greedy choice
- 2. add the solution to the remaining subproblem

A nice tail-recursive algorithm

• the complexity of the greedy strategy *per-se* is $\Theta(n)$

■ Dynamic programming

- 1. break down the problem in subproblems—O(1), O(n), $O(n^2)$, ... subproblems
- 2. you solve the main problem by *choosing* one of the subproblems
- 3. in practice, solve the subproblems bottom-up

Exercise

■ **Puzzle 0:** is it possible to insert some '+' signs in the string "213478" so that the resulting expression would equal 214?

Exercise

- **Puzzle 0:** is it possible to insert some '+' signs in the string "213478" so that the resulting expression would equal 214?
 - ► Yes, because 2 + 134 + 78 = 214
- **Puzzle 1:** is it possible to insert some '+' signs in the strings of digits to obtain the corresponding target number?

digits	target
646805736141599100791159198	472004
6152732017763987430884029264512187586207273294807	560351
48796142803774467559157928	326306
195961521219109124054410617072018922584281838218	7779515