
Arithmetic Operations

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

March 2, 2012

Outline

Representing numbers

Adding numbers

Multiplying numbers

Representing Numbers

How do we (human beings) represent numbers?

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

For example

n = 3 1 4 1 5 9 2

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

For example

n = 3 1 4 1 5 9 2

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

For example

n = 3 1 4 1 5 9 2

d6d5d4d3d2d1d0

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

For example

n = 3 1 4 1 5 9 2

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

For example

n = 3 1 4 1 5 9 2

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

n =

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

For example

n = 3 1 4 1 5 9 2

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

n = 3 × 1000000 + 1 × 100000 + 4 × 10000 + 1 × 1000+

+5 × 100 + 9 × 10 + 2 × 1 = 3141592

Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

For example

n = 3 1 4 1 5 9 2

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

n = 3 × 1000000 + 1 × 100000 + 4 × 10000 + 1 × 1000+

+5 × 100 + 9 × 10 + 2 × 1 = 3141592

How do computers represent numbers?

Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

For example

n = 1 0 1 1 0 1 1

Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

For example

n = 1 0 1 1 0 1 1

Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

For example

n = 1 0 1 1 0 1 1

d6d5d4d3d2d1d0

Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

For example

n = 1 0 1 1 0 1 1

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

For example

n = 1 0 1 1 0 1 1

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

n =

Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

For example

n = 1 0 1 1 0 1 1

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

n = 1 × 64ten + 1 × 16ten + 1 × 8ten + 1 × 2ten + 1 × 1ten = . . .

Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

For example

n = 1 0 1 1 0 1 1

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

n = 1 × 64ten + 1 × 16ten + 1 × 8ten + 1 × 2ten + 1 × 1ten = . . .

The usual questions

◮ Is this representation correct?

◮ Howmuch does it cost? (This time in terms of space)

◮ Can we do better?

A Ternary Computer?

A Ternary Computer?

A ternary computer was actually built!

The Setunwas a ternary (or trinary) computer developed in 1958 and
used at Moscow State University until about 1965

Correctness

What does it even mean?

Correctness

What does it even mean?

There is at least one representation for each value

Correctness

What does it even mean?

There is at least one representation for each value

A representation should be unambiguous

◮ i.e., there is at most one value for each representation

Correctness

What does it even mean?

There is at least one representation for each value

A representation should be unambiguous

◮ i.e., there is at most one value for each representation

We don’t care to say more about this

Space Complexity

Howmany symbols do we need to represent a value N?

Space Complexity

Howmany symbols do we need to represent a value N?

Or, what is the largest Nwe can represent with ℓ symbols?

Space Complexity

Howmany symbols do we need to represent a value N?

Or, what is the largest Nwe can represent with ℓ symbols?

With ℓ symbols we have
N ≤ dℓ−1b

ℓ−1 + dℓ−2b
ℓ−2 + · · · + d1b

1 + d0b
0 (0 ≤ di ≤ b − 1)

Space Complexity

Howmany symbols do we need to represent a value N?

Or, what is the largest Nwe can represent with ℓ symbols?

With ℓ symbols we have
N ≤ dℓ−1b

ℓ−1 + dℓ−2b
ℓ−2 + · · · + d1b

1 + d0b
0 (0 ≤ di ≤ b − 1)

N ≤ (b − 1)bℓ−1 + (b − 1)bℓ−2 + · · · + (b − 1)b1 + b − 1

Space Complexity

Howmany symbols do we need to represent a value N?

Or, what is the largest Nwe can represent with ℓ symbols?

With ℓ symbols we have
N ≤ dℓ−1b

ℓ−1 + dℓ−2b
ℓ−2 + · · · + d1b

1 + d0b
0 (0 ≤ di ≤ b − 1)

N ≤ (b − 1)bℓ−1 + (b − 1)bℓ−2 + · · · + (b − 1)b1 + b − 1

= bℓ − bℓ−1 + bℓ−1 − bℓ−2 + bℓ−2 − · · · − b + b − 1

= bℓ − 1

Space Complexity

Howmany symbols do we need to represent a value N?

Or, what is the largest Nwe can represent with ℓ symbols?

With ℓ symbols we have
N ≤ dℓ−1b

ℓ−1 + dℓ−2b
ℓ−2 + · · · + d1b

1 + d0b
0 (0 ≤ di ≤ b − 1)

N ≤ (b − 1)bℓ−1 + (b − 1)bℓ−2 + · · · + (b − 1)b1 + b − 1

= bℓ − bℓ−1 + bℓ−1 − bℓ−2 + bℓ−2 − · · · − b + b − 1

= bℓ − 1

With ℓ symbols, the highest value is N = bℓ − 1

Space Complexity

Howmany symbols do we need to represent a value N?

