More on Sorting: Quick Sort and Heap Sort

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
March 23, 2023

Outline

- Another divide-and-conquer sorting algorithm
- The heap

■ Heap sort

Sorting Algorithms Seen So Far

Sorting Algorithms Seen So Far

Algorithm	Complexity	In place?	
worst	average		

Sorting Algorithms Seen So Far

	Algorithm	Complexity	In place?
	worst	average	best

INSERTION-SORT

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT				

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes

Merge-Sort

Sorting Algorithms Seen So Far

Algorithm	Complexity			In place?	
	worst	average	best		
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes	
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes	
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no	

Sorting Algorithms Seen So Far

Algorithm	Complexity			In place?
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no
??		$\Theta(n \log n)$		yes
??	$\Theta(n \log n)$		yes	

Using the Partitioning Algorithm

■ Basic step: partition A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater than v

Using the Partitioning Algorithm

■ Basic step: partition A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater than v

$$
\text { E.g., } A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle
$$

Using the Partitioning Algorithm

■ Basic step: partition A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater than v
E.g., $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$
we pick a splitting value, say $v=5$

Using the Partitioning Algorithm

- Basic step: partition A in three parts based on a chosen value $v \in A$
- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater than v
E.g., $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle
$$

- Basic step: partition A in three parts based on a chosen value $v \in A$
- A_{L} contains the set of elements that are less than v
- A_{v} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater than v
E.g., $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle \quad A_{v}=\langle 5,5\rangle
$$

Using the Partitioning Algorithm

■ Basic step: partition A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{V} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater than v
E.g., $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle \quad A_{V}=\langle 5,5\rangle \quad A_{R}=\langle 36,21,8,13,11,20\rangle
$$

Using the Partitioning Algorithm

■ Basic step: partition A in three parts based on a chosen value $v \in A$

- A_{L} contains the set of elements that are less than v
- A_{v} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater than v
E.g., $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle \quad A_{V}=\langle 5,5\rangle \quad A_{R}=\langle 36,21,8,13,11,20\rangle
$$

- Can we use the same idea for sorting A?

Using the Partitioning Algorithm

- Basic step: partition A in three parts based on a chosen value $v \in A$
- A_{L} contains the set of elements that are less than v
- A_{v} contains the set of elements that are equal to v
- A_{R} contains the set of elements that are greater than v
E.g., $A=\langle 2,36,5,21,8,13,11,20,5,4,1\rangle$
we pick a splitting value, say $v=5$

$$
A_{L}=\langle 2,4,1\rangle \quad A_{V}=\langle 5,5\rangle \quad A_{R}=\langle 36,21,8,13,11,20\rangle
$$

- Can we use the same idea for sorting A?
- Can we partition A in place?

Another Strategy for Sorting

■ Problem: sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

2	36	4	21	8	13	11	20	5	5	1

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

| 2 | 36 | 4 | 21 | 8 | 13 | 11 | 20 | 5 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Another Strategy for Sorting

- Problem: sorting

■ Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$

- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

| 2 | 36 | 4 | 21 | 8 | 13 | 11 | 20 | 5 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad v=8$

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

$$
q=6
$$

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

Another Strategy for Sorting

- Problem: sorting
- Idea: rearrange the sequence $A[1 \ldots n]$ in three parts based on a chosen "pivot" value $v \in A$
- $A[1 \ldots q-1]$ contain elements that are less than or equal to v
- $A[q]=v$
- $A[q+1 \ldots n]$ contain elements that are greater than v

Another Divide-and-Conquer for Sorting

■ Divide:

■ Divide: partition A in $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$ such that

$$
1 \leq i<q<j \leq n \Rightarrow A[i] \leq A[q] \leq A[j]
$$

■ Divide: partition A in $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$ such that

$$
1 \leq i<q<j \leq n \Rightarrow A[i] \leq A[q] \leq A[j]
$$

■ Conquer:

