Arithmetic Operations

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

March 2, 2012

Outline

■ Representing numbers

- Adding numbers

■ Multiplying numbers

Representing Numbers

■ How do we (human beings) represent numbers?

Representing Numbers

■ How do we (human beings) represent numbers?

■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)

Representing Numbers

■ How do we (human beings) represent numbers?
■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)
- a polynomial in $b=10$

Representing Numbers

■ How do we (human beings) represent numbers?
■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)
- a polynomial in $b=10$

■ For example

$$
n=311415992
$$

Representing Numbers

■ How do we (human beings) represent numbers?
■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)
- a polynomial in $b=10$
- For example

$$
n=\begin{array}{|l|l|l|l|l|l|l|}
\hline 3 & 1 & 4 & 1 & 5 & 9 & 2 \\
\hline
\end{array}
$$

Representing Numbers

■ How do we (human beings) represent numbers?
■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)
- a polynomial in $b=10$
- For example

\[

\]

Representing Numbers

■ How do we (human beings) represent numbers?
■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)
- a polynomial in $b=10$
- For example

\[

\]

Representing Numbers

■ How do we (human beings) represent numbers?
■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)
- a polynomial in $b=10$
- For example

\[

\]

Representing Numbers

■ How do we (human beings) represent numbers?

■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)
- a polynomial in $b=10$
- For example

\[

\]

Representing Numbers

■ How do we (human beings) represent numbers?

■ Using the decimal notation

- ten symbols: $0,1,2, \ldots, 9$ (why ten?)
- a polynomial in $b=10$
- For example

\[

\]

■ How do computers represent numbers?

Representing Numbers in a Computer

■ Computers work well with the binary representation

- two symbols: 0,1 (why two?)
- a polynomial in $b=2$

Representing Numbers in a Computer

■ Computers work well with the binary representation

- two symbols: 0,1 (why two?)
- a polynomial in $b=2$

■ For example

$$
n=1 \begin{array}{llllllll}
\\
n & 0 & 1 & 1 & 0 & 1 & 1
\end{array}
$$

Representing Numbers in a Computer

■ Computers work well with the binary representation

- two symbols: 0,1 (why two?)
- a polynomial in $b=2$

■ For example

$$
n=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{array}
$$

Representing Numbers in a Computer

■ Computers work well with the binary representation

- two symbols: 0,1 (why two?)
- a polynomial in $b=2$
- For example

\[

\]

Representing Numbers in a Computer

■ Computers work well with the binary representation

- two symbols: 0,1 (why two?)
- a polynomial in $b=2$
- For example

\[

\]

Representing Numbers in a Computer

■ Computers work well with the binary representation

- two symbols: 0,1 (why two?)
- a polynomial in $b=2$
- For example

\[

\]

Representing Numbers in a Computer

■ Computers work well with the binary representation

- two symbols: 0, 1 (why two?)
- a polynomial in $b=2$
- For example

$$
\begin{aligned}
& d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0} \quad 0 \leq d_{i}<b \\
& n=\begin{array}{|l|l|l|l|l|l}
\hline 1 & 0 & 1 & 1 & 0 & 1
\end{array} \quad 1 \quad \begin{array}{l}
1 \\
\hline
\end{array} \quad n=d_{6} b^{6}+d_{5} b^{5}+\cdots+d_{1} b^{1}+d_{0} b^{0} \\
& n=1 \times 64_{\text {ten }}+1 \times 16_{\text {ten }}+1 \times 8_{\text {ten }}+1 \times 2_{\text {ten }}+1 \times 1_{\text {ten }}=\ldots
\end{aligned}
$$

Representing Numbers in a Computer

■ Computers work well with the binary representation

- two symbols: 0,1 (why two?)
- a polynomial in $b=2$
- For example

$$
\begin{aligned}
& \quad \\
& n=1
\end{aligned}
$$

■ The usual questions

- Is this representation correct?
- How much does it cost? (This time in terms of space)
- Can we do better?

A Ternary Computer?

A Ternary Computer?

■ A ternary computer was actually built!