Or, what is the largest Nwe can represent with ℓ symbols?

With ℓ symbols we have
N ≤ dℓ−1b

ℓ−1 + dℓ−2b
ℓ−2 + · · · + d1b

1 + d0b
0 (0 ≤ di ≤ b − 1)

N ≤ (b − 1)bℓ−1 + (b − 1)bℓ−2 + · · · + (b − 1)b1 + b − 1

= bℓ − bℓ−1 + bℓ−1 − bℓ−2 + bℓ−2 − · · · − b + b − 1

= bℓ − 1

With ℓ symbols, the highest value is N = bℓ − 1

So, ℓ = ⌈logb (N + 1)⌉

Space Complexity

Howmany symbols do we need to represent a value N?

Or, what is the largest Nwe can represent with ℓ symbols?

With ℓ symbols we have
N ≤ dℓ−1b

ℓ−1 + dℓ−2b
ℓ−2 + · · · + d1b

1 + d0b
0 (0 ≤ di ≤ b − 1)

N ≤ (b − 1)bℓ−1 + (b − 1)bℓ−2 + · · · + (b − 1)b1 + b − 1

= bℓ − bℓ−1 + bℓ−1 − bℓ−2 + bℓ−2 − · · · − b + b − 1

= bℓ − 1

With ℓ symbols, the highest value is N = bℓ − 1

So, ℓ = ⌈logb (N + 1)⌉ ⇒ ℓ = Θ(logN)

Space Complexity (2)

The space complexity for N is ℓ = Θ(logN)

Space Complexity (2)

The space complexity for N is ℓ = Θ(logN)

Can we do better?

Space Complexity (2)

The space complexity for N is ℓ = Θ(logN)

Can we do better?

No!

Space Complexity (2)

The space complexity for N is ℓ = Θ(logN)

Can we do better?

No!

◮ there are exactly bℓ combinations of ℓ symbols chosen from an
alphabet Σ with |Σ | = b

◮ i.e., you can not expressmore than bℓ values with ℓ symbols

Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

How do we add two numbers represented in base-b notation?

Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

How do we add two numbers represented in base-b notation?

Theorem: the sum of three base-b digits (whose values are
x, y, z ≤ b − 1) can be represented with two base-b digits

Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

How do we add two numbers represented in base-b notation?

Theorem: the sum of three base-b digits (whose values are
x, y, z ≤ b − 1) can be represented with two base-b digits

Proof:
◮ case b = 2: ℓ = 2 since 1 + 1 + 1 = 3ten = 11two

Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

How do we add two numbers represented in base-b notation?

Theorem: the sum of three base-b digits (whose values are
x, y, z ≤ b − 1) can be represented with two base-b digits

Proof:
◮ case b = 2: ℓ = 2 since 1 + 1 + 1 = 3ten = 11two

◮ case b ≥ 3:

Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

How do we add two numbers represented in base-b notation?

Theorem: the sum of three base-b digits (whose values are
x, y, z ≤ b − 1) can be represented with two base-b digits

Proof:
◮ case b = 2: ℓ = 2 since 1 + 1 + 1 = 3ten = 11two

◮ case b ≥ 3:

1. we can represent x + y + z in ℓ = ⌈logb (x + y + z + 1)⌉

Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

How do we add two numbers represented in base-b notation?

Theorem: the sum of three base-b digits (whose values are
x, y, z ≤ b − 1) can be represented with two base-b digits

Proof:
◮ case b = 2: ℓ = 2 since 1 + 1 + 1 = 3ten = 11two

◮ case b ≥ 3:

1. we can represent x + y + z in ℓ = ⌈logb (x + y + z + 1)⌉

2. x + y + z + 1 ≤ 3b, because x, y, z are three base-b digits, therefore
ℓ = ⌈logb (x + y + z + 1)⌉ ≤ logb 3b = logb 3 + 1

Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

How do we add two numbers represented in base-b notation?