- Divide: partition A in $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$ such that

$$
1 \leq i<q<j \leq n \Rightarrow A[i] \leq A[q] \leq A[j]
$$

- Conquer: sort $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$

■ Divide: partition A in $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$ such that

$$
1 \leq i<q<j \leq n \Rightarrow A[i] \leq A[q] \leq A[j]
$$

■ Conquer: $\operatorname{sort} A[1 \ldots q-1]$ and $A[q+1 \ldots n]$
■ Combine:

- Divide: partition A in $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$ such that

$$
1 \leq i<q<j \leq n \Rightarrow A[i] \leq A[q] \leq A[j]
$$

- Conquer: sort $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$
- Combine: nothing to do here
- notice the difference with MERGESORT

■ Divide: partition A in $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$ such that

$$
1 \leq i<q<j \leq n \Rightarrow A[i] \leq A[q] \leq A[j]
$$

■ Conquer: $\operatorname{sort} A[1 \ldots q-1]$ and $A[q+1 \ldots n]$
■ Combine: nothing to do here

- notice the difference with MERGESORT

$$
\begin{aligned}
& \text { QuickSort(A, begin, end) } \\
& 1 \text { if begin < end } \\
& 2 \text { q = PARTITION(A, begin, end) } \\
& 3 \text { QuickSort (} A \text {, begin, } q \text { - 1) } \\
& 4 \text { QUICKSORT }(A, q+1 \text {, end) }
\end{aligned}
$$

Partition

■ Start with $q=1$

- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right

■ Start with $q=1$

- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

■ Start with $q=1$

- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

36	11	5	21	1	13	2	20	5	4	8

■ Start with $q=1$

- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

36	11	5	21	1	13	2	20	5	4	8

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right

■ Loop invariant

- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right

■ Loop invariant

- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

■ Start with $q=1$

- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

- Start with $q=1$
- i.e., assume all elements are greater than the pivot
- Scan the array left-to-right, starting at position 2
- If an element $A[i]$ is less than or equal to pivot, then swap it with the current q position and shift q to the right
- Loop invariant
- begin $\leq k<q \Rightarrow A[k] \leq v$
- $q<k<i \Rightarrow A[k]>v$

q										
5	1	2	5	4	8	36	20	21	11	13

Complete QuIckSORT Algorithm

```
Partition(A, begin, end)
1 q = begin
2 v = A[end]
3 for i = begin to end
4 if }A[i]\leq
5wap A[i] and A[q]
6 q=q+1
7 return q-1
```

```
QuickSORT(A, begin, end)
1 if begin < end
2 q = PARTItION(A, begin, end)
3 QUICKSORT(A, begin,q-1)
4 QUicKSORT(A,q+1, end)
```

```
Partition(A, begin, end)
\(1 \quad q=\) begin
\(2 \quad v=A[\) end]
3 for \(i=\) begin to end
4 if \(A[i] \leq v\)
\(5 \quad \operatorname{swap} A[i]\) and \(A[q]\)
\(6 \quad q=q+1\)
7 return \(q\) - 1
```

```
Partition(A, begin, end)
\(1 \quad q=\) begin
\(2 \quad v=A[\) end]
3 for \(i=\) begin to end
\(4 \quad\) if \(A[i] \leq v\)
    \(\operatorname{swap} A[i]\) and \(A[q]\)
    \(q=q+1\)
    return \(q\) - 1
```

$$
T(n)=\Theta(n)
$$

```
QuICKSORT(A, begin, end)
1 if begin < end
2 q = PARTITION(A, begin, end)
3 QuICKSORT(A, begin, q-1)
4 QuickSORt(A,q+1, end)
```

```
QuICKSORT(A, begin, end)
1 if begin < end
2 q = PARtition(A, begin, end)
3 QuICKSORT(A, begin, q-1)
4 QuickSort(A,q+1, end)
```

■ Worst case

```
QuICKSORT(A, begin, end)
1 if begin < end
2 q = PARtition(A, begin, end)
3 QuICKSORT(A, begin, q-1)
4 QUickSort(A,q+1, end)
```