The Setun was a ternary (or trinary) computer developed in 1958 and used at Moscow State University until about 1965

Correctness

■ What does it even mean?

Correctness

■ What does it even mean?

■ There is at least one representation for each value

Correctness

■ What does it even mean?

■ There is at least one representation for each value

- A representation should be unambiguous
- i.e., there is at most one value for each representation

Correctness

■ What does it even mean?

■ There is at least one representation for each value

- A representation should be unambiguous
- i.e., there is at most one value for each representation

■ We don't care to say more about this

Space Complexity

- How many symbols do we need to represent a value N ?

Space Complexity

- How many symbols do we need to represent a value N ?

■ Or, what is the largest N we can represent with ℓ symbols?

Space Complexity

■ How many symbols do we need to represent a value N ?

■ Or, what is the largest N we can represent with ℓ symbols?

- With ℓ symbols we have

$$
N \leq d_{\ell-1} b^{\ell-1}+d_{\ell-2} b^{\ell-2}+\cdots+d_{1} b^{1}+d_{0} b^{0} \quad\left(0 \leq d_{i} \leq b-1\right)
$$

Space Complexity

- How many symbols do we need to represent a value N ?

■ Or, what is the largest N we can represent with ℓ symbols?

- With ℓ symbols we have

$$
\begin{array}{r}
N \leq d_{\ell-1} b^{\ell-1}+d_{\ell-2} b^{\ell-2}+\cdots+d_{1} b^{1}+d_{0} b^{0} \quad\left(0 \leq d_{i} \leq b-1\right) \\
N \leq(b-1) b^{\ell-1}+(b-1) b^{\ell-2}+\cdots+(b-1) b^{1}+b-1
\end{array}
$$

Space Complexity

■ How many symbols do we need to represent a value N ?

■ Or, what is the largest N we can represent with ℓ symbols?

- With ℓ symbols we have

$$
\begin{aligned}
& N \leq d_{\ell-1} b^{\ell-1}+d_{\ell-2} b^{\ell-2}+\cdots+d_{1} b^{1}+d_{0} b^{0} \quad\left(0 \leq d_{i} \leq b-1\right) \\
& \\
& \begin{aligned}
N & \leq(b-1) b^{\ell-1}+(b-1) b^{\ell-2}+\cdots+(b-1) b^{1}+b-1 \\
& =b^{\ell}-b^{\ell-1}+b^{\ell-1}-b^{\ell-2}+b^{\ell-2}-\cdots-b+b-1 \\
& =b^{\ell}-1
\end{aligned}
\end{aligned}
$$

Space Complexity

■ How many symbols do we need to represent a value N ?

■ Or, what is the largest N we can represent with ℓ symbols?

- With ℓ symbols we have

$$
\begin{aligned}
& N \leq d_{\ell-1} b^{\ell-1}+d_{\ell-2} b^{\ell-2}+\cdots+d_{1} b^{1}+d_{0} b^{0} \quad\left(0 \leq d_{i} \leq b-1\right) \\
& \\
& \begin{aligned}
N & \leq(b-1) b^{\ell-1}+(b-1) b^{\ell-2}+\cdots+(b-1) b^{1}+b-1 \\
& =b^{\ell}-b^{\ell-1}+b^{\ell-1}-b^{\ell-2}+b^{\ell-2}-\cdots-b+b-1 \\
& =b^{\ell}-1
\end{aligned}
\end{aligned}
$$

■ With ℓ symbols, the highest value is $N=b^{\ell}-1$

Space Complexity

- How many symbols do we need to represent a value N ?

■ Or, what is the largest N we can represent with ℓ symbols?

