Greedy Algorithms

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
May 20, 2021

■ Greedy strategy

- Examples
- Activity selection
- Huffman coding
- Find the MST of $G=(V, E)$ with $w: E \rightarrow \mathbb{R}$
- find a $T \subseteq E$ that is a minimum-weight spanning tree

■ Find the MST of $G=(V, E)$ with $w: E \rightarrow \mathbb{R}$

- find a $T \subseteq E$ that is a minimum-weight spanning tree

■ We naturally decompose the problem in a series of choices

■ Find the MST of $G=(V, E)$ with $w: E \rightarrow \mathbb{R}$

- find a $T \subseteq E$ that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
- at each point we have a partial solution $A \subseteq T$

Recap on MST Algorithms

\square Find the MST of $G=(V, E)$ with $w: E \rightarrow \mathbb{R}$

- find a $T \subseteq E$ that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
- at each point we have a partial solution $A \subseteq T$
- we have a number of choices on how to extend A

Recap on MST Algorithms

\square Find the MST of $G=(V, E)$ with $w: E \rightarrow \mathbb{R}$

- find a $T \subseteq E$ that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
- at each point we have a partial solution $A \subseteq T$
- we have a number of choices on how to extend A
- we make a "greedy" choice by selecting the lightest edge that does not violate the constraints of the MST problem

Recap on MST Algorithms

\square Find the MST of $G=(V, E)$ with $w: E \rightarrow \mathbb{R}$

- find a $T \subseteq E$ that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
- at each point we have a partial solution $A \subseteq T$
- we have a number of choices on how to extend A
- we make a "greedy" choice by selecting the lightest edge that does not violate the constraints of the MST problem

```
Generic-MST(G, w)
\(1 A=\varnothing\)
while \(A\) is not a spanning tree
    find a safe edge \(e=(u, v) / /\) the lightest that...
    \(A=A \cup\{e\}\)
```

Designing a Greedy Algorithm

Designing a Greedy Algorithm

1. Cast the problem as one where

- we make a greedy choice, and
- we are left with a subproblem

Designing a Greedy Algorithm

1. Cast the problem as one where

- we make a greedy choice, and
- we are left with a subproblem

2. Prove that there is always a solution to the original problem that contains the greedy choice we make

- i.e., that the greedy choice always leads to an optimal solution
- not necessarily always the same one

Designing a Greedy Algorithm

1. Cast the problem as one where

- we make a greedy choice, and
- we are left with a subproblem

2. Prove that there is always a solution to the original problem that contains the greedy choice we make

- i.e., that the greedy choice always leads to an optimal solution
- not necessarily always the same one

3. Prove that the remaining subproblem is such that

- combining the greedy choice with the optimal solution of the subproblem gives an optimal solution to the original problem

■ The first key ingredient of a greedy strategy is the following
greedy-choice property: one can always arrive at a globally optimal solution by making a locally optimal choice

- The first key ingredient of a greedy strategy is the following
greedy-choice property: one can always arrive at a globally optimal solution by making a locally optimal choice

■ At every step, we consider only what is best in the current problem

- not considering the results of the subproblems

Optimal Substructure

■ The second key ingredient of a greedy strategy is the following
optimal-substructure property: an optimal solution to the problem contains within it optimal solutions to subproblems

Optimal Substructure

■ The second key ingredient of a greedy strategy is the following
optimal-substructure property: an optimal solution to the problem contains within it optimal solutions to subproblems

■ It is natural to prove this by induction

- if the solution to the subproblem is optimal, then combining the greedy choice with that solution yields an optimal solution

Example

- The absolutely trivial gift-selection problem

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}
- you will be given, as a gift, k objects of your choice

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
- greedy choice: pick x_{i} such that $v\left(x_{i}\right)=\max _{x \in X} v(x)$
- subproblem: $X^{\prime}=X-\left\{x_{i}\right\}, k^{\prime}=k-1$ (same value function v)

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
- greedy choice: pick x_{i} such that $v\left(x_{i}\right)=\max _{x \in X} v(x)$
- subproblem: $X^{\prime}=X-\left\{x_{i}\right\}, k^{\prime}=k-1$ (same value function v)
- Greedy-choice property

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?