■ Worst case

- $q=$ begin or $q=$ end

Complexity of QUICKSORT

```
QUICKSORT(A, begin, end)
1 if begin < end
2 q = PARTITION(A, begin, end)
3 QuICKSORT(A, begin, q-1)
4 QUickSort(A,q+1, end)
```

■ Worst case

- q = begin or $q=$ end
- the partition transforms P of size n in P of size $n-1$

```
QUICKSORT(A, begin, end)
1 if begin < end
2 q = PARtition(A, begin, end)
3 QuICKSORT(A, begin, q-1)
4 QUickSort(A,q+1, end)
```

■ Worst case

- q = begin or $q=$ end
- the partition transforms P of size n in P of size $n-1$

$$
T(n)=T(n-1)+\Theta(n)
$$

```
QUICKSORT(A, begin, end)
1 if begin < end
2 q = PARtition(A, begin, end)
3 QuickSORT(A, begin, q-1)
4 QUickSORt(A,q+1, end)
```

■ Worst case

- q = begin or $q=$ end
- the partition transforms P of size n in P of size $n-1$

$$
\begin{gathered}
T(n)=T(n-1)+\Theta(n) \\
T(n)=\Theta\left(n^{2}\right)
\end{gathered}
$$

Complexity of QuICKSORT (2)

```
QuICKSORT(A, begin, end)
1 if begin < end
2 q = PARtition(A, begin, end)
3 QuICKSORT(A, begin,q-1)
4 QuickSort(A,q+1, end)
```


Complexity of QuICKSORT (2)

```
QuICKSORT(A, begin, end)
1 if begin < end
2 q = PARtition(A, begin, end)
3 QuICKSORT(A, begin,q-1)
4 QuickSort(A,q+1, end)
```

■ Best case

Complexity of QuICKSORT (2)

QuickSort (A, begin, end)
 1 if begin < end
 2 q = Partition(A, begin, end)
 3 QUickSort (A, begin, q-1)
 4 QUickSort $(A, q+1$, end)

- Best case
- $q=\lceil n / 2\rceil$

Complexity of QuICKSORT (2)

```
QuickSort (A, begin, end)
1 if begin < end
2 q = Partition(A, begin, end)
3 QuickSort (A, begin, q-1)
4 QUickSort \((A, q+1\), end)
```

- Best case
- $q=\lceil n / 2\rceil$
- the partition transforms P of size n into two problems P of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil-1$, respectively

Complexity of QuICKSORT (2)

```
QuickSort(A, begin, end)
1 if begin < end
\(2 q=\operatorname{PARtition}(A\), begin, end)
3 QuickSort (A, begin, \(q\) - 1)
4 QUickSort \((A, q+1\), end)
```

- Best case
- $q=\lceil n / 2\rceil$
- the partition transforms P of size n into two problems P of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil-1$, respectively

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

Complexity of QuICKSORT (2)

```
QuickSort (A, begin, end)
1 if begin < end
\(2 q=\operatorname{PARtition}(A\), begin, end)
3 QuickSort (A, begin, \(q\) - 1)
4 QUickSort \((A, q+1\), end)
```

- Best case
- $q=\lceil n / 2\rceil$
- the partition transforms P of size n into two problems P of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil-1$, respectively

$$
\begin{gathered}
T(n)=2 T(n / 2)+\Theta(n) \\
T(n)=\Theta(n \log n)
\end{gathered}
$$

Sorting Algorithms Seen So Far

Sorting Algorithms Seen So Far

Algorithm	Complexity		In place?	
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no

Sorting Algorithms Seen So Far

Algorithm	Complexity			In place?	
	worst	average	best		
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes	
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes	
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no	
OuIcKSORT					

QUICKSORT

Sorting Algorithms Seen So Far

Algorithm	Complexity			In place?	
	worst	average	best		
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes	
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes	
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no	
QUICKSORT	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes	