- With ℓ symbols we have

$$
\begin{aligned}
& N \leq d_{\ell-1} b^{\ell-1}+d_{\ell-2} b^{\ell-2}+\cdots+d_{1} b^{1}+d_{0} b^{0} \quad\left(0 \leq d_{i} \leq b-1\right) \\
& \\
& \begin{aligned}
N & \leq(b-1) b^{\ell-1}+(b-1) b^{\ell-2}+\cdots+(b-1) b^{1}+b-1 \\
& =b^{\ell}-b^{\ell-1}+b^{\ell-1}-b^{\ell-2}+b^{\ell-2}-\cdots-b+b-1 \\
& =b^{\ell}-1
\end{aligned}
\end{aligned}
$$

■ With ℓ symbols, the highest value is $N=b^{\ell}-1$

■ So, $\ell=\left\lceil\log _{b}(N+1)\right\rceil$

Space Complexity

- How many symbols do we need to represent a value N ?

■ Or, what is the largest N we can represent with ℓ symbols?

- With ℓ symbols we have

$$
\begin{aligned}
& N \leq d_{\ell-1} b^{\ell-1}+d_{\ell-2} b^{\ell-2}+\cdots+d_{1} b^{1}+d_{0} b^{0} \quad\left(0 \leq d_{i} \leq b-1\right) \\
& \\
& \begin{aligned}
N & \leq(b-1) b^{\ell-1}+(b-1) b^{\ell-2}+\cdots+(b-1) b^{1}+b-1 \\
& =b^{\ell}-b^{\ell-1}+b^{\ell-1}-b^{\ell-2}+b^{\ell-2}-\cdots-b+b-1 \\
& =b^{\ell}-1
\end{aligned}
\end{aligned}
$$

■ With ℓ symbols, the highest value is $N=b^{\ell}-1$
■ So, $\ell=\left\lceil\log _{b}(N+1)\right\rceil \Rightarrow \ell=\Theta(\log N)$

Space Complexity (2)

- The space complexity for N is $\ell=\Theta(\log N)$

Space Complexity (2)

- The space complexity for N is $\ell=\Theta(\log N)$

■ Can we do better?

Space Complexity (2)

- The space complexity for N is $\ell=\Theta(\log N)$

■ Can we do better?

■ No!

Space Complexity (2)

- The space complexity for N is $\ell=\Theta(\log N)$

■ Can we do better?

■ No!

- there are exactly b^{ℓ} combinations of ℓ symbols chosen from an alphabet Σ with $|\Sigma|=b$
- i.e., you can not express more than b^{ℓ} values with ℓ symbols

Adding Numbers

■ We can now represent n_{1} and n_{2} with $\Theta\left(\log n_{1}\right)$ and $\Theta\left(\log n_{2}\right)$ bits, respectively

- We can now represent n_{1} and n_{2} with $\Theta\left(\log n_{1}\right)$ and $\Theta\left(\log n_{2}\right)$ bits, respectively

■ How do we add two numbers represented in base-b notation?

Adding Numbers

■ We can now represent n_{1} and n_{2} with $\Theta\left(\log n_{1}\right)$ and $\Theta\left(\log n_{2}\right)$ bits, respectively

■ How do we add two numbers represented in base-b notation?
■ Theorem: the sum of three base- b digits (whose values are $x, y, z \leq b-1$) can be represented with two base- b digits

Adding Numbers

■ We can now represent n_{1} and n_{2} with $\Theta\left(\log n_{1}\right)$ and $\Theta\left(\log n_{2}\right)$ bits, respectively

■ How do we add two numbers represented in base-b notation?

■ Theorem: the sum of three base- b digits (whose values are $x, y, z \leq b-1$) can be represented with two base- b digits Proof:

- case $b=2$: $\ell=2$ since $1+1+1=3_{\text {ten }}=11_{\text {two }}$

Adding Numbers

■ We can now represent n_{1} and n_{2} with $\Theta\left(\log n_{1}\right)$ and $\Theta\left(\log n_{2}\right)$ bits, respectively

■ How do we add two numbers represented in base-b notation?

■ Theorem: the sum of three base- b digits (whose values are $x, y, z \leq b-1$) can be represented with two base- b digits Proof:

- case $b=2$: $\ell=2$ since $1+1+1=3_{\text {ten }}=11_{\text {two }}$
- case $b \geq 3$:

Adding Numbers

■ We can now represent n_{1} and n_{2} with $\Theta\left(\log n_{1}\right)$ and $\Theta\left(\log n_{2}\right)$ bits, respectively

■ How do we add two numbers represented in base-b notation?