■ Decomposition: choice plus subproblem

- greedy choice: pick x_{i} such that $v\left(x_{i}\right)=\max _{x \in X} v(x)$
- subproblem: $X^{\prime}=X-\left\{x_{i}\right\}, k^{\prime}=k-1$ (same value function v)
- Greedy-choice property
- if $v\left(x_{i}\right)=\max _{x \in X} v(x)$, then there is a globally optimal solution A that contains x_{i}

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
- greedy choice: pick x_{i} such that $v\left(x_{i}\right)=\max _{x \in X} v(x)$
- subproblem: $X^{\prime}=X-\left\{x_{i}\right\}, k^{\prime}=k-1$ (same value function v)
- Greedy-choice property
- if $v\left(x_{i}\right)=\max _{x \in X} v(x)$, then there is a globally optimal solution A that contains x_{i}

■ Optimal-substructure property

■ The absolutely trivial gift-selection problem

- out of a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of valuable objects, where $v\left(x_{i}\right)$ is the value of x_{i}
- you will be given, as a gift, k objects of your choice
- how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
- greedy choice: pick x_{i} such that $v\left(x_{i}\right)=\max _{x \in X} v(x)$
- subproblem: $X^{\prime}=X-\left\{x_{i}\right\}, k^{\prime}=k-1$ (same value function v)
- Greedy-choice property
- if $v\left(x_{i}\right)=\max _{x \in X} v(x)$, then there is a globally optimal solution A that contains x_{i}

■ Optimal-substructure property

- if $v\left(x_{i}\right)=\max _{x \in X} v(x)$ and A^{\prime} is an optimal solution for $X^{\prime}=X-\left\{x_{i}\right\}$, then $A^{\prime} \subset A$

■ Inventing a greedy algorithm is easy

- it is easy to come up with greedy choices

■ Inventing a greedy algorithm is easy

- it is easy to come up with greedy choices

■ Proving it optimal may be difficult

- requires deep understanding of the structure of the problem

Making Change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Making Change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change
Question: how can I get the least amount of coins?
(Available denominations: $5,2,1,0.5,0.2,0.1$)

Making Change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change
Question: how can I get the least amount of coins?
(Available denominations: $5,2,1,0.5,0.2,0.1$)
Solution: $2 \times 2+0.5+0.2+0.1=4.8 \quad(5$ coins/bills)

Making Change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change
Question: how can I get the least amount of coins?
(Available denominations: $5,2,1,0.5,0.2,0.1$)
Solution: $2 \times 2+0.5+0.2+0.1=4.8 \quad(5$ coins/bills)

- Is this a greedy problem?

Making Change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change
Question: how can I get the least amount of coins?
(Available denominations: $5,2,1,0.5,0.2,0.1$)
Solution: $2 \times 2+0.5+0.2+0.1=4.8 \quad$ (5 coins/bills)
■ Is this a greedy problem?
■ Suppose you are in the US and need to make $\$ 4.80$ of change; available denominations are $\$ 5, \$ 1, \$ 0.25, \$ 0.1$, and $\$.01$ (you are out of "nickels")

Making Change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change
Question: how can I get the least amount of coins?
(Available denominations: $5,2,1,0.5,0.2,0.1$)
Solution: $2 \times 2+0.5+0.2+0.1=4.8 \quad(5$ coins/bills)
■ Is this a greedy problem?
■ Suppose you are in the US and need to make $\$ 4.80$ of change; available denominations are $\$ 5, \$ 1, \$ 0.25, \$ 0.1$, and $\$.01$ (you are out of "nickels")

Greedy: $4 \times 1+3 \times 0.25+5 \times 0.01=4.8 \quad(12$ coins $/$ bills $)$

Making Change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change
Question: how can I get the least amount of coins?
(Available denominations: $5,2,1,0.5,0.2,0.1$)
Solution: $2 \times 2+0.5+0.2+0.1=4.8 \quad(5$ coins/bills)
■ Is this a greedy problem?
■ Suppose you are in the US and need to make $\$ 4.80$ of change; available denominations are $\$ 5, \$ 1, \$ 0.25, \$ 0.1$, and $\$.01$ (you are out of "nickels")

Greedy: $4 \times 1+3 \times 0.25+5 \times 0.01=4.8$
(12 coins/bills)
Optimal: $4 \times 1+2 \times 0.25+3 \times 0.1=4.8 \quad$ (9 coins/bills)

- A thief robbing a store finds n items
- v_{i} is the value of item i
- w_{i} is the weight of item i
- W is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

- A thief robbing a store finds n items
- v_{i} is the value of item i
- w_{i} is the weight of item i
- W is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery
■ Is this a greedy problem?

