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m Problem

» worst-case scenario is unlikely but still possible

» simply bad cases are even more probable
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Red-Black Tree

m Red-black-tree property
1. every node is either red or black
the root is black
every (NIL) leaf is black
if a node is red, then both its children are black

for every node x, each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x)

vk N
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m /mplementation

> we use a common “sentinel” node to represent leaf nodes
» the sentinel is also the parent of the root node
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» T represents the tree, which consists of a set of nodes
» T.rootis the root node of tree T

» T.nilis the "sentinel” node of tree T

Nodes

» x.parent is the parent of node x
> Xx.key is the key stored in node x
> x.leftis the left child of node x

» x.right is the right child of node x
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m /mplementation

» T represents the tree, which consists of a set of nodes

|

>

T.root is the root node of tree T

T.nil is the “sentinel” node of tree T

Nodes

v

v

v

v

x.parent is the parent of node x
X.key is the key stored in node x
x.left is the left child of node x
x.right is the right child of node x

x.color € {red, black} is the color of node x

Red-Black Tree (3)

X.parent

node x
k = x.key

x. left x.right
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Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at
most 2log(n+ 1).
Proof:

1. prove that Vx : size(x) > 22" — 1 by induction:
1.1 base case: x is a leaf, so size(x) = 0 and bh(x) =0

1.2 induction step: consider yy, y», and x such that y;. parent = y».parent = x, and
assume (induction) that size(y;) > 22" — 1 and size(y,) > 20h02) — 1;
prove that size(x) > 200 — 1

proof:
size(x) = size(y;) + size(ys) +1 > (20001 — 1) 4 (20h02) — 1) 4 4
since
bh(y) if color(y) = red
h(x) =
bh(x) {bh(y) +1 if color(y) = black

size(x) > (20071 — 1) 4 (200071 — 4) 4 1 = 26000 4
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Height of a Red-Black Tree (2)
1. size(x) > 200 _ 4

2. Since every red node has black children, in every path from x to a leaf node, at
least half the nodes are black, thus bh(x) > h(x)/2

3. From steps 1 and 2, n = size(x) > 2"¥)/2 _ 1, therefore

h < 2log(n+1)

m Ared-black tree works as a binary search tree for search, etc.

m So, the complexity of those operations is T(n) = O(h), thatis

T(n) = O(log n)

» which is also the worst-case complexity
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m x = Right-Rotate(x)



Right-Rotate(x)

Left-Rotate(x)

Rotation
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Red-Black Insertion

m RB-Insert(T, z) works as in a binary search tree

m Except that it must preserve the red-black-tree property

1.

s N

every node is either red or black

the root is black

every (NIL) leaf is black

if a node is red, then both its children are black

for every node x, each path from x to its descendant leaves has the same number
of black nodes bh(x) (the black-height of x)

m General strategy

1.
2.

insert z as in a binary search tree
color z red so as to preserve property 5

3. fix the tree to correct possible violations of property 4



RB-Insert

RB-Insert(T, 2)
y = T.nil
x = T.root
while x # T.nil
y=x
if z. key < x.key
X = X.left
else x = x.right
z.parent = y
if y==T.nil
10 T.root = z
11 elseif z.key < y.key
12 y.left = z
13 else y.right = z
14 z.left = z.right = T.nil
15 Zz.color = red
16 RB-Insert-Fixup(T, z)
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m Z's parentis black, so no fixup needed
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o 5 e

Z's parent’s sibling is red I

m A black node can become red and transfer its black color to its two children
m This may cause other red-red conflicts, so we iterate...
m The root can change to black without causing conflicts
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Z's parent’s sibling is bIackI

m An in-line red-red conflicts can be resolved with a rotation plus a color switch
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Red-Black Insertion (5)
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Z's parent’s sibling is bIackI

m A zig-zag red-red conflicts can be resolved with a rotation to turn it into an
in-line conflict, and then a rotation plus a color switch