Sorting Algorithms Seen So Far

Algorithm	Complexity			In place?
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no
QUICKSORT	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes
??	$\Theta(n \log n)$			yes

- Our first real data structure
- Our first real data structure
- Interface

■ Our first real data structure

- Interface
- BUILD-MAX-HEAP (A) rearranges A into a max-heap
- Heap-Insert $(H$, key $)$ inserts key in the heap
- Heap-Extract-Max (H) extracts the maximum key
- H.heap-size is the number of keys in H

■ Our first real data structure

- Interface
- BUILD-MAX-HEAP (A) rearranges A into a max-heap
- Heap-Insert $(H$, key $)$ inserts key in the heap
- Heap-Extract-Max (H) extracts the maximum key
- H.heap-size is the number of keys in H
- Two kinds of binary heaps

■ Our first real data structure

- Interface
- BuIld-Max-Heap (A) rearranges A into a max-heap
- Heap-Insert $(H$, key) inserts key in the heap
- Heap-Extract-Max (H) extracts the maximum key
- H.heap-size is the number of keys in H
- Two kinds of binary heaps
- max-heaps

■ Our first real data structure

- Interface
- BUILD-MAX-HEAP (A) rearranges A into a max-heap
- Heap-Insert $(H$, key) inserts key in the heap
- Heap-Extract-Max (H) extracts the maximum key
- H.heap-size is the number of keys in H
- Two kinds of binary heaps
- max-heaps
- min-heaps

■ Our first real data structure

- Interface
- BuIld-Max-Heap (A) rearranges A into a max-heap
- Heap-Insert $(H$, key) inserts key in the heap
- Heap-Extract-Max (H) extracts the maximum key
- H.heap-size is the number of keys in H
- Two kinds of binary heaps
- max-heaps
- min-heaps

■ Useful applications

■ Our first real data structure

- Interface
- BUILD-MAX-HEAP (A) rearranges A into a max-heap
- Heap-Insert $(H$, key) inserts key in the heap
- Heap-Extract-Max (H) extracts the maximum key
- H.heap-size is the number of keys in H
- Two kinds of binary heaps
- max-heaps
- min-heaps

■ Useful applications

- sorting

■ Our first real data structure

- Interface
- BUILD-MAX-HEAP (A) rearranges A into a max-heap
- Heap-Insert $(H$, key) inserts key in the heap
- Heap-Extract-Max (H) extracts the maximum key
- H.heap-size is the number of keys in H
- Two kinds of binary heaps
- max-heaps
- min-heaps

■ Useful applications

- sorting
- priority queue

Binary Heap: Structure

■ Conceptually a full binary tree

Binary Heap: Structure

- Conceptually a full binary tree

- Conceptually a full binary tree

- Conceptually a full binary tree

- Implemented as an array
- Conceptually a full binary tree

■ Implemented as an array

- Conceptually a full binary tree

- Implemented as an array

Binary Heap: Properties

Binary Heap: Properties

Binary Heap: Properties

Parent(i)
return $\lfloor i / 2\rfloor$
Left (i)
return $2 i$
Right (i)
return $2 i+1$

Binary Heap: Properties

Binary Heap: Properties

Binary Heap: Properties

- Max-heap property: for all $i>1$ A[PARENT$(i)] \geq A[i]$

Parent (i) return $\lfloor i / 2\rfloor$
Left ${ }^{(i)}$
return $2 i$
Right (i)
return $2 i+1$

- Max-heap property: for all $i>1$ A[PARENT$(i)] \geq A[i]$

Max-heap property: for all $i>1, A[\operatorname{PARENT}(i)] \geq A[i]$
E.g.,

- Max-heap property: for all $i>1$ A[PARENT$(i)] \geq A[i]$

E.g.,

- Max-heap property: for all $i>1$ A[PARENT$(i)] \geq A[i]$

E.g.,

■ Where is the max element?

- Max-heap property: for all $i>1$ A[PARENT$(i)] \geq A[i]$
E.g.,

■ Where is the max element?