Knapsack Problem

■ A thief robbing a store finds n items

- v_{i} is the value of item i
- w_{i} is the weight of item i
- W is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery
■ Is this a greedy problem?

■ Exercise: 1. formulate a reasonable greedy choice
2. prove that it doesn't work with a counter-example
3. go back to (1) and repeat a couple of times

Fractional Knapsack Problem

■ A thief robbing a store finds n items

- v_{i} is the value of item i
- w_{i} is the weight of item i
- W is the maximum weight that the thief can carry
- the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

Fractional Knapsack Problem

- A thief robbing a store finds n items
- v_{i} is the value of item i
- w_{i} is the weight of item i
- W is the maximum weight that the thief can carry
- the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

■ Is this a greedy problem?

Fractional Knapsack Problem

- A thief robbing a store finds n items
- v_{i} is the value of item i
- w_{i} is the weight of item i
- W is the maximum weight that the thief can carry
- the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

■ Is this a greedy problem?
■ Exercise: prove that it is a greedy problem

Activity-Selection Problem

- A conference room is shared among different activities
- $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is the set of proposed activities
- activity a_{i} has a start time s_{i} and a finish time f_{i}
- activities a_{i} and a_{j} are compatible if either $f_{i} \leq s_{j}$ or $f_{j} \leq s_{i}$

Activity-Selection Problem

- A conference room is shared among different activities
- $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is the set of proposed activities
- activity a_{i} has a start time s_{i} and a finish time f_{i}
- activities a_{i} and a_{j} are compatible if either $f_{i} \leq s_{j}$ or $f_{j} \leq s_{i}$

Problem: find the largest set of compatible activities

■ A conference room is shared among different activities

- $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is the set of proposed activities
- activity a_{i} has a start time s_{i} and a finish time f_{i}
- activities a_{i} and a_{j} are compatible if either $f_{i} \leq s_{j}$ or $f_{j} \leq s_{i}$

Problem: find the largest set of compatible activities
■ Example

activity	a	b	c	d	e	f	g	h	i	j	k
start	8	0	2	3	5	1	5	3	12	6	8
finish	12	6	13	5	7	4	9	8	14	10	11

■ Is there a greedy solution for this problem?

■ Greedy choice: take $a_{x} \in S$ s.t. $f_{x} \leq f_{i}$ for all $a_{i} \in S$

■ Greedy choice: take $a_{x} \in S$ s.t. $f_{x} \leq f_{i}$ for all $a_{i} \in S$
Prove: there is an optimal solution OPT* that contains a_{x}

■ Greedy choice: take $a_{x} \in S$ s.t. $f_{x} \leq f_{i}$ for all $a_{i} \in S$
Prove: there is an optimal solution OPT* that contains a_{x}
Proof: (by contradiction)

- assume $a_{x} \notin O P T$

■ Greedy choice: take $a_{x} \in S$ s.t. $f_{x} \leq f_{i}$ for all $a_{i} \in S$
Prove: there is an optimal solution OPT* that contains a_{x}
Proof: (by contradiction)

- assume $a_{x} \notin$ OPT
- let $a_{m} \in O P T$ be the earliest-finish activity in OPT

■ Greedy choice: take $a_{x} \in S$ s.t. $f_{x} \leq f_{i}$ for all $a_{i} \in S$
Prove: there is an optimal solution OPT* that contains a_{x}
Proof: (by contradiction)

- assume $a_{x} \notin$ OPT
- let $a_{m} \in O P T$ be the earliest-finish activity in OPT
- construct $O P T^{*}=O P T \backslash\left\{a_{m}\right\} \cup\left\{a_{x}\right\}$

■ Greedy choice: take $a_{x} \in S$ s.t. $f_{x} \leq f_{i}$ for all $a_{i} \in S$
Prove: there is an optimal solution OPT* that contains a_{x}
Proof: (by contradiction)

- assume $a_{x} \notin$ OPT
- let $a_{m} \in$ OPT be the earliest-finish activity in OPT
- construct $O P T^{*}=O P T \backslash\left\{a_{m}\right\} \cup\left\{a_{x}\right\}$
- OPT* is valid

Proof:

