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Instructions

• Write and submit source files with the exact names specified in each exercise.

• Do not submit any file, folder, or archive, other than what is required.

• Your code must work with Python 3.

• You may only use the following, limited subset of the Python language and libraries.

You may only use the following built-in types:

– numeric types, such as int

– sequence types, such as arrays, tuples, and strings (so, no sets or dictionaries)

With arrays or other sequence types, you may only use the following operations:

– direct access to an element by index, as in print(A[7]) or A[i+1] = A[i]

– append an element, as in A.append(10)

– delete the last element, as in del A[−1] or A.pop()

– read the length, as in n = len(A)

You may use the range function, typically in a for-loop, as in for i in range(10)

You may not use any library or external function other than the ones listed above.

• If an exercise requires you to analyze the complexity of an algorithm written in
Python, write your analysis as a code comment either at the beginning of the source
file or anyway near the corresponding Python function.

• Document any known issue, using code comments if necessary.

• Submit each file through the iCorsi system.



ñExercise 1. Consider the following algorithm Algo-X(A, k) that takes a sequence A of n
numbers and a positive integer k:

Algo-X(A, k)
1 B = Algo-Y(A,1, A. length+ 1)
2 c = 0
3 for i = 1 to B. length
4 if i ≤ k
5 c = c + B[i]
6 else return c
7 return c

Algo-Y(A, i, j)
1 D = empty sequence
2 if j − i == 1
3 append A[i] to D
4 elseif j − i > 1
5 k = b(i+ j)/2c
6 B = Algo-Y(A, i, k)
7 C = Algo-Y(A, k, j)
8 b = i
9 c = k

10 while b < k or c < j
11 if c ≥ j or (b < k and B[b] < C[c])
12 append B[b] to D
13 b = b + 1
14 else append C[c] to D
15 c = c + 1
16 return D

Answer the following questions in a text file ex1.txt or in a PDF file ex1.pdf.

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain (5)

the high-level semantics, independent of the code.

Question 2: Analyze the complexity of Algo-X. Is there a difference between the best- and (5)

worst-case complexity? If so, describe a best-case and a worst-case input of size n, as well
as the behavior of the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as (20)

Algo-X, but with a strictly better complexity in the average case. Analyze the complexity
of Better-Algo-X. Notice that if Algo-X modifies the content of the input array A, then
Better-Algo-X must do the same. Otherwise, if Algo-X does not modify A, then Better-
Algo-X must not modify A.



ñExercise 2. Consider the following algorithm Algo-X(A,x) that takes a sorted sequence
A of n numbers and a positive number x.

Algo-X(A,x)
1 for i = 1 to A. length
2 if Algo-Y(A, i,A. length+ 1, A[i]+ x)
3 return true
4 return false

Algo-Y(A, i, j, x)
1 while j > i
2 k = b(i+ j)/2c
3 if x < A[k]
4 j = k
5 elseif x > A[k]
6 i = k+ 1
7 else return true
8 return false

Answer the following questions in a text file ex2.txt or in a PDF file ex2.pdf.

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain (5)

the high-level semantics, independent of the code.

Question 2: Analyze the complexity of Algo-X. Is there a difference between the best- and (5)

worst-case complexity? If so, describe a best-case and a worst-case input of size n, as well
as the behavior of the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as (20)

Algo-X, but with a strictly better complexity in the worst case. Analyze the complexity of
Better-Algo-X, showing a best-case and a worst-case input. Notice that if Algo-X modifies
the content of the input array A, then Better-Algo-X must do the same. Otherwise, if
Algo-X does not modify A, then Better-Algo-X must not modify A.



ñExercise 3. Given a sequence of 2n numbers A = x1, y1, x2, y2, . . . , xn, yn representing
the Cartesian coordinates of n points in the plane, p1 = (x1, y1), p2 = (x2, y2), . . . pn =
(xn, yn), consider the line segments pi–pj defined by pairs of distinct points in A. You
may assume that no two points in A are identical. That is, i 6= j implies pi 6= pj .

