Graphs: Representation and Elementary Algorithms

Antonio Carzaniga
Faculty of Informatics
Università della Svizzera italiana

May 11, 2021

- Graphs: definitions
- Representations
- Breadth-first search
- Depth-first search

Example

Example

Same Example (Better Layout)

■ Social networks: who knows who

- The Web graph: which page links to which

■ The Internet graph: which router links to which
■ Citation graphs: who references whose papers
■ Planar graphs: which country is next to which
■ Well-shaped meshes: pretty pictures with triangles

- Geometric graphs: who is near who

■ Random graphs: whichever...

Example (1)

Example (2)

- A graph

$$
G=(V, E)
$$

■ V is the set of vertices (also called nodes)

- E is the set of edges

■ A graph

$$
G=(V, E)
$$

■ V is the set of vertices (also called nodes)

■ E is the set of edges

- $E \subseteq V \times V$, i.e., E is a relation between vertices
- an edge $e=(u, v) \in V$ is a pair of vertices $u \in V$ and $v \in V$
- A graph

$$
G=(V, E)
$$

■ V is the set of vertices (also called nodes)

■ E is the set of edges

- $E \subseteq V \times V$, i.e., E is a relation between vertices
- an edge $e=(u, v) \in V$ is a pair of vertices $u \in V$ and $v \in V$

■ An undirected graph is characterized by a symmetric relation between vertices

- an edge is a set $e=\{u, v\}$ of two vertices

Graph Representation
■ How do we represent a graph $G=(E, V)$ in a computer?

Graph Representation

■ How do we represent a graph $G=(E, V)$ in a computer?

- Adjacency-list representation

■ $V=\{1,2, \ldots|V|\}$
■ G consists of an array Adj

- A vertex $u \in V$ is represented by an element in the array Adj

■ How do we represent a graph $G=(E, V)$ in a computer?
■ Adjacency-list representation
■ $V=\{1,2, \ldots|V|\}$

- G consists of an array Adj
- A vertex $u \in V$ is represented by an element in the array Adj
- $\operatorname{Adj}[u]$ is the adjacency list of vertex u
- the list of the vertices that are adjacent to u
- i.e., the list of all v such that $(u, v) \in E$

Example

Example

Using the Adjacency List

Using the Adjacency List

■ Accessing a vertex u ?

Using the Adjacency List

■ Accessing a vertex u ?
$O(1)$

- optimal

Using the Adjacency List

■ Accessing a vertex u ?
$O(1)$

- optimal

■ Iteration through V ?

Using the Adjacency List

■ Accessing a vertex u ?
$O(1)$

- optimal

■ Iteration through V ?

- optimal

Using the Adjacency List

■ Accessing a vertex u ?
$O(1)$

- optimal

■ Iteration through V ?

- optimal

■ Iteration through E ?

Using the Adjacency List

■ Accessing a vertex u ?

- optimal
- Iteration through V ?
- optimal
- Iteration through E ?
- okay (not optimal)
$O(1)$

$$
\Theta(|V|+|E|)
$$

Using the Adjacency List

- Accessing a vertex u ?
- optimal
- Iteration through V ?
- optimal

■ Iteration through E ?

- okay (not optimal)

■ Checking $(u, v) \in E$?
$O(1)$ $\Theta(|V|)$

$$
\Theta(|V|+|E|)
$$

Using the Adjacency List

- Accessing a vertex u ?
$O(1)$
- optimal
- Iteration through V ? $\Theta(|V|)$
- optimal

■ Iteration through E ?

$$
\Theta(|V|+|E|)
$$

- okay (not optimal)

■ Checking $(u, v) \in E$?

Using the Adjacency List

- Accessing a vertex u ?
- optimal
- Iteration through V ?
- optimal

■ Iteration through E ?

- okay (not optimal)
- Checking $(u, v) \in E$?
- bad

Graph Representation (2)

■ Adjacency-matrix representation
■ $V=\{1,2, \ldots|V|\}$

- G consists of a $|V| \times|V|$ matrix A

■ $A=\left(a_{i j}\right)$ such that

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Example

Example

Example

Using the Adjacency Matrix

Using the Adjacency Matrix

■ Accessing a vertex u ?

Using the Adjacency Matrix

- Accessing a vertex u ?
$O(1)$
- optimal

Using the Adjacency Matrix

■ Accessing a vertex u ? O (1)

- optimal

■ Iteration through V ?