- every activity $a_{i} \in O P T \backslash\left\{a_{m}\right\}$ has a starting time $s_{i} \geq f_{m}$, because a_{m} is compatible with a_{i} (so either $f_{i}<s_{m}$ or $s_{i}>f_{m}$) and $f_{i}>f_{m}$, because a_{m} is the earliest-finish activity in OPT
- therefore, every activity a_{i} is compatible with a_{x}, because $s_{i} \geq f_{m} \geq f_{x}$

■ Greedy choice: take $a_{x} \in S$ s.t. $f_{x} \leq f_{i}$ for all $a_{i} \in S$
Prove: there is an optimal solution OPT* that contains a_{x}
Proof: (by contradiction)

- assume $a_{x} \notin$ OPT
- let $a_{m} \in$ OPT be the earliest-finish activity in OPT
- construct $O P T^{*}=O P T \backslash\left\{a_{m}\right\} \cup\left\{a_{x}\right\}$
- OPT* is valid

Proof:

- every activity $a_{i} \in O P T \backslash\left\{a_{m}\right\}$ has a starting time $s_{i} \geq f_{m}$, because a_{m} is compatible with a_{i} (so either $f_{i}<s_{m}$ or $s_{i}>f_{m}$) and $f_{i}>f_{m}$, because a_{m} is the earliest-finish activity in OPT
- therefore, every activity a_{i} is compatible with a_{x}, because $s_{i} \geq f_{m} \geq f_{x}$
- thus OPT* is an optimal solution, because $\left|O P T^{*}\right|=|O P T|$

Activity Selection is a Greedy Problem (2)

Activity Selection is a Greedy Problem (2)

■ Optimal-substructure property: having chosen a_{x}, let $S^{\prime} \subset S$ be the set of activities compatible with a_{x}, that is, $S^{\prime}=\left\{a_{i} \mid s_{i} \geq f_{x}\right\}$

Activity Selection is a Greedy Problem (2)

■ Optimal-substructure property: having chosen a_{x}, let $S^{\prime} \subset S$ be the set of activities compatible with a_{x}, that is, $S^{\prime}=\left\{a_{i} \mid s_{i} \geq f_{x}\right\}$
Prove: $O P T^{*}=\left\{a_{x}\right\} \cup O P T^{\prime}$ is optimal for S if $O P T^{\prime}$ is optimal for S^{\prime}

■ Optimal-substructure property: having chosen a_{x}, let $S^{\prime} \subset S$ be the set of activities compatible with a_{x}, that is, $S^{\prime}=\left\{a_{i} \mid s_{i} \geq f_{x}\right\}$
Prove: $O P T^{*}=\left\{a_{x}\right\} \cup O P T^{\prime}$ is optimal for S if $O P T^{\prime}$ is optimal for S^{\prime}
Proof: (by contradiction)

- assume to the contrary that $\left|O P T^{*}\right|<|O P T|$, and therefore $\left|O P T^{\prime}\right|<|O P T|-1$

■ Optimal-substructure property: having chosen a_{x}, let $S^{\prime} \subset S$ be the set of activities compatible with a_{x}, that is, $S^{\prime}=\left\{a_{i} \mid s_{i} \geq f_{x}\right\}$
Prove: $O P T^{*}=\left\{a_{x}\right\} \cup O P T^{\prime}$ is optimal for S if $O P T^{\prime}$ is optimal for S^{\prime}
Proof: (by contradiction)

- assume to the contrary that $\left|O P T^{*}\right|<|O P T|$, and therefore $\left|O P T^{\prime}\right|<|O P T|-1$
- let a_{m} be the earliest-finish activity in $O P T$, and let $\bar{S}=\left\{a_{i} \mid s_{i} \geq f_{m}\right\}$

■ Optimal-substructure property: having chosen a_{x}, let $S^{\prime} \subset S$ be the set of activities compatible with a_{x}, that is, $S^{\prime}=\left\{a_{i} \mid s_{i} \geq f_{x}\right\}$
Prove: $O P T^{*}=\left\{a_{x}\right\} \cup O P T^{\prime}$ is optimal for S if $O P T^{\prime}$ is optimal for S^{\prime}
Proof: (by contradiction)

