Elementary Data Structures and Hash Tables

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
April 20, 2021

- Common concepts and notation

■ Stacks

- Queues

■ Linked lists
■ Trees

- Direct-access tables
- Hash tables
- A data structure is a way to organize and store information
- to facilitate access, or for other purposes

Concepts

- A data structure is a way to organize and store information
- to facilitate access, or for other purposes

■ A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.

Concepts

- A data structure is a way to organize and store information
- to facilitate access, or for other purposes

■ A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.

■ A data structure stores data and possibly meta-data

Concepts

- A data structure is a way to organize and store information
- to facilitate access, or for other purposes
- A data structure has an interface consisting of procedures for adding, deleting, accessing, reorganizing, etc.

■ A data structure stores data and possibly meta-data

- e.g., a heap needs an array A to store the keys, plus a variable A. heap-size to remember how many elements are in the heap

Stack

■ The ubiquitous "last-in first-out" container (LIFO)

■ The ubiquitous "last-in first-out" container (LIFO)

- Interface
- Stack-Empty (S) returns true if and only if S is empty
- Push (S, x) pushes the value x onto the stack S
- $\operatorname{Pop}(S)$ extracts and returns the value on the top of the stack S

■ The ubiquitous "last-in first-out" container (LIFO)

- Interface
- Stack-Empty (S) returns true if and only if S is empty
- Push(S, x) pushes the value x onto the stack S
- $\operatorname{Pop}(S)$ extracts and returns the value on the top of the stack S
- Implementation
- using an array
- using a linked list

A Stack Implementation

■ Array-based implementation

A Stack Implementation

- Array-based implementation
- S is an array that holds the elements of the stack
- S. top is the current position of the top element of S

A Stack Implementation

- Array-based implementation
- S is an array that holds the elements of the stack
- S. top is the current position of the top element of S
Stack-Empty(S)
1 if S.top $==0$
2 \quad return true

A Stack Implementation

- Array-based implementation
- S is an array that holds the elements of the stack
- S. top is the current position of the top element of S
Stack-Empty(S)
1 if S.top $==0$
2 \quad return true \quad else return false

Push(S, x)
1 S.top $=$ S.top +1
$2 S[$ S.top $]=x$

Pop(S)

1 if Stack-Empty (S) error "underflow" else S.top $=$ S.top -1 return $S[S . t o p+1]$

■ The ubiquitous "first-in first-out" container (FIFO)

■ The ubiquitous "first-in first-out" container (FIFO)

- Interface
- Enqueue (Q, x) adds element x at the back of queue Q
- Dequeue (Q) extracts the element at the head of queue Q

■ The ubiquitous "first-in first-out" container (FIFO)

- Interface
- Enqueue (Q, x) adds element x at the back of queue Q
- Dequeue (Q) extracts the element at the head of queue Q
- Implementation
- Q is an array of fixed length Q. length
- i.e., Q holds at most Q. length elements
- enqueueing more than Q elements causes an "overflow" error
- Q. head is the position of the "head" of the queue
- Q.tail is the first empty position at the tail of the queue

```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
    else Q[Q.tail] = x
        if Q.tail < Q.length
            Q.tail = Q.tail +1
        else Q.tail = 1
        if Q.tail == Q. head
        Q.queue-full = true
        Q.queue-empty = false
```


Enqueue(Q, \mathbf{x})

1 if Q.queue-full
2 error "overflow"

3 else $Q[$ Q.tail $]=x$
4 if Q. tail < Q. length
$5 \quad$ Q.tail $=$ Q.tail +1
$6 \quad$ else Q. tail $=1$
7 if Q.tail $==$ Q. head
$8 \quad$ Q.queue-full = true
9
Q.queue-empty = false

Enqueue(Q, \mathbf{x})

1 if Q.queue-full
2 error "overflow"
else $Q[$ Q.tail $]=x$
if Q. tail < Q. length
Q.tail $=$ Q.tail +1
else Q. tail $=1$
if Q. tail $=$ Q. head
Q.queue-full = true
Q.queue-empty = false