	2	3	4	,	6	7	8	9		11	
1				1	1						
2		1				1					
3			1			1					
4						1					
5								1			
6	1					1		1			
7							1		1	1	
8										1	1
9									1		
10											
11											1
12											

Using the Adjacency Matrix

■ Accessing a vertex u ?

- optimal

■ Iteration through V ?

- optimal
$O(1)$

$\Theta(|V|)$

1	2	3	4	5	6	7	8	9	10	11	12	
						1	1					
2												
2			1				1					
3				1			1					
4							1					
5									1			
6		1					1		1			
7								1		1	1	
8											1	1
9										1		
10												
11												1
12												

Using the Adjacency Matrix

■ Accessing a vertex u ?

- optimal

■ Iteration through V ?

$$
\Theta(|V|)
$$

- optimal

■ Iteration through E ?
$O(1)$

■ Accessing a vertex u ?

- optimal

■ Iteration through V ?

- optimal
- Iteration through E ?
- possibly very bad

$$
\Theta(|V|)
$$

$O(1)$

$\Theta\left(|V|^{2}\right)$

	2	3	4	5	6	7	8	9			
1				1	1						
2		1				1					
3			1			1					
4						1					
5								1			
6	1					1		1			
7							1		1	1	
8										1	1
9									1		
10											
11											1
12											

■ Accessing a vertex u ?

- optimal

■ Iteration through V ?

$$
\Theta(|V|)
$$

- optimal
- Iteration through E ?
- possibly very bad

■ Checking $(u, v) \in E$?
$O(1)$

$\Theta\left(|V|^{2}\right)$

$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112\end{array}$											
1				1	1						
2		1				1					
3			1			1					
4						1					
5								1			
6	1					1		1			
7							1		1	1	
8										1	1
9									1		
10											
11											1
12											

■ Accessing a vertex u ?

- optimal

■ Iteration through V ?

$$
\Theta(|V|)
$$

- optimal
- Iteration through E ?

$$
\Theta\left(|V|^{2}\right)
$$

- possibly very bad

■ Checking $(u, v) \in E$?

	2	3	4	,	6	7	8	9		11	
1				1	1						
2		1				1					
3			1			1					
4						1					
5								1			
6	1					1		1			
7							1		1	1	
8										1	1
9									1		
10											
11											1
12											

■ Accessing a vertex u ?

- optimal

■ Iteration through V ? $\Theta(|V|)$

- optimal
- Iteration through E ?
- possibly very bad
- Checking $(u, v) \in E$?
- optimal
$O(1)$

Space Complexity

■ Adjacency-list representation

- Adjacency-list representation

$$
\theta(|V|+|E|)
$$

■ Adjacency-list representation

$$
\begin{array}{||l|}
\hline \Theta(|V|+|E|) \\
\hline \hline
\end{array}
$$

optimal

■ Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal

■ Adjacency-matrix representation

- Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal

- Adjacency-matrix representation

$$
\Theta\left(|V|^{2}\right)
$$

- Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal
■ Adjacency-matrix representation

$$
\Theta\left(|V|^{2}\right)
$$

possibly very bad

■ Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal
■ Adjacency-matrix representation

$$
\Theta\left(|V|^{2}\right)
$$

possibly very bad
■ When is the adjacency-matrix "very bad"?

Choosing a Graph Representation

■ Adjacency-list representation

- generally good, especially for its optimal space complexity
- bad for dense graphs and algorithms that require random access to edges
- preferable for sparse graphs or graphs with low degree

Choosing a Graph Representation

■ Adjacency-list representation

- generally good, especially for its optimal space complexity
- bad for dense graphs and algorithms that require random access to edges
- preferable for sparse graphs or graphs with low degree

■ Adjacency-matrix representation

- suffers from a bad space complexity
- good for algorithms that require random access to edges
- preferable for dense graphs

Breadth-First Search

■ One of the simplest but also a fundamental algorithm

Breadth-First Search

■ One of the simplest but also a fundamental algorithm
■ Input: $G=(V, E)$ and a vertex $s \in V$

- explores the graph, touching all vertices that are reachable from s
- iterates through the vertices at increasing distance (edge distance)
- computes the distance of each vertex from s
- produces a breadth-first tree rooted at s
- works on both directed and undirected graphs