- assume to the contrary that $\left|O P T^{*}\right|<|O P T|$, and therefore $\left|O P T^{\prime}\right|<|O P T|-1$
- let a_{m} be the earliest-finish activity in OPT, and let $\bar{S}=\left\{a_{i} \mid s_{i} \geq f_{m}\right\}$
- by construction, OPT $\backslash\left\{a_{m}\right\}$ is a solution for \bar{S}

■ Optimal-substructure property: having chosen a_{x}, let $S^{\prime} \subset S$ be the set of activities compatible with a_{x}, that is, $S^{\prime}=\left\{a_{i} \mid s_{i} \geq f_{x}\right\}$
Prove: $O P T^{*}=\left\{a_{x}\right\} \cup O P T^{\prime}$ is optimal for S if $O P T^{\prime}$ is optimal for S^{\prime}
Proof: (by contradiction)

- assume to the contrary that $\left|O P T^{*}\right|<|O P T|$, and therefore $\left|O P T^{\prime}\right|<|O P T|-1$
- let a_{m} be the earliest-finish activity in OPT, and let $\bar{S}=\left\{a_{i} \mid s_{i} \geq f_{m}\right\}$
- by construction, OPT $\backslash\left\{a_{m}\right\}$ is a solution for \bar{S}
- by construction, $\bar{S} \subseteq S^{\prime}$, so $O P T \backslash\left\{a_{m}\right\}$ is a solution also for S^{\prime}

Activity Selection is a Greedy Problem (2)

■ Optimal-substructure property: having chosen a_{x}, let $S^{\prime} \subset S$ be the set of activities compatible with a_{x}, that is, $S^{\prime}=\left\{a_{i} \mid s_{i} \geq f_{x}\right\}$

Prove: $O P T^{*}=\left\{a_{x}\right\} \cup O P T^{\prime}$ is optimal for S if $O P T^{\prime}$ is optimal for S^{\prime}
Proof: (by contradiction)

- assume to the contrary that $\left|O P T^{*}\right|<|O P T|$, and therefore $\left|O P T^{\prime}\right|<|O P T|-1$
- let a_{m} be the earliest-finish activity in OPT, and let $\bar{S}=\left\{a_{i} \mid s_{i} \geq f_{m}\right\}$
- by construction, OPT $\backslash\left\{a_{m}\right\}$ is a solution for \bar{S}
- by construction, $\bar{S} \subseteq S^{\prime}$, so $O P T \backslash\left\{a_{m}\right\}$ is a solution also for S^{\prime}
- which means that there is a solution S^{\prime} of size $|O P T|-1$, which contradicts the main assumption that $\left|O P T^{\prime}\right|<|O P T|-1$

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

- e.g., $n=|S|=10^{9}$

■ What is the most efficient way to store that sequence?

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

- e.g., $n=|S|=10^{9}$

■ What is the most efficient way to store that sequence?

- First approach: compact fixed-width encoding

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

- e.g., $n=|S|=10^{9}$

■ What is the most efficient way to store that sequence?
■ First approach: compact fixed-width encoding

- 6 symbols require 3 bits per symbol

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

- e.g., $n=|S|=10^{9}$

■ What is the most efficient way to store that sequence?
■ First approach: compact fixed-width encoding

- 6 symbols require 3 bits per symbol
- $3 \times 10^{9} / 8=3.75 \times 10^{8}$ (a bit less than 400 Mb)

■ Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

- e.g., $n=|S|=10^{9}$

■ What is the most efficient way to store that sequence?
■ First approach: compact fixed-width encoding

- 6 symbols require 3 bits per symbol
- $3 \times 10^{9} / 8=3.75 \times 10^{8}$ (a bit less than 400 Mb)
- Can we do better?

Huffman Coding (2)

- Consider the following encoding table:

symbol	code
a	000
b	001
c	010
d	011
e	100
f	101

Huffman Coding (2)

■ Consider the following encoding table:

symbol	code
a	000
b	001
c	010
d	011
e	100
f	101

■ Observation: the encoding of ' e ' and ' f ' is a bit redundant

- the second bit does not help us in distinguishing 'e' from ' f '
- in other words, if the first (most significant) bit is 1, then the second bit gives us no information, so it can be removed

Idea

■ Variable-length code

symbol	code
a	000
b	001
c	010
d	011
e	10
f	11

■ Encoding and decoding are well-defined and unambiguous

■ Variable-length code

symbol	code
a	000
b	001
c	010
d	011
e	10
f	11

■ Encoding and decoding are well-defined and unambiguous
■ How much space do we save?