■ Theorem: the sum of three base- b digits (whose values are $x, y, z \leq b-1$) can be represented with two base- b digits Proof:

- case $b=2$: $\ell=2$ since $1+1+1=3_{\text {ten }}=11_{\text {two }}$
- case $b \geq 3$:

1. we can represent $x+y+z$ in $\ell=\left\lceil\log _{b}(x+y+z+1)\right\rceil$

Adding Numbers

■ We can now represent n_{1} and n_{2} with $\Theta\left(\log n_{1}\right)$ and $\Theta\left(\log n_{2}\right)$ bits, respectively

■ How do we add two numbers represented in base-b notation?

■ Theorem: the sum of three base- b digits (whose values are $x, y, z \leq b-1$) can be represented with two base- b digits Proof:

- case $b=2$: $\ell=2$ since $1+1+1=3_{\text {ten }}=11_{\text {two }}$
- case $b \geq 3$:

1. we can represent $x+y+z$ in $\ell=\left\lceil\log _{b}(x+y+z+1)\right\rceil$
2. $x+y+z+1 \leq 3 b$, because x, y, z are three base- b digits, therefore $\ell=\left\lceil\log _{b}(x+y+z+1)\right\rceil \leq \log _{b} 3 b=\log _{b} 3+1$

Adding Numbers

■ We can now represent n_{1} and n_{2} with $\Theta\left(\log n_{1}\right)$ and $\Theta\left(\log n_{2}\right)$ bits, respectively

■ How do we add two numbers represented in base-b notation?

■ Theorem: the sum of three base- b digits (whose values are $x, y, z \leq b-1$) can be represented with two base- b digits Proof:

- case $b=2$: $\ell=2$ since $1+1+1=3_{\text {ten }}=11_{\text {two }}$
- case $b \geq 3$:

1. we can represent $x+y+z$ in $\ell=\left\lceil\log _{b}(x+y+z+1)\right\rceil$
2. $x+y+z+1 \leq 3 b$, because x, y, z are three base- b digits, therefore $\ell=\left\lceil\log _{b}(x+y+z+1)\right\rceil \leq \log _{b} 3 b=\log _{b} 3+1$
3. $b \geq 3$, therefore $\log _{b} 3 \leq 1$, therefore $\ell \leq 2$

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

- So, given x and y

$$
\begin{array}{rlllll}
x & = & x_{\ell-1} & \cdots & x_{1} & x_{0} \\
y & = & y_{\ell-1} & \cdots & & y_{1} \\
y_{0} \\
x+y & = & & & &
\end{array}
$$

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

- So, given x and y

$$
\begin{array}{rlllll}
x & = & x_{\ell-1} & \cdots & x_{1} & x_{0} \\
y & = & y_{\ell-1} & \cdots & & y_{1} \\
y_{0} \\
x+y & = & & & &
\end{array}
$$

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

- So, given x and y

\[

\]

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

- So, given x and y

$$
\begin{array}{rlllll}
x & = & x_{\ell-1} & \cdots & x_{1} & x_{0} \\
y & = & y_{\ell-1} & \cdots & & y_{1} \\
y_{0} \\
x+y & = & & & & \\
& & & & s_{0}
\end{array}
$$

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

- So, given x and y

			c_{0}	0
$x=$	$x_{\ell-1}$	\ldots	x_{1}	x_{0}
$y=$	$y_{\ell-1}$	\ldots	y_{1}	y_{0}
$y=$			s_{1}	s_{0}

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

- So, given x and y

$$
\begin{array}{rllllll}
x & = & & & c_{1} & c_{0} & 0 \\
y & = & x_{\ell-1} & \cdots & & x_{1} & x_{0} \\
x+y & = & y_{\ell-1} & \cdots & & y_{1} & y_{0} \\
x & & & & s_{1} & s_{0}
\end{array}
$$