Example

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color [s] = gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color [v$]==$ white
14	$\operatorname{color}[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color [s] = gray
	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v$]==$ white
14	color $[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color [s] = gray
	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v$]==$ white
14	color $[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v$]==$ white
14	color $[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ white
14	$\operatorname{color}[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{Enqueue}(Q, v)$
18	$\operatorname{color}[u]=\operatorname{black}$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ white
14	$\operatorname{color}[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{Enqueue}(Q, v)$
18	$\operatorname{color}[u]=\operatorname{black}$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ white
14	$\operatorname{color}[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{Enqueue}(Q, v)$
18	$\operatorname{color}[u]=\operatorname{black}$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ white
14	$\operatorname{color}[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{Enqueue}(Q, v)$
18	$\operatorname{color}[u]=\operatorname{black}$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ white
14	$\operatorname{color}[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{Enqueue}(Q, v)$
18	$\operatorname{color}[u]=\operatorname{black}$

BFS Algorithm

$\operatorname{BFS}(G, s)$	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ white
14	$\operatorname{color}[v]=\operatorname{gray}$
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{Enqueue}(Q, v)$
18	$\operatorname{color}[u]=\operatorname{black}$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

$$
u=7
$$

$$
Q=\{10,3,8,11\}
$$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color [s] = gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color $[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

$$
u=3
$$

$$
Q=\{8,11\}
$$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

$$
u=3
$$

$$
Q=\{8,11,4\}
$$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

$$
u=8
$$

$$
Q=\{11,4\}
$$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

$$
\begin{aligned}
& u=8 \\
& Q=\{11,4,12\}
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

$$
u=4
$$

$$
Q=\{12\}
$$

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color [u] = white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue(Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequaue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if color[v] = = white
14	color [v] = gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	Enqueue(Q, v)
18	color $[u]=$ black

BFS Algorithm

BFS (G, s)	
1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ white
3	$d[u]=\infty$
4	$\pi[u]=$ nil
5	color $[s]=$ gray
6	$d[s]=0$
7	$\pi[s]=$ nil
8	$Q=\varnothing$
9	Enqueue (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{Dequeue}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ white
14	$\operatorname{color}[v]=$ gray
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{Enqueue}(Q, v)$
18	$\operatorname{color}[u]=\operatorname{black}$

Complexity of BFS

```
BFS ( \(G, s\) )
    for each vertex \(u \in V(G) \backslash\{s\}\)
    color \([u]=\) white
    \(d[u]=\infty\)
    \(\pi[u]=\) nil
    color[s] = gray
    \(d[s]=0\)
    \(\pi[s]=\) nil
    \(Q=\varnothing\)
    Enqueue \((Q, s)\)
    while \(Q \neq \varnothing\)
        \(u=\operatorname{Dequeue}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
        if color[ v ] == white
            color [ \(v\) ] = gray
            \(d[v]=d[u]+1\)
            \(\pi[v]=u\)
            Enqueue \((Q, v)\)
    color \([u]=\) black
```


Complexity of BFS

```
BFS \((G, s)\)
    for each vertex \(u \in V(G) \backslash\{s\}\)
        color \([u]=\) white
        \(d[u]=\infty\)
        \(\pi[u]=\) nil
    color [s] = gray
    \(d[s]=0\)
    \(\pi[s]=\) nil
    \(Q=\varnothing\)
    Enqueue \((Q, s)\)
    while \(Q \neq \varnothing\)
        \(u=\operatorname{Dequeue}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
        if color[ v ] == white
            color [ \(v\) ] = gray
            \(d[v]=d[u]+1\)
            \(\pi[v]=u\)
            Enqueue( \(Q, v\) )
    \(\operatorname{color}[u]=\) black
```

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

Complexity of BFS

```
BFS ( \(G, s\) )
    for each vertex \(u \in V(G) \backslash\{s\}\)
        color \([u]=\) white
        \(d[u]=\infty\)
        \(\pi[u]=\) nil
    color \([s]=\) gray
    \(d[s]=0\)
    \(\pi[s]=\) nil
    \(Q=\varnothing\)
    Enqueue \((Q, s)\)
    while \(Q \neq \varnothing\)
        \(u=\operatorname{Dequeue}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
        if color[ \(v\) ] == white
            color [ \(v\) ] = gray
            \(d[v]=d[u]+1\)
            \(\pi[v]=u\)
            Enqueue ( \(Q, v\) )
    color \([u]=\) black
```

■ We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

■ So, the (dequeue) while loop executes $O(|V|)$ times

Complexity of BFS

```
BFS ( \(G, s\) )
    for each vertex \(u \in V(G) \backslash\{s\}\)
        color \([u]=\) white
        \(d[u]=\infty\)
        \(\pi[u]=\) nil
    color[s] = gray
    \(d[s]=0\)
    \(\pi[s]=\) nil
    \(Q=\varnothing\)
    Enqueue \((Q, s)\)
    while \(Q \neq \varnothing\)
        \(u=\operatorname{Dequeue}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
        if color[ \(v\) ] == white
            color \([v]=\) gray
            \(d[v]=d[u]+1\)
            \(\pi[v]=u\)
            Enqueue( \(Q, v\) )
    \(\operatorname{color}[u]=\) black
```