■ Variable-length code

symbol	code
a	000
b	001
c	010
d	011
e	10
f	11

■ Encoding and decoding are well-defined and unambiguous
■ How much space do we save?

- not knowing the frequency of ' e ' and 'f', we can't tell exactly
- Variable-length code

symbol	code
a	000
b	001
c	010
d	011
e	10
f	11

■ Encoding and decoding are well-defined and unambiguous
■ How much space do we save?

- not knowing the frequency of ' e ' and ' f ', we can't tell exactly

■ Given the frequencies $f_{a}, f_{b}, f_{c}, \ldots$ of all the symbols in S

$$
M=3 n\left(f_{a}+f_{b}+f_{c}+f_{d}\right)+2 n\left(f_{e}+f_{f}\right)
$$

Problem Definition

Problem Definition

- Given a set of symbols C and a frequency function $f: C \rightarrow[0,1]$

■ Find a code $E: C \rightarrow\{0,1\}^{*}$ such that

Problem Definition

- Given a set of symbols C and a frequency function $f: C \rightarrow[0,1]$

■ Find a code $E: C \rightarrow\{0,1\}^{*}$ such that

- E is a prefix code
- no codeword $E\left(c_{1}\right)$ is the prefix of another codeword $E\left(c_{2}\right)$
- Given a set of symbols C and a frequency function $f: C \rightarrow[0,1]$
- Find a code $E: C \rightarrow\{0,1\}^{*}$ such that
- E is a prefix code
- no codeword $E\left(c_{1}\right)$ is the prefix of another codeword $E\left(c_{2}\right)$

■ The average codeword size

$$
B(S)=\sum_{c \in C} f(c)|E(c)|
$$

is minimal

■ $E: C \rightarrow\{0,1\}^{*}$ defines binary strings, so we can represent E as a binary tree T

■ $E: C \rightarrow\{0,1\}^{*}$ defines binary strings, so we can represent E as a binary tree T

sym.	freq.	code
a	45%	000
b	13%	001
c	12%	010
d	16%	011
e	9%	10
f	5%	11

■ $E: C \rightarrow\{0,1\}^{*}$ defines binary strings, so we can represent E as a binary tree T

sym.	freq.	code
a	45%	000
b	13%	001
c	12%	010
d	16%	011
e	9%	10
f	5%	11

- leaves represent symbols; internal nodes are prefixes
- the code of a symbol c is the path from the root to c
- the weight $f(v)$ of a node v is the frequency of its code/prefix

■ $E: C \rightarrow\{0,1\}^{*}$ defines binary strings, so we can represent E as a binary tree T

sym.	freq.	code
a	45%	000
b	13%	001
c	12%	010
d	16%	011
e	9%	10
f	5%	11

- leaves represent symbols; internal nodes are prefixes
- the code of a symbol c is the path from the root to c
- the weight $f(v)$ of a node v is the frequency of its code/prefix

$$
B(S)=n \sum_{c \in \operatorname{leaves}(T)} f(c) \operatorname{depth}(c)=n \sum_{v \in T} f(v)
$$

Huffman (C)	
1	$n=\|C\|$
2	$Q=C$
3	for $i=1$ to $n-1$
4	create a new node z
5	z. left = Extract-Min(Q)
6	z.right = Extract-Min(Q)
7	$f(z)=f(z . l e f t)+f(z . r i g h t)$
8	Insert(Q, z)
	return Extract-Min(Q)

```
Huffman (C)
\(1 n=|C|\)
\(2 \quad Q=C\)
3 for \(i=1\) to \(n-1\)
\(4 \quad\) create a new node \(z\)
\(5 \quad\) z.left = Extract-Min(Q)
\(6 \quad\) z.right \(=\) Extract-Min(Q)
\(7 \quad f(z)=f(z . l e f t)+f(z\). right \()\)
\(8 \quad\) Insert \((Q, z)\)
9 return Extract-Min(Q)
```

■ We build the code bottom-up

```
Huffman (C)
\(1 n=|C|\)
\(2 \quad Q=C\)
3 for \(i=1\) to \(n-1\)
\(4 \quad\) create a new node \(z\)
\(5 \quad\) z.left = Extract-Min(Q)
\(6 \quad\) z.right \(=\) Extract-Min(Q)
\(7 \quad f(z)=f(z . l e f t)+f(z\). right \()\)
\(8 \quad\) Insert \((Q, z)\)
9 return Extract-Min(Q)
```