■ How can we implement Heap-Extract-Max?

■ Heap-Extract-Max procedure

- extract the max key
- rearrange the heap to maintain the max-heap property

■ Heap-Extract-Max procedure

- extract the max key
- rearrange the heap to maintain the max-heap property

■ Heap-Extract-Max procedure

- extract the max key
- rearrange the heap to maintain the max-heap property

■ Heap-Extract-Max procedure

- extract the max key
- rearrange the heap to maintain the max-heap property

■ Heap-Extract-Max procedure

- extract the max key
- rearrange the heap to maintain the max-heap property

■ Now we have two subtrees where the max-heap property holds

■ Max-Heapify (A, i) procedure

- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property

■ Max-Heapify (A, i) procedure

- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property

■ Max-Heapify (A, i) procedure

- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property

■ Max-Heapify (A, i) procedure

- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property

■ Max-Heapify (A, i) procedure

- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property

■ Max-Heapify (A, i) procedure

- assume: the max-heap property holds in the subtrees of node i
- goal: rearrange the heap to maintain the max-heap property


```
\(\operatorname{Max}-\operatorname{Heapify}(A, i)\)
    \(1 \quad l=\mathbf{L E F T}(i)\)
    \(2 r=\mathbf{R I G H T}(i)\)
    3 if \(l \leq A\). heap-size and \(A[l]>A[i]\)
    \(4 \quad\) largest \(=1\)
    5 else largest \(=i\)
    if \(r \leq A\). heap-size and \(A[r]>A\) [largest]
        largest \(=r\)
    if largest \(\neq i\)
    \(9 \operatorname{swap} A[i]\) and \(A\) [largest]
10 Max-Heapify (A, largest)
```

```
Max-Heapify \((A, i)\)
    \(l=\mathbf{L E F T}(i)\)
    \(r=\mathbf{R I G H T}(i)\)
    if \(l \leq A\).heap-size and \(A[l]>A[i]\)
        largest \(=1\)
    else largest \(=i\)
    if \(r \leq A\).heap-size and \(A[r]>A\) [largest]
        largest \(=r\)
    if largest \(\neq i\)
        swap \(A[i]\) and \(A[\) largest \(]\)
        Max-Heapify ( \(A\), largest)
```

■ Complexity of Max-HEAPIFY?

```
\(\operatorname{Max}-\operatorname{Heapify}(A, i)\)
    \(I=\mathbf{L E F T}(i)\)
    \(r=\mathbf{R I G H T}(i)\)
    if \(l \leq A\).heap-size and \(A[l]>A[i]\)
        largest \(=1\)
    else largest \(=i\)
    if \(r \leq A\). heap-size and \(A[r]>A\) [largest]
        largest \(=r\)
    if largest \(\neq i\)
        swap \(A[i]\) and \(A[\) largest \(]\)
        Max-Heapify ( \(A\), largest)
```

■ Complexity of Max-HEAPIFY? The height of the tree!

```
Max-Heapify \((A, i)\)
    \(l=\mathbf{L E F T}(i)\)
    \(r=\mathbf{R I G H T}(i)\)
    if \(l \leq A\).heap-size and \(A[l]>A[i]\)
        largest \(=1\)
    else largest \(=i\)
    if \(r \leq A\). heap-size and \(A[r]>A\) [largest]
        largest \(=r\)
    if largest \(\neq i\)
        swap \(A[i]\) and \(A[\) largest \(]\)
        Max-Heapify ( \(A\), largest)
```

■ Complexity of Max-HEAPIFY? The height of the tree!

$$
T(n)=\Theta(\log n)
$$

Building a Heap

```
Build-Max-HeAP(A)
1 A.heap-size = length (A)
2 for i = \length(A)/2\rfloordownto 1
3
    Max-Heapify(A,i)
```