■ We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

■ So, the (dequeue) while loop executes $O(|V|)$ times

■ For each vertex u, the inner loop executes $\Theta\left(\left|E_{u}\right|\right)$, for a total of $O(|E|)$ steps

Complexity of BFS

```
BFS \((G, s)\)
    for each vertex \(u \in V(G) \backslash\{s\}\)
        color \([u]=\) white
        \(d[u]=\infty\)
        \(\pi[u]=\) nil
    color[s] = gray
    \(d[s]=0\)
    \(\pi[s]=\) nil
    \(Q=\varnothing\)
    Enqueue \((Q, s)\)
    while \(Q \neq \varnothing\)
        \(u=\operatorname{Dequeue}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
        if color[ v ] == white
            color [ \(v\) ] = gray
            \(d[v]=d[u]+1\)
            \(\pi[v]=u\)
            Enqueue ( \(Q, v\) )
    \(\operatorname{color}[u]=\) black
```

■ We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

■ So, the (dequeue) while loop executes $O(|V|)$ times

■ For each vertex u, the inner loop executes $\Theta\left(\left|E_{u}\right|\right)$, for a total of $O(|E|)$ steps

■ So, $O(|V|+|E|)$

Depth-First Search

Depth-First Search

■ Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end

- i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited
- Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end
- i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited

■ Input: $G=(V, E)$

- explores the graph, touching all vertices

Depth-First Search

■ Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end

- i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited

■ Input: $G=(V, E)$

- explores the graph, touching all vertices
- produces a depth-first forest, consisting of all the depth-first trees defined by the DFS exploration

Depth-First Search

■ Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end

- i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited

■ Input: $G=(V, E)$

- explores the graph, touching all vertices
- produces a depth-first forest, consisting of all the depth-first trees defined by the DFS exploration
- associates two time-stamps to each vertex
- $d[u]$ records when u is first discovered
- $f[u]$ records when DFS finishes examining u 's edges, and therefore backtracks from u

DFS Algorithm

	S(G)	DFS-Visit(u)
1	for each vertex $u \in V(G)$	1 color [u] = grey
2	color $[u]=$ white	2 time $=$ time +1
3	$\pi[u]=$ nil	$3 d[u]=$ time
4	time = 0 // "global" variable	4 for each $v \in \operatorname{Adj}[u]$
5	for each vertex $u \in V(G)$	5 if color $[v]==$ white
6	if color [u] == white	$6 \quad \pi[v]=u$
7	DFS-Visit(u)	7 DFS-Visit(v)
		8 color $[u]=$ black
		9 time $=$ time +1
		$10 \mathrm{f}[u]=$ time

Complexity of DFS

Complexity of DFS

- The loop in DFS-Visit (u) (lines 4-7) accounts for $\Theta\left(\left|E_{u}\right|\right)$

Complexity of DFS

■ The loop in DFS-Visit (u) (lines 4-7) accounts for $\Theta\left(\left|E_{u}\right|\right)$

- We call DFS-Visit (u) once for each vertex u
- either in DFS, or recursively in DFS-Visit
- because we call it only if color $[u]=$ white, but then we immediately set color $[u]=$ grey

Complexity of DFS

■ The loop in DFS-Visit (u) (lines 4-7) accounts for $\Theta\left(\left|E_{u}\right|\right)$

- We call DFS-Visit (u) once for each vertex u
- either in DFS, or recursively in DFS-Visit
- because we call it only if color $[u]=$ white, but then we immediately set color $[u]=$ grey

■ So, the overall complexity is $\Theta(|V|+|E|)$

Applications of DFS: Topological Sort

■ Problem: (topological sort)
Given a directed acyclic graph (DAG)

- find an ordering of vertices such that you only end up with forward links

Applications of DFS: Topological Sort

■ Problem: (topological sort)
Given a directed acyclic graph (DAG)

- find an ordering of vertices such that you only end up with forward links

■ Example: dependencies in software packages

- find an installation order for a set of software packages
- such that every package is installed only after all the packages it depends on

Topological Sort Algorithm

Topological Sort Algorithm

Topological-Sort (G)
1 DFS(G)
2 output V sorted in reverse order of $f[\cdot]$