■ We build the code bottom-up
■ Each time we make the "greedy" choice of merging the two least frequent nodes (symbols or prefixes)

```
Huffman (C)
\(1 n=|C|\)
    \(Q=C\)
    for \(i=1\) to \(n-1\)
        create a new node \(z\)
        z. left = Extract-Min(Q)
        z. right = Extract-Min(Q)
        \(f(z)=f(z\). left \()+f(z\). right \()\)
        Insert \((Q, z)\)
    return Extract-Min(Q)
```

sym.	freq.	code
a	45%	
b	13%	
c	12%	
d	16%	
e	9%	
f	5%	

Huffman(C)	
1	$n=\|C\|$
2	$Q=C$
3	for $i=1$ to $n-1$
4	create a new node z
5	z. left = Extract-Min(Q)
6	z.right = Extract-Min(Q)
7	$f(z)=f(z . l e f t)+f(z$. right $)$
8	Insert(Q, z)
	return Extract-Min(Q)

sym.	freq.	code
a	45%	
b	13%	
c	12%	
d	16%	
e	9%	
f	5%	

$\mathrm{a}: 45$	$\mathrm{~b}: 13$	$\mathrm{c}: 12$	$\mathrm{~d}: 16$
$\mathrm{e}: 9$	$\mathrm{f}: 5$		

Huffman (C)

$\begin{array}{ll}1 & n=|C| \\ 2 & Q=C\end{array}$
3 for $i=1$ to $n-1$
create a new node z
z. left = Extract-Min(Q)
z. right = Extract-Min(Q) $f(z)=f(z$. left $)+f(z$. right $)$ Insert (Q, z)

sym.	freq.	code
a	45%	
b	13%	
c	12%	
d	16%	
e	9%	
f	5%	

9 return Extract-Min(Q)

Huffman (C)

$\begin{array}{ll}1 & n=|C| \\ 2 & Q=C\end{array}$
for $i=1$ to $n-1$
create a new node z
z. left = Extract-Min(Q)
z. right = Extract-Min(Q) $f(z)=f(z$. left $)+f(z$. right $)$ Insert (Q, z)

sym.	freq.	code
a	45%	
b	13%	
c	12%	
d	16%	
e	9%	
f	5%	

9 return Extract-Min(Q)

Huffman (C)

$\begin{array}{ll}1 & n=|C| \\ 2 & Q=C\end{array}$
for $i=1$ to $n-1$
create a new node z
z. left = Extract-Min(Q)
z. right = Extract-Min(Q) $f(z)=f(z$. left $)+f(z$. right $)$ Insert (Q, z)

sym.	freq.	code
a	45%	
b	13%	
c	12%	
d	16%	
e	9%	
f	5%	

9 return Extract-Min(Q)

Huffman(C)

$\begin{array}{ll}1 & n=|C| \\ 2 & Q=C\end{array}$
for $i=1$ to $n-1$
create a new node z
z. left = Extract-Min(Q)
z. right = Extract-Min(Q) $f(z)=f(z$. left $)+f(z$. right $)$ Insert (Q, z)

sym.	freq.	code
a	45%	
b	13%	
c	12%	
d	16%	
e	9%	
f	5%	

return Extract-Min(Q)

Huffman (C)

$\begin{array}{ll}1 & n=|C| \\ 2 & Q=C\end{array}$
for $i=1$ to $n-1$
create a new node z
z. left = Extract-Min(Q)
z. right = Extract-Min(Q) $f(z)=f(z$. left $)+f(z$. right $)$ Insert (Q, z)

sym.	freq.	code
a	45%	
b	13%	
c	12%	
d	16%	
e	9%	
f	5%	

return Extract-Min(Q)

Huffman (C)

$\begin{array}{ll}1 & n=|C| \\ 2 & Q=C\end{array}$
3 for $i=1$ to $n-1$
create a new node z
z. left = Extract-Min(Q)
z. right $=$ Extract-Min(Q) $f(z)=f(z$. left $)+f(z$. right $)$ Insert (Q, z)

sym.	freq.	code
a	45%	0
b	13%	100
c	12%	101
d	16%	110
e	9%	1110
f	5%	1111

9 return Extract-Min(Q)

