
Red-Black Trees

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

April 29, 2021



Outline

Red-black trees



Summary on Binary Search Trees

Binary search trees

◮ embody the divide-and-conquer search strategy

◮ Search, Insert,Min, andMax are O(h), where h is the height of the tree

◮ in general, h(n) = Ω(log n) and h(n) = O(n)

◮ randomization can make the worst-case scenario h(n) = n highly unlikely



Summary on Binary Search Trees

Binary search trees

◮ embody the divide-and-conquer search strategy

◮ Search, Insert,Min, andMax are O(h), where h is the height of the tree

◮ in general, h(n) = Ω(log n) and h(n) = O(n)

◮ randomization can make the worst-case scenario h(n) = n highly unlikely

Problem

◮ worst-case scenario is unlikely but still possible

◮ simply bad cases are even more probable



Red-Black Tree



Red-Black Tree

12

5 18

2 9 15 19

4 13 17



Red-Black Tree

12

5 18

2 9 15 19

4 13 17



Red-Black Tree

12

5 18

2 9 15 19

4 13 17



Red-Black Tree

12

5 18

2 9 15 19

4 13 17

Red-black-tree property



Red-Black Tree

12

5 18

2 9 15 19

4 13 17

Red-black-tree property

1. every node is either red or black



Red-Black Tree

12

5 18

2 9 15 19

4 13 17

Red-black-tree property

1. every node is either red or black

2. the root is black



Red-Black Tree

12

5 18

2 9 15 19

4 13 17

Red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black



Red-Black Tree

12

5 18

2 9 15 19

4 13 17

Red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black

4. if a node is red, then both its children are black



Red-Black Tree

12

5 18

2 9 15 19

4 13 17

Red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black

4. if a node is red, then both its children are black

5. for every node x , each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x )



Red-Black Tree (2)

Implementation
12

5 18

2 9 15 19

4 13 17



Red-Black Tree (2)

Implementation
12

5 18

2 9 15 19

4 13 17

◮ we use a common “sentinel” node to represent leaf nodes



Red-Black Tree (2)

Implementation
12

5 18

2 9 15 19

4 13 17

◮ we use a common “sentinel” node to represent leaf nodes

◮ the sentinel is also the parent of the root node



Red-Black Tree (3)

Implementation

◮ T represents the tree, which consists of a set of nodes



Red-Black Tree (3)

Implementation

◮ T represents the tree, which consists of a set of nodes

◮ T . root is the root node of tree T



Red-Black Tree (3)

Implementation

◮ T represents the tree, which consists of a set of nodes

◮ T . root is the root node of tree T

◮ T .nil is the “sentinel” node of tree T



Red-Black Tree (3)

Implementation

◮ T represents the tree, which consists of a set of nodes

◮ T . root is the root node of tree T

◮ T .nil is the “sentinel” node of tree T

Nodes

◮ x .parent is the parent of node x

◮ x .key is the key stored in node x

◮ x . left is the left child of node x

◮ x . right is the right child of node x

k k = x .key
node x

x .parent

x . left x . right



Red-Black Tree (3)

Implementation

◮ T represents the tree, which consists of a set of nodes

◮ T . root is the root node of tree T

◮ T .nil is the “sentinel” node of tree T

Nodes

◮ x .parent is the parent of node x

◮ x .key is the key stored in node x

◮ x . left is the left child of node x

◮ x . right is the right child of node x

◮ x .color ∈ {red, black} is the color of node x

k k = x .key
node x

x .parent

x . left x . right



Height of a Red-Black Tree



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at
most 2 log(n + 1).



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at
most 2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2
bh(x) − 1 by induction:

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at
most 2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2
bh(x) − 1 by induction:

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x , and

assume (induction) that size(y1) ≥ 2
bh (y1) − 1 and size(y2) ≥ 2

bh (y2) − 1;

prove that size(x) ≥ 2
bh(x) − 1



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at
most 2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2
bh(x) − 1 by induction:

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x , and

assume (induction) that size(y1) ≥ 2
bh (y1) − 1 and size(y2) ≥ 2

bh (y2) − 1;

prove that size(x) ≥ 2
bh(x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh(y1) − 1) + (2bh(y2) − 1) + 1



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at
most 2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2
bh(x) − 1 by induction:

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x , and

assume (induction) that size(y1) ≥ 2
bh (y1) − 1 and size(y2) ≥ 2

bh (y2) − 1;

prove that size(x) ≥ 2
bh(x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh(y1) − 1) + (2bh(y2) − 1) + 1

since

bh(x) =

{

bh(y) if color (y) = red

bh(y) + 1 if color (y) = black



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at
most 2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2
bh(x) − 1 by induction:

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x , and

assume (induction) that size(y1) ≥ 2
bh (y1) − 1 and size(y2) ≥ 2

bh (y2) − 1;

prove that size(x) ≥ 2
bh(x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh(y1) − 1) + (2bh(y2) − 1) + 1

since

bh(x) =

{

bh(y) if color (y) = red

bh(y) + 1 if color (y) = black

size(x) ≥ (2bh(x)−1 − 1) + (2bh(x)−1 − 1) + 1



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at
most 2 log(n + 1).
Proof:

1. prove that [x : size(x) ≥ 2
bh(x) − 1 by induction:

1.1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0

1.2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x , and

assume (induction) that size(y1) ≥ 2
bh (y1) − 1 and size(y2) ≥ 2

bh (y2) − 1;

prove that size(x) ≥ 2
bh(x) − 1

proof:

size(x) = size(y1) + size(y2) + 1 ≥ (2bh(y1) − 1) + (2bh(y2) − 1) + 1

since

bh(x) =

{

bh(y) if color (y) = red

bh(y) + 1 if color (y) = black

size(x) ≥ (2bh(x)−1 − 1) + (2bh(x)−1 − 1) + 1 = 2
bh (x) − 1



Height of a Red-Black Tree (2)