Enqueue(Q, \mathbf{x})

1 if Q.queue-full
2 error "overflow"

3 else $Q[Q$. tail $]=x$
4 if Q.tail < Q. length
$5 \quad$ Q.tail $=$ Q.tail +1
$6 \quad$ else Q. tail $=1$
7 if Q.tail $==$ Q.head
$8 \quad$ Q.queue-full = true
9
Q.queue-empty = false


```
Enqueue(Q,x)
1 if Q.queue-full
2 error "overflow"
    else Q[Q.tail] = x
        if Q.tail < Q. length
            Q.tail = Q.tail +1
        else Q.tail = 1
        if Q. tail == Q.head
        Q.queue-full = true
        Q.queue-empty = false
```


Enqueue(Q, \mathbf{x})

1 if Q.queue-full
2 error "overflow"

3 else $Q[Q$. tail $]=x$
4 if Q.tail < Q.length
$5 \quad$ Q.tail $=$ Q.tail +1
$6 \quad$ else Q. tail $=1$
7 if Q.tail $==$ Q.head
$8 \quad$ Q.queue-full = true
9
Q.queue-empty = false

Enqueue(Q, \mathbf{x})

1 if Q.queue-full
2 error "overflow"
else $Q[$ Q.tail $]=x$
if Q. tail < Q. length
Q.tail $=$ Q.tail +1
else Q. tail $=1$
if Q. tail $=$ Q. head
Q.queue-full = true
Q.queue-empty = false

Enqueue(Q, \mathbf{x})

1 if Q.queue-full
2 error "overflow"

3 else $Q[Q$. tail $]=x$
4 if Q.tail < Q. length
$5 \quad$ Q.tail $=$ Q.tail +1
$6 \quad$ else Q.tail $=1$
7 if Q.tail $==$ Q.head
$8 \quad$ Q.queue-full = true
9
Q.queue-empty = false

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q$. head $]$
4	if Q. head $<$ Q. length
5	Q. head $=$ Q. head +1
6	else Q. head $=1$
7	if Q.tail $==$ Q. head
8	Q.queue-empty = true
9	Q.queue-full = false
10	return x

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q$. head $]$
4	if Q. head $<$ Q. length
5	Q. head $=$ Q. head +1
6	else Q. head $=1$
7	if Q.tail $==$ Q. head
8	Q.queue-empty = true
9	Q.queue-full = false
10	return x

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q$. head $]$
4	if Q. head $<$ Q. length
5	Q. head $=$ Q. head +1
6	else Q.head $=1$
7	if Q.tail $==$ Q. head
8	Q.queue-empty = true
9	Q.queue-full = false
10	return x

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q$. head $]$
4	if Q. head $<$ Q. length
5	Q. head $=$ Q. head +1
6	else Q. head $=1$
7	if Q.tail == Q. head
8	Q.queue-empty $=$ true
9	Q.queue-full = false
10	return x

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $x=Q[Q$. head $]$
4	if Q. head $<$ Q. length
5	Q. head $=$ Q. head +1
6	else Q. head = 1
7	if Q.tail == Q. head
8	Q.queue-empty = true
9	Q.queue-full = false
10	return x

Q. head

- Interface
- List-Insert (L, x) adds element x at beginning of a list L
- List-Delete (L, x) removes element x from a list L
- List-Search (L, k) finds an element whose key is k in a list L
- Interface
- List-Insert (L, x) adds element x at beginning of a list L
- List-Delete (L, x) removes element x from a list L
- List-Search (L, k) finds an element whose key is k in a list L
- Implementation
- a doubly-linked list
- each element x has two "links" x. prev and x. next to the previous and next elements, respectively
- each element x holds a key x. key
- it is convenient to have a dummy "sentinel" element L. nil

Linked List With a "Sentinel"