Building a Heap

Build-Max-Heap (A)
 1 A.heap-size $=$ length (A)
 2 for $i=\lfloor$ length $(A) / 2\rfloor$ downto 1
 3 Max-Heapify (A, i)

Build-Max-Heap (A)
 1 A.heap-size $=$ length (A)
 2 for $i=\lfloor$ length $(A) / 2\rfloor$ downto 1
 3 Max-Heapify (A, i)

Build-Max-Heap (A)
 1 A.heap-size $=$ length (A)
 2 for $i=\lfloor$ length $(A) / 2\rfloor$ downto 1 3 Max-Heapify (A, i)

Building a Heap

Build-Max-Heap (A)
 1 A.heap-size $=$ length (A)
 2 for $i=\lfloor$ length $(A) / 2\rfloor$ downto 1
 3 Max-Heapify (A, i)

Building a Heap

Build-Max-Heap (A)
 1 A.heap-size $=$ length (A)
 2 for $i=\lfloor$ length $(A) / 2\rfloor$ downto 1
 3 Max-Heapify (A, i)

Build-Max-Heap (A)
 1 A.heap-size $=$ length (A)
 2 for $i=\lfloor$ length $(A) / 2\rfloor$ downto 1
 3 Max-Heapify (A, i)

Heap Sort

- Idea: we can use a heap to sort an array
- Idea: we can use a heap to sort an array

```
Heap-Sort(A)
1 BUILD-MAX-HEAP}(A
2 for i = length(A) downto 1
swap A[i] and A[1]
A.heap-size = A.heap-size - 1
5 Max-Heapify (A, 1)
```

- Idea: we can use a heap to sort an array

```
Heap-Sort(A)
1 BuIld-MAX-HEAP}(A
2 fori = length(A) downto 1
swap A[i] and A[1]
A.heap-size = A.heap-size - 1
5 Max-Heapify (A, 1)
```

■ What is the complexity of HEAP-SORT?

■ Idea: we can use a heap to sort an array

```
HeAP-Sort(A)
1 Build-Max-HeAP(A)
2 fori = length(A) downto 1
3 swap A[i] and A[1]
A.heap-size = A.heap-size - 1
5 Max-Heapify(A,1)
```

- What is the complexity of HEAP-SORT?

$$
T(n)=\Theta(n \log n)
$$

■ Idea: we can use a heap to sort an array

```
HeAP-Sort(A)
1 Build-Max-HeAp(A)
2 fori = length(A) downto 1
3 swap A[i] and A[1]
A.heap-size = A.heap-size - }
5 Max-Heapify (A, 1)
```

■ What is the complexity of HEAP-SORT?

$$
T(n)=\Theta(n \log n)
$$

■ Benefits

- in-place sorting; worst-case is $\Theta(n \log n)$

Summary of Sorting Algorithms

Summary of Sorting Algorithms

| Algorithm | Complexity | In place? |
| :--- | :--- | :--- | :--- | :--- |
| worst | average \quad best | |

INSERTION-SORT

Summary of Sorting Algorithms

Algorithm		Complexity		In place?
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes

Selection-Sort

Summary of Sorting Algorithms

Algorithm		Complexity	In place?	
	worst	average	best	
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes

Merge-Sort

Summary of Sorting Algorithms

Algorithm		Complexity		
averst	average	best		
InSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no

Summary of Sorting Algorithms

Algorithm		Complexity		
averst	average	best		
InSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no

QUICK-SORT

Summary of Sorting Algorithms

Algorithm	Complexity			In place?	
	worst	average	best		
InSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes	
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes	
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no	
QUICK-SORT	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes	

Summary of Sorting Algorithms

Algorithm	Complexity			In place?	
	worst	average	best		
InSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes	
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes	
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no	
QUICK-SORT	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes	

Heap-Sort

Summary of Sorting Algorithms

Algorithm	Complexity			In place?	
	worst	average	best		
INSERTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$	yes	
SELECTION-SORT	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	yes	
MERGE-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	no	
QUICK-SORT	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes	
HEAP-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	yes	