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

■ So, given x and y

$$
\begin{gathered}
x=\begin{array}{c}
c_{\ell-1} \\
y=\begin{array}{c}
c_{\ell-2} \\
x_{\ell-1} \\
y_{\ell-1} \\
x+y= \\
\ldots
\end{array} \\
s_{\ell-1}
\end{array} \\
\ldots
\end{gathered}
$$

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

- So, given x and y

$$
\begin{array}{cccccc}
x= & & & c_{1} & c_{0} & 0 \\
y= & x_{\ell-1} & \ldots & & x_{1} & x_{0} \\
x+y & =c_{\ell-1} & s_{\ell-1} & \ldots & & y_{1} \\
s_{\ell-1} & \ldots & y_{0} \\
x & & s_{1} & s_{0}
\end{array}
$$

Adding Numbers (2)

■ We know that three base-b digits add up to a number of up to two base-b digits, so this is our building block

$$
\left(x_{i}, y_{i}, z_{i}\right) \rightarrow\left(c, s_{i}\right)
$$

- So, given x and y

$$
\begin{array}{rccccc}
x= & & & c_{1} & c_{0} & 0 \\
y= & x_{\ell-1} & \ldots & & x_{1} & x_{0} \\
x+y= & y_{\ell-1} & \ldots & & y_{1} & y_{0} \\
c_{\ell-1} & s_{\ell-1} & \ldots & s_{1} & s_{0} \\
\underbrace{\ell+1} & & &
\end{array}
$$

Adding Numbers (3)

■ Given two arrays of ℓ base- b digits, A and B

Adding Numbers (3)

■ Given two arrays of ℓ base- b digits, A and B

```
\(\operatorname{Add}(A, B)\)
\(1 \quad R=0 / /[0, \ldots, 0]\) of size \(\ell+1\)
\(2 c=0\)
3 for \(i=1\) to \(\ell\)
\(4(c, R[i])=\operatorname{AddThREEDigits}(A[i], B[i], c)\)
\(5 \quad R[\ell+1]=c\)
6 return \(R\)
```


Adding Numbers (3)

■ Given two arrays of ℓ base- b digits, A and B

```
\(\operatorname{Add}(A, B)\)
\(1 \quad R=0 / /[0, \ldots, 0]\) of size \(\ell+1\)
\(2 c=0\)
3 for \(i=1\) to \(\ell\)
\(4(c, R[i])=\operatorname{AddThREEDigits}(A[i], B[i], c)\)
\(5 \quad R[\ell+1]=c\)
6 return \(R\)
```

■ Is it correct?

Adding Numbers (3)

■ Given two arrays of ℓ base- b digits, A and B

```
\(\operatorname{Add}(A, B)\)
\(1 \quad R=0 / /[0, \ldots, 0]\) of size \(\ell+1\)
\(2 c=0\)
3 for \(i=1\) to \(\ell\)
\(4(c, R[i])=\operatorname{AddThREEDigits}(A[i], B[i], c)\)
\(5 \quad R[\ell+1]=c\)
6 return \(R\)
```

■ Is it correct? Yes

Adding Numbers (3)

■ Given two arrays of ℓ base- b digits, A and B

$$
\begin{array}{ll}
\operatorname{ADD}(A, B) \\
1 & R=0 / /[0, \ldots, 0] \text { of size } \ell+1 \\
2 & c=0 \\
3 & \text { for } i=1 \text { to } \ell \\
4 & (c, R[i])=\text { AddThreEDIGITS }(A[i], B[i], c) \\
5 & R[\ell+1]=c \\
6 & \text { return } R
\end{array}
$$

■ Is it correct? Yes

■ How long does it take?

■ Can we do better?