Theorem: the sum of three base-b digits (whose values are
x, y, z ≤ b − 1) can be represented with two base-b digits

Proof:
◮ case b = 2: ℓ = 2 since 1 + 1 + 1 = 3ten = 11two

◮ case b ≥ 3:

1. we can represent x + y + z in ℓ = ⌈logb (x + y + z + 1)⌉

2. x + y + z + 1 ≤ 3b, because x, y, z are three base-b digits, therefore
ℓ = ⌈logb (x + y + z + 1)⌉ ≤ logb 3b = logb 3 + 1

3. b ≥ 3, therefore logb 3 ≤ 1, therefore ℓ ≤ 2

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

s0

c0

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

s0

c0

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

s0

c0

s1

c1

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

s0

c0

s1

c1

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

s0

c0

s1

c1

. . .

cℓ−2

sℓ−1

cℓ−1

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

s0

c0

s1

c1

. . .sℓ−1cℓ−1

Adding Numbers (2)

We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

s0

c0

s1

c1

. . .sℓ−1cℓ−1

ℓ + 1

Adding Numbers (3)

Given two arrays of ℓ base-b digits, A and B

Adding Numbers (3)

Given two arrays of ℓ base-b digits, A and B

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

Adding Numbers (3)

Given two arrays of ℓ base-b digits, A and B

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

Is it correct?

Adding Numbers (3)

Given two arrays of ℓ base-b digits, A and B

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

Is it correct? Yes

Adding Numbers (3)

Given two arrays of ℓ base-b digits, A and B

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

Is it correct? Yes

How long does it take?

Can we do better?

Complexity

Complexity

We are interested in T (ℓ) (remember that ℓ = Θ(logN))

Complexity

We are interested in T (ℓ) (remember that ℓ = Θ(logN))

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

Complexity

We are interested in T (ℓ) (remember that ℓ = Θ(logN))

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

T (ℓ) = Θ(ℓ)

Complexity

We are interested in T (ℓ) (remember that ℓ = Θ(logN))

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

T (ℓ) = Θ(ℓ)

Can we do better?

Complexity

We are interested in T (ℓ) (remember that ℓ = Θ(logN))

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

T (ℓ) = Θ(ℓ)

Can we do better? No!

◮ we have to at least look at the ℓ symbols from the input values

◮ wemust assign at least ℓ + 1 symbols for the result

Multiplying Numbers

We can now add two numbers

Now, how do wemultiply two numbers?

Multiplying Numbers

We can now add two numbers

Now, how do wemultiply two numbers?

Remember that our representation is a polynomial

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

Multiplying Numbers

We can now add two numbers

Now, how do wemultiply two numbers?

Remember that our representation is a polynomial

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

multiplying x by a simple polynomial in b, say y = yib
i, we obtain

x × y = yi (xℓ−1b
ℓ−1+i + xℓ−2b

ℓ−2+i + · · · + x1b
i+1 + x0b

i)

Multiplying Numbers

We can now add two numbers

Now, how do wemultiply two numbers?

Remember that our representation is a polynomial

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

multiplying x by a simple polynomial in b, say y = yib
i, we obtain

x × y = yi (xℓ−1b
ℓ−1+i + xℓ−2b

ℓ−2+i + · · · + x1b
i+1 + x0b

i)

Muliplying by bi is equivalent to shi�ing our representation to the le�
by i positions
◮ le�means in the direction of the most significant bits

Multiplying Binary Numbers

Let’s now focus on binary numbers (i.e., base b = 2)

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

where xi is either 0 or 1

Multiplying Binary Numbers

Let’s now focus on binary numbers (i.e., base b = 2)

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

where xi is either 0 or 1

For example, let x = 1001two and y = 1011two

Multiplying Binary Numbers

Let’s now focus on binary numbers (i.e., base b = 2)

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

where xi is either 0 or 1

For example, let x = 1001two and y = 1011two

x × y =
1 0 0 1 (1001 × 1)

Multiplying Binary Numbers

Let’s now focus on binary numbers (i.e., base b = 2)

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

where xi is either 0 or 1

For example, let x = 1001two and y = 1011two

x × y =
1 0 0 1 (1001 × 1)

+ 1 0 0 1 (1001 × 1 shi�ed by 1)

Multiplying Binary Numbers

Let’s now focus on binary numbers (i.e., base b = 2)

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

where xi is either 0 or 1

For example, let x = 1001two and y = 1011two

x × y =
1 0 0 1 (1001 × 1)

+ 1 0 0 1 (1001 × 1 shi�ed by 1)
+ 0 0 0 0 (1001 × 0 shi�ed by 2)

Multiplying Binary Numbers

Let’s now focus on binary numbers (i.e., base b = 2)

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

where xi is either 0 or 1

For example, let x = 1001two and y = 1011two

x × y =
1 0 0 1 (1001 × 1)

+ 1 0 0 1 (1001 × 1 shi�ed by 1)
+ 0 0 0 0 (1001 × 0 shi�ed by 2)
+ 1 0 0 1 (1001 × 1 shi�ed by 3)