1. size(x) ≥ 2
bh(x) − 1



Height of a Red-Black Tree (2)

1. size(x) ≥ 2
bh(x) − 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black



Height of a Red-Black Tree (2)

1. size(x) ≥ 2
bh(x) − 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) ≥ h(x)/2



Height of a Red-Black Tree (2)

1. size(x) ≥ 2
bh(x) − 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) ≥ h(x)/2

3. From steps 1 and 2, n = size(x) ≥ 2
h(x)/2 − 1



Height of a Red-Black Tree (2)

1. size(x) ≥ 2
bh(x) − 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) ≥ h(x)/2

3. From steps 1 and 2, n = size(x) ≥ 2
h(x)/2 − 1, therefore

h ≤ 2 log(n + 1)



Height of a Red-Black Tree (2)

1. size(x) ≥ 2
bh(x) − 1

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) ≥ h(x)/2

3. From steps 1 and 2, n = size(x) ≥ 2
h(x)/2 − 1, therefore

h ≤ 2 log(n + 1)

A red-black tree works as a binary search tree for search, etc.

So, the complexity of those operations is T (n) = O(h), that is

T (n) = O(log n)

◮ which is also the worst-case complexity



Rotation

x

d

b

a c e



Rotation

x

d

b

a c e



Rotation

x

d

b

a c e

x = Right-Rotate(x)



Rotation

x

d

b

a c e

x = Right-Rotate(x)

x = Left-Rotate(x)



Red-Black Insertion

RB-Insert(T , z) works as in a binary search tree



Red-Black Insertion

RB-Insert(T , z) works as in a binary search tree

Except that it must preserve the red-black-tree property



Red-Black Insertion

RB-Insert(T , z) works as in a binary search tree

Except that it must preserve the red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black

4. if a node is red, then both its children are black

5. for every node x , each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x )



Red-Black Insertion

RB-Insert(T , z) works as in a binary search tree

Except that it must preserve the red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black

4. if a node is red, then both its children are black

5. for every node x , each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x )

General strategy



Red-Black Insertion

RB-Insert(T , z) works as in a binary search tree

Except that it must preserve the red-black-tree property

1. every node is either red or black

2. the root is black

3. every (NIL) leaf is black

4. if a node is red, then both its children are black

5. for every node x , each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x )

General strategy

1. insert z as in a binary search tree

2. color z red so as to preserve property 5

3. fix the tree to correct possible violations of property 4



RB-Insert

RB-Insert(T , z)

1 y = T .nil
2 x = T . root

3 while x , T .nil

4 y = x
5 if z .key < x .key

6 x = x . left

7 else x = x . right
8 z .parent = y

9 if y == T .nil
10 T . root = z

11 else if z .key < y .key

12 y . left = z
13 else y . right = z

14 z . left = z . right = T .nil

15 z .color = red
16 RB-Insert-Fixup(T , z)



Red-Black Insertion (2)

31

15 48

2 20 41 50

7 35 45

25



Red-Black Insertion (2)

31

15 48

2 20 41 50

7 35 45

25



Red-Black Insertion (2)

31

15 48

2 20 41 50

7 35 45

25



Red-Black Insertion (2)

31

15 48

2 20 41 50

7 35 4525



Red-Black Insertion (2)

31

15 48

2 20 41 50

7 35 4525

z ’s parent is black, so no fixup needed



Red-Black Insertion (3)



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red

A black node can become red and transfer its black color to its two children



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red

A black node can become red and transfer its black color to its two children

This may cause other red–red conflicts, so we iterate. . .



Red-Black Insertion (3)

31

15 48

2 20 41 50

7 35 45

36

z ’s parent’s sibling is red

A black node can become red and transfer its black color to its two children

This may cause other red–red conflicts, so we iterate. . .

The root can change to black without causing conflicts



Red-Black Insertion (4)

36

31

15 48

2 20 41 50

7 35 45



Red-Black Insertion (4)

36

31

15 48

2 20 41 50

7 35 45

9



Red-Black Insertion (4)

36

31

15 48

2 20 41 50

7 35 45

9



Red-Black Insertion (4)

36

31

15 48

2 20 41 50

7 35 45

9



Red-Black Insertion (4)

36

31

15 48

2 20 41 50

7 35 45

9



Red-Black Insertion (4)

36

31

15 48

2 20 41 50

7 35 45

9



Red-Black Insertion (4)

36

31

15 48

2 20 41 50

7 35 45

9



Red-Black Insertion (4)

36

31

15 48

2 20 41 50

7 35 45

9

z ’s parent’s sibling is black



Red-Black Insertion (4)

36

31

15 48

2

20 41 507

35 459 z ’s parent’s sibling is black



Red-Black Insertion (4)

36

31

15 48

2

20 41 507

35 459 z ’s parent’s sibling is black



Red-Black Insertion (4)

36

31

15 48

2

20 41 507

35 459 z ’s parent’s sibling is black

An in-line red–red conflicts can be resolved with a rotation plus a color switch



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45

5

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45

5

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45

5

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45

5
2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45

5

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45

5

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45

5

z ’s parent’s sibling is black

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45 z ’s parent’s sibling is black5

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45 z ’s parent’s sibling is black5

2

7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45 z ’s parent’s sibling is black

5

2 7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45 z ’s parent’s sibling is black

5

2 7



Red-Black Insertion (5)

36

31

15 48

20 41 50

35 45 z ’s parent’s sibling is black

5

2 7

A zig-zag red–red conflicts can be resolved with a rotation to turn it into an
in-line conflict, and then a rotation plus a color switch