List-Init(L)
 1 L.nil.prev = L.nil
 2 L.nil.next = L.nil

List-Insert (L, x)
1
2 x.next $=$ L.nil.next

2 L.nil.next.prev $=x,$| 3 | L.nil.next $=x$ |
| :--- | :--- |
| 4 | x.prev $=$ L.nil |

List-Search (L, k)
$1 x=$ L. nil.next
2 while $x \neq$ L. nil $\wedge x$.key $\neq k$
$3 x=x . n e x t$
4 return x

- Structure
- fixed branching
- unbounded branching
- Structure
- fixed branching
- unbounded branching

■ Implementation

- for each node $x \neq T$.root, x. parent is x 's parent node
- fixed branching:
e.g., x. left-child and x. right-child in a binary tree
- unbounded branching:
x. left-child is x 's first (leftmost) child
x. right-sibling is x closest sibling to the right

Complexity

Complexity
$\underline{\underline{\text { Algorithm } \quad \text { Complexity }}}$

Complexity

Algorithm Complexity
 Stack-Empty

Algorithm	Complexity
Stack-Empty	$O(1)$
Push	

Algorithm	Complexity
Stack-Empty	$O(1)$
Push	$O(1)$
Pop	$O(1)$
Enqueue	$O(1)$
Dequeue	$O(1)$
List-Insert	

Algorithm	Complexity
Stack-Empty	$O(1)$
Push	$O(1)$
Pop	$O(1)$
Enqueue	$O(1)$
Dequeue	$O(1)$
List-Insert	$O(1)$
List-Delete	

Algorithm	Complexity
Stack-Empty	$O(1)$
Push	$O(1)$
Pop	$O(1)$
Enqueue	$O(1)$
Dequeue	$O(1)$
List-Insert	$O(1)$
List-Delete	$O(1)$

List-Search

Algorithm	Complexity
Stack-Empty	$O(1)$
Push	$O(1)$
Pop	$O(1)$
Enqueue	$O(1)$
Dequeue	$O(1)$
List-Insert	$O(1)$
List-Delete	$O(1)$
List-Search	$\Theta(n)$

- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- Interface (generic interface)
- Insert (D, k) adds a key k to the dictionary D
- Delete (D, k) removes key k from D
- Search (D, k) tells whether D contains a key k
- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- Interface (generic interface)
- Insert (D, k) adds a key k to the dictionary D
- Delete (D, k) removes key k from D
- Search (D, k) tells whether D contains a key k
- Implementation
- many (concrete) data structures
- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- Interface (generic interface)
- Insert (D, k) adds a key k to the dictionary D
- Delete (D, k) removes key k from D
- Search (D, k) tells whether D contains a key k
- Implementation
- many (concrete) data structures
- hash tables

Direct-Address Table

- A direct-address table implements a dictionary
- A direct-address table implements a dictionary

■ The universe of keys is $U=\{1,2, \ldots, M\}$

- A direct-address table implements a dictionary

■ The universe of keys is $U=\{1,2, \ldots, M\}$

- Implementation
- an array T of size M
- each key has its own position in T
- A direct-address table implements a dictionary

■ The universe of keys is $U=\{1,2, \ldots, M\}$

- Implementation
- an array T of size M
- each key has its own position in T

Direct-Address-Insert (T, k)	Direct-Address-Delete (T, k)
$1 \quad T[k]=$ true	$1 \quad T[k]=$ false

Direct-Address-Search (T, k)
1 return T [k]

Direct-Address Table (2)

- Complexity

Direct-Address Table (2)

■ Complexity
All direct-address table operations are $O(1)$!

■ Complexity
All direct-address table operations are $O(1)$!
So why isn't every set implemented with a direct-address table?

■ Complexity

All direct-address table operations are $O(1)$!

So why isn't every set implemented with a direct-address table?

■ The space complexity is $\Theta(|U|)$

- $|U|$ is typically a very large number $-U$ is the universe of keys!
- the represented set is typically much smaller than $|U|$
- i.e., a direct-address table usually wastes a lot of space

■ Complexity

All direct-address table operations are $O(1)$!

So why isn't every set implemented with a direct-address table?