Complexity

Complexity

■ We are interested in $T(\ell)$ (remember that $\ell=\Theta(\log N)$)

Complexity

■ We are interested in $T(\ell)$ (remember that $\ell=\Theta(\log N)$)

```
\(\operatorname{Add}(A, B)\)
\(1 \quad R=0 / /[0, \ldots, 0]\) of size \(\ell+1\)
\(2 c=0\)
3 for \(i=1\) to \(\ell\)
\(4(c, R[i])=\operatorname{AddThreeDigits}(A[i], B[i], c)\)
\(5 R[\ell+1]=c\)
6 return \(R\)
```


Complexity

■ We are interested in $T(\ell)$ (remember that $\ell=\Theta(\log N)$)

```
\(\operatorname{Add}(A, B)\)
\(1 \quad R=0 / /[0, \ldots, 0]\) of size \(\ell+1\)
\(2 c=0\)
3 for \(i=1\) to \(\ell\)
\(4(c, R[i])=\operatorname{AddThreeDigits}(A[i], B[i], c)\)
\(5 R[\ell+1]=c\)
6 return \(R\)
```

$$
T(\ell)=\Theta(\ell)
$$

Complexity

■ We are interested in $T(\ell)$ (remember that $\ell=\Theta(\log N)$)

```
\(\operatorname{Add}(A, B)\)
\(1 \quad R=0 / /[0, \ldots, 0]\) of size \(\ell+1\)
\(2 c=0\)
3 for \(i=1\) to \(\ell\)
\(4(c, R[i])=\operatorname{AddThREEDigits}(A[i], B[i], c)\)
\(5 R[\ell+1]=C\)
6 return \(R\)
```

$$
T(\ell)=\Theta(\ell)
$$

■ Can we do better?

■ We are interested in $T(\ell)($ remember that $\ell=\Theta(\log N))$

```
\(\operatorname{Add}(A, B)\)
\(1 \quad R=0 / /[0, \ldots, 0]\) of size \(\ell+1\)
\(2 c=0\)
3 for \(i=1\) to \(\ell\)
\(4(c, R[i])=\operatorname{AddThREEDigits}(A[i], B[i], c)\)
\(5 R[\ell+1]=c\)
6 return \(R\)
```

$$
T(\ell)=\Theta(\ell)
$$

■ Can we do better? No!

- we have to at least look at the ℓ symbols from the input values
- we must assign at least $\ell+1$ symbols for the result

Multiplying Numbers

- We can now add two numbers

■ Now, how do we multiply two numbers?

Multiplying Numbers

■ We can now add two numbers

■ Now, how do we multiply two numbers?

■ Remember that our representation is a polynomial

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

Multiplying Numbers

- We can now add two numbers

■ Now, how do we multiply two numbers?

■ Remember that our representation is a polynomial

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

multiplying x by a simple polynomial in b, say $y=y_{i} b^{i}$, we obtain

$$
x \times y=y_{i}\left(x_{\ell-1} b^{\ell-1+i}+x_{\ell-2} b^{\ell-2+i}+\cdots+x_{1} b^{i+1}+x_{0} b^{i}\right)
$$

Multiplying Numbers

- We can now add two numbers

■ Now, how do we multiply two numbers?

■ Remember that our representation is a polynomial

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

multiplying x by a simple polynomial in b, say $y=y_{i} b^{i}$, we obtain

$$
x \times y=y_{i}\left(x_{\ell-1} b^{\ell-1+i}+x_{\ell-2} b^{\ell-2+i}+\cdots+x_{1} b^{i+1}+x_{0} b^{i}\right)
$$

■ Muliplying by b^{i} is equivalent to shifting our representation to the left by i positions

- left means in the direction of the most significant bits

Multiplying Binary Numbers

■ Let's now focus on binary numbers (i.e., base $b=2$)

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

where x_{i} is either 0 or 1

Multiplying Binary Numbers

■ Let's now focus on binary numbers (i.e., base $b=2$)

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

where x_{i} is either 0 or 1

■ For example, let $x=1001_{\text {two }}$ and $y=1011_{\text {two }}$

Multiplying Binary Numbers

■ Let's now focus on binary numbers (i.e., base $b=2$)

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

where x_{i} is either 0 or 1

■ For example, let $x=1001_{\text {two }}$ and $y=1011_{\text {two }}$
$x \times y=$

$$
\begin{array}{lllll}
1 & 0 & 0 & 1 & (1001 \times 1)
\end{array}
$$

Multiplying Binary Numbers

■ Let's now focus on binary numbers (i.e., base $b=2$)