Question 1: In a source file ex3.py write two Python functions, count_vertical(A) and (10)

count_horizontal(A), that given the sequence A structured as above, return the num-
ber of vertical and horizontal segments in A, respectively. Also, write an analysis of the
complexity of your solution as a comment in the source file.

Question 2: In the same source file ex3.py, write a Python function intersection(A) (20)

that returns True if A contains at least one vertical segment that intersects at least one
horizontal segment, or False otherwise. Also, write an analysis of the complexity of your
solution as a comment in the source file, in particular describing a worst-case input.

Two segments intersect when they have at least one point in common. For example, a verti-
cal segment (1,7)–(1,0) intersects an horizontal segment (0,1)–(10,1). Similarly, vertical
segment (1,7)–(1,0) intersects horizontal segment (1,0)–(3,0). However, vertical segment
(1,7)–(1,0) does not intersect horizontal segment (0,10)–(10,10).

For example, intersection([9,3,5,6,0,9,3,2,6,7,7,9,3,5,1,8,8,4,9,0]) must re-
turn False, since the input does not contain intersecting vertical and horizontal segments.

Instead, intersection([5,1,9,0,2,3,2,2,9,2,5,4,0,3,7,2,8,6,4,2]) must return
True, since horizontal segment (2,2)–(9,2) intersects vertical segment (5,1)–(5,4); and
intersection([2,6,8,6,3,6,7,5,5,3,1,6,7,1,5,0,8,8,5,6]) must return True be-
cause horizontal segment (2,6)–(8,6) intersects vertical segment (8,6)–(8,8).



ñExercise 4. Given a sequence of numbersA = a1, a2, a3, . . . , an, we say that a subsequence (30)

ai, ai+1, . . . , aj of length j−i+1 ≥ 2 is strictly increasing if ai < ai+1 < · · · < aj , or strictly
decreasing if ai > ai+1 > · · · > aj .
In a source file ex4.py write a Python function increasing_or_decreasing(A) that, given
a sequence of numbers A, in time O(n) returns the string ’increasing’ if A contains a
strictly increasing subsequence that is longer than any strictly decreasing subsequence in
A; or vice-versa the result is ’decreasing’ if A contains a strictly decreasing subsequence
that is longer than any strictly increasing subsequence in A. If there are no strictly increas-
ing or strictly decreasing subsequences, then the return value must be the string ’flat’.
If there are strictly increasing and strictly decreasing subsequences, but the maximal se-
quences of the two kinds are of equal length, then the return value must be ’equal’. Also,
write an analysis of the complexity of your solution.

You may use the following examples to test your code:

>>> increasing_or_decreasing([1])
’flat’
>>> increasing_or_decreasing([1,1,1,1,1])
’flat’
>>> increasing_or_decreasing([1,2,1,2,1])
’equal’
>>> increasing_or_decreasing([1,2,1,2,10,1])
’increasing’
>>> increasing_or_decreasing([1,2,3,2,8,10,1,0])
’equal’
>>> increasing_or_decreasing([1,20,11,10,1,0])
’decreasing’



Solutions

.Solution 1.1

Algo-X returns the sum of the top-k elements of A.

.Solution 1.2

The complexity is Θ(n logn). The algorithm uses merge-sort as the main subroutine, plus
a linear scan that is at most Θ(n). So the dominating complexity is the complexity of
merge-sort, which is Θ(n logn) and is the same in the worst and best case.

.Solution 1.3

We can use the same idea of the classic divide-and-conquer k-selection algorithm for order
statistics: we partition using a chosen pivot, then recurse, at most once.