Multiplying Binary Numbers

Let’s now focus on binary numbers (i.e., base b = 2)

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

where xi is either 0 or 1

For example, let x = 1001two and y = 1011two

x × y =
1 0 0 1 (1001 × 1)

+ 1 0 0 1 (1001 × 1 shi�ed by 1)
+ 0 0 0 0 (1001 × 0 shi�ed by 2)
+ 1 0 0 1 (1001 × 1 shi�ed by 3)

= 1 1 1 0 0 0 1 1 (1001 × 1011)

Multiplying Numbers (2)

Given two arrays of ℓ binary digits, A and B

Multiplying Numbers (2)

Given two arrays of ℓ binary digits, A and B

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 1 to ℓ
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

Multiplying Numbers (2)

Given two arrays of ℓ binary digits, A and B

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 1 to ℓ
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

Is it correct?

Multiplying Numbers (2)

Given two arrays of ℓ binary digits, A and B

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 1 to ℓ
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

Is it correct? Yes

Multiplying Numbers (2)

Given two arrays of ℓ binary digits, A and B

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 1 to ℓ
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

Is it correct? Yes

How long does it take?

Can we do better?

Complexity

Again we are interested in T (ℓ)

Complexity

Again we are interested in T (ℓ)

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 0 to ℓ − 1
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

Complexity

Again we are interested in T (ℓ)

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 0 to ℓ − 1
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

T (ℓ) = Θ(ℓ2)

Complexity

Again we are interested in T (ℓ)

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 0 to ℓ − 1
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

T (ℓ) = Θ(ℓ2)

Can we do better?

Complexity

Again we are interested in T (ℓ)

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 0 to ℓ − 1
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

T (ℓ) = Θ(ℓ2)

Can we do better? Yes!

A Better Way to Multiply

A Better Way to Multiply

Intuition: let’s try to split numbers (their representations) in half

A Better Way to Multiply

Intuition: let’s try to split numbers (their representations) in half

x = XL XR and y = YL YR

A Better Way to Multiply

Intuition: let’s try to split numbers (their representations) in half

x = XL XR and y = YL YR

which means x = 2ℓ/2xL + xR and y = 2
ℓ/2yL + yR, so. . .

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

we reduced the problem of multiplying two numbers of ℓ bits into
the problem of multiplying four numbers of ℓ/2 bits. . .

A Better Way to Multiply

Intuition: let’s try to split numbers (their representations) in half

x = XL XR and y = YL YR

which means x = 2ℓ/2xL + xR and y = 2
ℓ/2yL + yR, so. . .

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

we reduced the problem of multiplying two numbers of ℓ bits into
the problem of multiplying four numbers of ℓ/2 bits. . .

T (ℓ) = 4T (ℓ/2) + O(ℓ)

A Better Way to Multiply

Intuition: let’s try to split numbers (their representations) in half

x = XL XR and y = YL YR

which means x = 2ℓ/2xL + xR and y = 2
ℓ/2yL + yR, so. . .

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

we reduced the problem of multiplying two numbers of ℓ bits into
the problem of multiplying four numbers of ℓ/2 bits. . .

T (ℓ) = 4T (ℓ/2) + O(ℓ)

T (ℓ) = Θ(ℓ2)

Almost There

Almost There

Again, we have

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

Almost There

Again, we have

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR) (yR + yL) − xLyL − xRyR, so

Almost There

Again, we have

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR) (yR + yL) − xLyL − xRyR, so

xy = 2ℓxLyL + 2
ℓ/2((xL + xR) (yR + yL) − xLyL − xRyR) + xRyR

Almost There

Again, we have

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR) (yR + yL) − xLyL − xRyR, so

xy = 2ℓxLyL + 2
ℓ/2((xL + xR) (yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR) (yR + yL), and xRyR

Almost There

Again, we have

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR) (yR + yL) − xLyL − xRyR, so

xy = 2ℓxLyL + 2
ℓ/2((xL + xR) (yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR) (yR + yL), and xRyR

T (ℓ) = 3T (ℓ/2) + O(ℓ)

Almost There

Again, we have

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR) (yR + yL) − xLyL − xRyR, so

xy = 2ℓxLyL + 2
ℓ/2((xL + xR) (yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR) (yR + yL), and xRyR

T (ℓ) = 3T (ℓ/2) + O(ℓ)

which, as we will see, leads to a much better complexity

T (ℓ) = O(ℓ log2 3) = O(ℓ1.59)