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

where x_{i} is either 0 or 1

■ For example, let $x=1001_{\text {two }}$ and $y=1011_{\text {two }}$
$x \times y=$

		1	0	0	1	(1001×1)
+	1	0	0	1		$(1001 \times 1$ shifted by 1$)$

Multiplying Binary Numbers

■ Let's now focus on binary numbers (i.e., base $b=2$)

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

where x_{i} is either 0 or 1

■ For example, let $x=1001_{\text {two }}$ and $y=1011_{\text {two }}$
$x \times y=$

Multiplying Binary Numbers

■ Let's now focus on binary numbers (i.e., base $b=2$)

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

where x_{i} is either 0 or 1

■ For example, let $x=1001_{\text {two }}$ and $y=1011_{\text {two }}$
$x \times y=$

				1	0	0	1	(1001×1)
+			1	0	0	1		$(1001 \times 1$ shifted by 1$)$
+		0	0	0	0			$(1001 \times 0$ shifted by 2$)$
+	1	0	0	1				$(1001 \times 1$ shifted by 3$)$

Multiplying Binary Numbers

■ Let's now focus on binary numbers (i.e., base $b=2$)

$$
x=x_{\ell-1} b^{\ell-1}+x_{\ell-2} b^{\ell-2}+\cdots+x_{1} b+x_{0}
$$

where x_{i} is either 0 or 1

■ For example, let $x=1001_{\text {two }}$ and $y=1011_{\text {two }}$
$x \times y=$
$\left.\begin{array}{lllllllll} & & & & 1 & 0 & 0 & 1 & (1001 \times 1) \\ + & & & 1 & 0 & 0 & 1 & & (1001 \times 1 \text { shifted by } 1) \\ + & & 0 & 0 & 0 & 0 & & & (1001 \times 0 \text { shifted by } 2) \\ + & & 1 & 0 & 0 & 1 & & & \\ (1001 \times 1 \text { shifted by } 3) \\ \hline= & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}\right)(1001 \times 1011)$.

Multiplying Numbers (2)

- Given two arrays of ℓ binary digits, A and B

Multiplying Numbers (2)

- Given two arrays of ℓ binary digits, A and B

	LTIPLY (A, B)
1	$R=0$
2	$T=A$
3	for $i=1$ to ℓ
4	if $B[i]==1$
5	$R=\mathbf{A D D}(R, T)$
6	$T=\mathbf{S H I F T L E F T}(T)$
7	return R

Multiplying Numbers (2)

- Given two arrays of ℓ binary digits, A and B

Multiply (A, B)	
1	$R=0$
2	$T=A$
3	for $i=1$ to l
4	if $B[i]==1$
5	$R=\mathbf{A d d}(R, T)$
6	$T=\mathbf{S H I F T L E F T}(T)$
	return R

■ Is it correct?

Multiplying Numbers (2)

- Given two arrays of ℓ binary digits, A and B

Multiply (A, B)	
1	$R=0$
2	$T=A$
3	for $i=1$ to ℓ
4	if $B[i]==1$
5	$R=\mathbf{A d d}(R, T)$
6	$T=\mathbf{S h i f t L e f t}(T)$
	return R

■ Is it correct? Yes

Multiplying Numbers (2)

- Given two arrays of ℓ binary digits, A and B

■ Is it correct? Yes

■ How long does it take?

■ Can we do better?

Complexity

■ Again we are interested in $T(\ell)$

Complexity

■ Again we are interested in $T(\ell)$

$$
\begin{array}{ll}
\text { MuLTIPLY }(A, B) \\
1 & R=0 \\
2 & T=A \\
3 & \text { for } i=0 \text { to } \ell-1 \\
4 & \text { if } B[i]==1 \\
5 & R=\operatorname{Add}(R, T) \\
6 & T=\operatorname{SHIFTLEFT}(T) \\
7 & \text { return } R
\end{array}
$$