Better-Algo-X(A, k)
1 if k ≥ A. length
2 return Sum(A)
3 v = random value in A
4 L = empty sequence
5 M = empty sequence
6 R = empty sequence
7 for i = 1 to A. length
8 if A[i] < v
9 append A[i] to L

10 elseif A[i] > v
11 append A[i] to R
12 else append A[i] to M
13 if k < L. length
14 return Better-Algo-X(L, k)
15 if k− L. length ≤ M. length
16 return Sum(L)+ (k− L. length)∗ v
17 return Sum(L)+M. length∗ v

+Better-Algo-X(R, k− L. length−M. length)

Sum(A)
1 s = 0
2 for i = 1 to A. length
3 s = s + 1
4 return s

The algorithm is really the same as k-selection, so the complexity analysis is the same: the
worst case is quadratic, but the average and most common case is linear.

.Solution 2.1

Algo-X returns true if and only if there are two distincts elements A[i] and [j] at distance
x from each other, meaning A[i]−A[j] = x (with i 6= j), or false otherwise.

.Solution 2.2

Algo-X essentially invokes a binary search (Algo-Y) for each element of A[i] in the remain-
der of the array. The best-case complexity is constant, which corresponds to an input array
of size n in which the first element is A[1] = y , and there is an element A[bn/2c + 1] =
y+x. The worst-case complexity is instead Θ(n logn), which corresponds to an input array
that contains no to elements at distance x, for example, A = [2,4,6,8,10, . . . ,2n],x = 1.



.Solution 2.3

Since A is sorted, we can find two elements A[i] and A[j] at distance A[j]−A[i] = x with
a linear scan. Again, since A is sorted, we simply advance the index of the higher (further)
element when the distance is less than x (so as to increase the distance), or we advancing
the base index i when the distance is higher than x (so as to decrease the distance):

Better-Algo-X(A, k)
1 i = 0
2 j = 1
3 while j < A. length
4 if A[j] < A[i]+ x
5 j = j + 1
6 elseif A[j] > A[i]+ x
7 i = i+ 1
8 else return true
9 return false

The best-case complexity is constant, for example with A = [1,2, . . . , n], x = 1. The worst-
case complexity is when we don’t find two elements at distance x. For example, A =
[2,4, . . . ,2n],x = 1.

.Solution 3.1

def count_vertical(A):
#
# Complexity: \Theta(n^2), since we go through all the pairs of
# points.
#
n = len(A)//2
c = 0
for i in range(n):

for j in range(i + 1, n):
if A[2*i] == A[2*j]:

c = c + 1
return c

def count_horizontal(A):
#
# Complexity: \Theta(n^2), since we go through all the pairs of
# points.
#
n = len(A)//2
c = 0
for i in range(n):

for j in range(i + 1, n):
if A[2*i+1] == A[2*j+1]:

c = c + 1
return c



.Solution 3.2

def intersection(A):
#
# Complexity: \Theta(n^4). Consider in fact the worst−case input:
# A = [0,1,0,2,0,3,0,4,0,5,...,0,n]. In this case, we go through
# the n(n−1)/2 vertical segments, and for each one of them we go
# through each of the same n(n−1)/2 pairs of points looking for
# intersecting horizontal segments.
#
n = len(A)//2
for v1 in range(n):

for v2 in range(v1+1,n):
if A[2*v1] == A[2*v2]:

x = A[2*v1]
y1 = A[2*v1+1]
y2 = A[2*v2+1]
for h1 in range(n):

for h2 in range(h1+1,n):
if A[2*h1+1] == A[2*h2+1]:

y = A[2*h1+1]
x1 = A[2*h1]
x2 = A[2*h2]
if ((y >= y1 and y <= y2) or (y >= y2 and y <= y1)) \

and ((x >= x1 and x <= x2) or (x >= x2 and y <= x1)):
print(y,x1,x2)
print(x,y1,y2)
return True

return False

.Solution 4

def increasing_or_decreasing(A):
inc = 0
j = 0
for i in range(1,len(A)):

if A[i] > A[i−1]:
if i − j > inc:

inc = i − j
else:

j = i
dec = 0
j = 0
for i in range(1,len(A)):

if A[i] < A[i−1]:
if i − j > dec:

dec = i − j
else:

j = i
if inc > dec:



return ’increasing’
elif dec > inc:

return ’decreasing’
elif inc == 0:

return ’flat ’
else:

return ’equal’


