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Representing Numbers

How do we (human beings) represent numbers?

Using the decimal notation

◮ ten symbols: 0, 1, 2, . . . , 9 (why ten?)

◮ a polynomial in b = 10

For example

n = 3 1 4 1 5 9 2

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

n = 3 × 1000000 + 1 × 100000 + 4 × 10000 + 1 × 1000+

+5 × 100 + 9 × 10 + 2 × 1 = 3141592

How do computers represent numbers?
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Representing Numbers in a Computer

Computers work well with the binary representation

◮ two symbols: 0, 1 (why two?)

◮ a polynomial in b = 2

For example

n = 1 0 1 1 0 1 1

d6d5d4d3d2d1d0 0 ≤ di < b

n = d6b
6 + d5b

5 + · · · + d1b
1 + d0b

0

n = 1 × 64ten + 1 × 16ten + 1 × 8ten + 1 × 2ten + 1 × 1ten = . . .

The usual questions

◮ Is this representation correct?

◮ Howmuch does it cost? (This time in terms of space)

◮ Can we do better?
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A Ternary Computer?

A ternary computer was actually built!

The Setunwas a ternary (or trinary) computer developed in 1958 and
used at Moscow State University until about 1965
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Correctness

What does it even mean?

There is at least one representation for each value

A representation should be unambiguous

◮ i.e., there is at most one value for each representation

We don’t care to say more about this
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Or, what is the largest Nwe can represent with ℓ symbols?

With ℓ symbols we have
N ≤ dℓ−1b

ℓ−1 + dℓ−2b
ℓ−2 + · · · + d1b

1 + d0b
0 (0 ≤ di ≤ b − 1)

N ≤ (b − 1)bℓ−1 + (b − 1)bℓ−2 + · · · + (b − 1)b1 + b − 1

= bℓ − bℓ−1 + bℓ−1 − bℓ−2 + bℓ−2 − · · · − b + b − 1

= bℓ − 1

With ℓ symbols, the highest value is N = bℓ − 1

So, ℓ = ⌈logb (N + 1)⌉ ⇒ ℓ = Θ(logN)
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Space Complexity (2)

The space complexity for N is ℓ = Θ(logN)

Can we do better?

No!

◮ there are exactly bℓ combinations of ℓ symbols chosen from an
alphabet Σ with |Σ | = b

◮ i.e., you can not expressmore than bℓ values with ℓ symbols
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Adding Numbers

We can now represent n1 and n2 withΘ(log n1) andΘ(log n2) bits,
respectively

How do we add two numbers represented in base-b notation?

Theorem: the sum of three base-b digits (whose values are
x, y, z ≤ b − 1) can be represented with two base-b digits

Proof:
◮ case b = 2: ℓ = 2 since 1 + 1 + 1 = 3ten = 11two

◮ case b ≥ 3:

1. we can represent x + y + z in ℓ = ⌈logb (x + y + z + 1)⌉

2. x + y + z + 1 ≤ 3b, because x, y, z are three base-b digits, therefore
ℓ = ⌈logb (x + y + z + 1)⌉ ≤ logb 3b = logb 3 + 1

3. b ≥ 3, therefore logb 3 ≤ 1, therefore ℓ ≤ 2
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We know that three base-b digits add up to a number of up to two
base-b digits, so this is our building block

(xi, yi, zi) → (c, si)

So, given x and y

x = xℓ−1 . . . x1 x0

y = yℓ−1 . . . y1 y0

x + y =

0

s0

c0

s1

c1

. . .sℓ−1cℓ−1

ℓ + 1
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Adding Numbers (3)

Given two arrays of ℓ base-b digits, A and B

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

Is it correct? Yes

How long does it take?

Can we do better?
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Complexity

We are interested in T (ℓ) (remember that ℓ = Θ(logN))

ADD(A,B)

1 R = 0 // [0, . . . , 0] of size ℓ + 1
2 c = 0
3 for i = 1 to ℓ
4 (c, R[i]) = ADDTHREEDIGITS(A[i], B[i], c)

5 R[ℓ + 1] = c

6 return R

T (ℓ) = Θ(ℓ)

Can we do better? No!

◮ we have to at least look at the ℓ symbols from the input values

◮ wemust assign at least ℓ + 1 symbols for the result
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Multiplying Numbers

We can now add two numbers

Now, how do wemultiply two numbers?

Remember that our representation is a polynomial

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

multiplying x by a simple polynomial in b, say y = yib
i, we obtain

x × y = yi (xℓ−1b
ℓ−1+i + xℓ−2b

ℓ−2+i + · · · + x1b
i+1 + x0b

i)

Muliplying by bi is equivalent to shi�ing our representation to the le�
by i positions
◮ le�means in the direction of the most significant bits
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Multiplying Binary Numbers

Let’s now focus on binary numbers (i.e., base b = 2)

x = xℓ−1b
ℓ−1 + xℓ−2b

ℓ−2 + · · · + x1b + x0

where xi is either 0 or 1

For example, let x = 1001two and y = 1011two

x × y =
1 0 0 1 (1001 × 1)

+ 1 0 0 1 (1001 × 1 shi�ed by 1)
+ 0 0 0 0 (1001 × 0 shi�ed by 2)
+ 1 0 0 1 (1001 × 1 shi�ed by 3)

= 1 1 1 0 0 0 1 1 (1001 × 1011)
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1 R = 0
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MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 1 to ℓ
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

Is it correct? Yes

How long does it take?

Can we do better?
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Again we are interested in T (ℓ)

MULTIPLY(A,B)

1 R = 0
2 T = A

3 for i = 0 to ℓ − 1
4 if B[i] == 1
5 R = ADD(R, T)

6 T = SHIFTLEFT(T)

7 return R

T (ℓ) = Θ(ℓ2)

Can we do better? Yes!
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Again, we have

xy = (2ℓ/2xL + xR) (2
ℓ/2yL + yR)

= 2ℓxLyL + 2
ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR) (yR + yL) − xLyL − xRyR, so

xy = 2ℓxLyL + 2
ℓ/2((xL + xR) (yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR) (yR + yL), and xRyR

T (ℓ) = 3T (ℓ/2) + O(ℓ)

which, as we will see, leads to a much better complexity

T (ℓ) = O(ℓ log2 3) = O(ℓ1.59)