Complexity

■ Again we are interested in $T(\ell)$

```
Multiply \((A, B)\)
\(\begin{array}{ll}1 & R=0 \\ 2 & T=A\end{array}\)
3 for \(i=0\) to \(\ell-1\)
4 if \(B[i]==1\)
\(5 \quad R=\boldsymbol{A D D}(R, T)\)
\(6 \quad T=\operatorname{ShiftLeft}(T)\)
7 return \(R\)
```

$$
T(\ell)=\Theta\left(\ell^{2}\right)
$$

Complexity

■ Again we are interested in $T(\ell)$

```
\(\operatorname{Multiply}(A, B)\)
\(\begin{array}{ll}1 & R=0 \\ 2 & T=A\end{array}\)
3 for \(i=0\) to \(\ell-1\)
4 if \(B[i]==1\)
\(5 \quad R=\boldsymbol{A D D}(R, T)\)
\(6 \quad T=\operatorname{ShiftLeft}(T)\)
7 return \(R\)
```

$$
T(\ell)=\Theta\left(\ell^{2}\right)
$$

■ Can we do better?

Complexity

- Again we are interested in $T(\ell)$

$$
T(\ell)=\theta\left(\ell^{2}\right)
$$

■ Can we do better? Yes!

A Better Way to Multiply

A Better Way to Multiply

■ Intuition: let's try to split numbers (their representations) in half

A Better Way to Multiply

■ Intuition: let's try to split numbers (their representations) in half

$$
x=X_{L} \quad X_{R} \text { and } y=Y_{L}, Y_{R}
$$

A Better Way to Multiply

■ Intuition: let's try to split numbers (their representations) in half
$x=X_{L} X_{R}$ and $y=Y_{L}, Y_{R}$
which means $x=2^{\ell / 2} x_{L}+x_{R}$ and $y=2^{\ell / 2} y_{L}+y_{R}$, so...

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying four numbers of $\ell / 2$ bits...

A Better Way to Multiply

■ Intuition: let's try to split numbers (their representations) in half
$x=X_{L} X_{R}$ and $y=Y_{L}, Y_{R}$
which means $x=2^{\ell / 2} x_{L}+x_{R}$ and $y=2^{\ell / 2} y_{L}+y_{R}$, so...

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying four numbers of $\ell / 2$ bits...

$$
T(\ell)=4 T(\ell / 2)+O(\ell)
$$

A Better Way to Multiply

■ Intuition: let's try to split numbers (their representations) in half
$x=X_{L} X_{R}$ and $y=Y_{L}, Y_{R}$
which means $x=2^{\ell / 2} x_{L}+x_{R}$ and $y=2^{\ell / 2} y_{L}+y_{R}$, so...

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

we reduced the problem of multiplying two numbers of ℓ bits into the problem of multiplying four numbers of $\ell / 2$ bits...

$$
\begin{gathered}
T(\ell)=4 T(\ell / 2)+O(\ell) \\
T(\ell)=\Theta\left(\ell^{2}\right)
\end{gathered}
$$

Almost There

Almost There

- Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Almost There

- Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

Almost There

- Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

$$
x y=2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
$$

Almost There

- Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

$$
x y=2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
$$

Only 3 multiplications: $x_{L} y_{L},\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)$, and $x_{R} y_{R}$

Almost There

- Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

$$
x y=2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
$$

Only 3 multiplications: $x_{L} y_{L},\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)$, and $x_{R} y_{R}$

$$
T(\ell)=3 T(\ell / 2)+O(\ell)
$$

Almost There

- Again, we have

$$
\begin{aligned}
x y & =\left(2^{\ell / 2} x_{L}+x_{R}\right)\left(2^{\ell / 2} y_{L}+y_{R}\right) \\
& =2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

but notice that $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}$, so

$$
x y=2^{\ell} x_{L} y_{L}+2^{\ell / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
$$

Only 3 multiplications: $x_{L} y_{L},\left(x_{L}+x_{R}\right)\left(y_{R}+y_{L}\right)$, and $x_{R} y_{R}$

$$
T(\ell)=3 T(\ell / 2)+O(\ell)
$$

which, as we will see, leads to a much better complexity

$$
T(\ell)=O\left(\ell^{\log _{2} 3}\right)=O\left(\ell^{1.59}\right)
$$