- The space complexity is $\Theta(|U|)$
- $|U|$ is typically a very large number- U is the universe of keys!
- the represented set is typically much smaller than |U|
- i.e., a direct-address table usually wastes a lot of space
- Can we have the benefits of a direct-address table but with a table of reasonable size?
- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

Hash Table

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

Hash-Insert (T, k)

$$
1 T[h(k)]=\text { true }
$$

$$
\begin{aligned}
& \operatorname{Hash}-\operatorname{Delete}(T, k) \\
& 1 \quad T[h(k)]=\text { false }
\end{aligned}
$$

Hash Table

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

Hash-Insert (T, k)

$$
1 T[h(k)]=\text { true }
$$

$$
\begin{aligned}
& \text { Hash-Delete }(T, k) \\
& 1 \quad T[h(k)]=\text { false }
\end{aligned}
$$

Are these algorithms correct?

Hash Table

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

Hash-Insert (T, k)

$$
1 T[h(k)]=\text { true }
$$

$$
\begin{aligned}
& \text { Hash-Delete }(T, k) \\
& 1 \quad T[h(k)]=\text { false }
\end{aligned}
$$

Hash Table

- Idea
- use a table T with $|T| \ll|U|$
- map each key $k \in U$ to a position in T, using a hash function

$$
h: U \rightarrow\{1, \ldots,|T|\}
$$

Hash-Insert (T, k)

$$
1 T[h(k)]=\text { true }
$$

$$
\begin{aligned}
& \text { Hash-Delete }(T, k) \\
& 1 \quad T[h(k)]=\text { false }
\end{aligned}
$$

Are these algorithms correct? No!
What if two distinct keys $k_{1} \neq k_{2}$ collide? (I.e., $h\left(k_{1}\right)=h\left(k_{2}\right)$)

Hash Table

Hash Table

Hash Table

Hash Table

Hash Table

Analysis

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

Analysis

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
■ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

- We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
■ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

- We further assume that $h(k)$ can be computed in $O(1)$ time

■ We assume uniform hashing for our hash function $h: U \rightarrow\{1 \ldots|T|\}$ (where $|T|=T$. length $)$

$$
\operatorname{Pr}[h(k)=i]=\frac{1}{|T|} \quad \text { for all } i \in\{1 \ldots|T|\}
$$

(The formalism is actually a bit more complicated.)
■ So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[n_{i}\right]=\frac{n}{|T|}=\alpha
$$

- We further assume that $h(k)$ can be computed in $O(1)$ time

■ Therefore, the complexity of Chained-Hash-Search is

$$
\Theta(1+\alpha)
$$

Open-Address Hash Table

Hash-Insert (T, k)	
	$j=h(k)$
2	for $i=1$ to T. length
3	if $T[j]==$ nil
4	$T[j]=k$
5	return j
6	elseif $j<T$. length
7	$j=j+1$
8	else $j=1$
9	error "overflow"

Open-Addressing (2)

■ Idea: instead of using linked lists, we can store all the elements in the table

- this implies $\alpha \leq 1$

■ Idea: instead of using linked lists, we can store all the elements in the table

- this implies $\alpha \leq 1$

■ When a collision occurs, we simply find another free cell in T

■ Idea: instead of using linked lists, we can store all the elements in the table

- this implies $\alpha \leq 1$

■ When a collision occurs, we simply find another free cell in T
■ A sequential "probe" may not be optimal

- can you figure out why?

Hash-Insert (T, k)	
	for $i=1$ to T. length
2	$j=h(k, i)$
3	if $T[j]==n i l$
4	$T[j]=k$
5	return j
6	error "overflow"

Hash-Insert (T, k)	
	for $i=1$ to T. length
2	$j=h(k, i)$
3	if $T[j]==$ nil
4	$T[j]=k$
5	return j
6	error "overflow"

■ Notice that $h(k, \cdot)$ must be a permutation

- i.e., $h(k, 1), h(k, 2), \ldots, h(k,|T|)$ must cover the entire table T

