Divide-and-Conquer Algorithms

Antonio Carzaniga

Faculty of Informatics
Universita della Svizzera italiana

March 25, 2021

m Merging (or set union)
m Searching

m Sorting

m Multiplying

m Computing the median

Outline

Merging (Set Union)

Merging (Set Union)

m Input: sequences A = (ay, a,...,ap) and B = (by, bo, ..., by)

Output: a sequence X = (xy, Xo, . . ., Xg) such that

Merging (Set Union)

m Input: sequences A = (ay, a,...,ap) and B = (by, bo, ..., by)
Output: a sequence X = (xy, Xo, . . ., Xg) such that
> every element of A appears once in X
> every element of B appears once in X

> every element of X appearsin Aorin Bor in both

Merging (Set Union)

m Input: sequences A = (ay, a,...,ap) and B = (by, bo, ..., by)
Output: a sequence X = (xy, Xo, . . ., Xg) such that

> every element of A appears oncein X
> every element of B appears once in X

> every element of X appearsin Aorin Bor in both

m Example:
A=(34,7,11,31,14,51,8,21,10)
B = (51,21,14,15,27,31,2)

X =

Merging (Set Union)

Input: sequences A = (ay, a,...,ap) and B = (by, by, ..., by)
Output: a sequence X = (xy, Xo, . . ., Xg) such that

> every element of A appears once in X

> every element of B appears once in X

> every element of X appearsin Aorin Bor in both

Example:
A=(34,7,11,31,14,51,8,21,10)
B = (51,21,14,15,27,31,2)

X =(34,7,11,31,14,51,8,21,10, 15,27, 2)

A Simple Merge Algorithm

m Algorithm strategy

A Simple Merge Algorithm

m Algorithm strategy
» iterate through every position j, first through A, and then B
» output g; if a;is notin {(ay, ap, ..., ai-1)
> output b; if bjis notin {ay, a, ..., an, by, bo, ... bji_1)

A Simple Merge Algorithm

m Algorithm strategy

» iterate through every position j, first through A, and then B
» output g; if a;is notin {(ay, ap, ..., ai-1)

> output b; if bjis notin {ay, a, ..., an, by, bo, ... bji_1)

MergeSimple(A, B)
1 for i = 1 to length(A)

2 if not Find(A[1..i—1],A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[/]) and not Find(B[1../— 1], B[i])
6 output BJi]

Complexity

MergeSimple(A, B)
1 for i = 1 to length(A)

2 if not Find(A[1..i— 1], A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[/]) and not Find(B[1../i— 1], B[i])
6 output Bl]

Complexity

MergeSimple(A, B)
1 for i = 1 to length(A)

2 if not Find(A[1..i— 1], A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[/]) and not Find(B[1../i— 1], B[i])
6 output Bl]

let n = length(A) + length(B)

length(A) length(B)

T(m = > Tena()+ > (Trina(i) + Trina(length(A)))

i=1 i=1

Complexity

MergeSimple(A, B)
1 for i = 1 to length(A)

2 if not Find(A[1..i— 1], A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[/]) and not Find(B[1../i— 1], B[i])
6 output Bl]

let n = length(A) + length(B)
length(A) length(B)

T(m = > Tena()+ > (Trina(i) + Trina(length(A)))

i=1 i=1

T(n) =" Teina(i)
i=1

Searching

m Input: a sequence A and a value key
Output: true if A contains key, or false otherwise

Searching

m Input: a sequence A and a value key
Output: true if A contains key, or false otherwise

Find(A, key) Find(A, begin, end, key)
1 forj = 1 to length(A) 1 for i = beginto end
2 if A[i] == key 2 if A[i] == key

3 return true 3 return true
4 return false 4 return false

Searching

m Input: a sequence A and a value key
Output: true if A contains key, or false otherwise

Find(A, key) Find(A, begin, end, key)
1 forj = 1 to length(A) 1 for i = beginto end
2 if A[i] == key 2 if A[i] == key

3 return true 3 return true
4 return false 4 return false

m The complexity of Find is

Searching

m Input: a sequence A and a value key
Output: true if A contains key, or false otherwise

Find(A, key) Find(A, begin, end, key)
1 forj = 1 to length(A) 1 for i = beginto end
2 if A[i] == key 2 if A[i] == key

3 return true 3 return true
4 return false 4 return false

m The complexity of Find is

T(n) = O(n)

Searching in a List

m Input: a sequence A and a value key
Output: true if A contains key, or false otherwise

Searching in a List

m Input: a sequence A and a value key
Output: true if A contains key, or false otherwise

FindInList(A, key)

1 item = first(A)

2 while item # last(A)

3 if value(item) == key
4 return true

5 item = next(item)

6 return false

Searching in a List

m Input: a sequence A and a value key
Output: true if A contains key, or false otherwise

FindInList(A, key)

1 item = first(A)

2 while item # last(A)

3 if value(item) == key
4 return true

5 item = next(item)

6 return false

m The complexity of FindInList is

Searching in a List

m Input: a sequence A and a value key
Output: true if A contains key, or false otherwise

FindInList(A, key)

1 item = first(A)

2 while item # last(A)

3 if value(item) == key
4 return true

5 item = next(item)

6 return false

m The complexity of FindInList is

T(n) = O(n)

Complexity of MergeSimple

MergeSimple(A, B)
1 for i = 1 to length(A)

2 if not Find(A[1../i—1],A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[/]) and not Find(B[1..i— 1], B[i])
6 output B[]

MergeSimple(A, B)

1 for i = 1 to length(A)

2 if not Find(A[1../i—1],A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[i]) and not Find(B[1..i— 1], B[i])
6 output B[]

Complexity of MergeSimple

T(n) = Z Trina (1)

Complexity of MergeSimple

MergeSimple(A, B)
1 for i = 1 to length(A)

2 if not Find(A[1../i—1],A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[i]) and not Find(B[1..i— 1], B[i])
6 output B[]

T(n) = Z Trina (1)

T(n) = Z o(j) =
i=1

Complexity of MergeSimple

MergeSimple(A, B)
1 for i = 1 to length(A)

2 if not Find(A[1../i—1],A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[i]) and not Find(B[1..i— 1], B[i])
6 output B[]

T(n) = Z Trina (1)

T(n) = 0(i) = o(”(”2+ 1)) _
i=1

Complexity of MergeSimple

MergeSimple(A, B)
1 for i = 1 to length(A)

2 if not Find(A[1../i—1],A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not Find(A, B[i]) and not Find(B[1..i— 1], B[i])
6 output B[]

T(n) = Z Trina (1)

T(n) =Y 0()=0 (”(”2+ 1)) = 0(rP)
i=1

Searching (2)

m Input: a sorted sequence A and a value key
Output: true if A contains key, or false otherwise

Searching (2)

m Input: a sorted sequence A and a value key
Output: true if A contains key, or false otherwise

BinarySearch(A, key)
1 first =1
2 last = length(A)
3 while first < last
4 midadle = [(first + last)/2]
5 if A[middle] == key
6 return true
7 elseif first = last
8 return false

9 elseif A[middle] > key
10 last = middle — 1
11 else first = middle + 1

12 return false

Binary Search

BinarySearch(A, key)
1 first =1
2 last = length(A)
3 while first < last
4 middle = [(first + last)/2]
5 if A[middle] == key
6 return true
7 elseif first = last
8 return false

9 elseif A middle] > key
10 last = middle — 1
11 else first = middle + 1

12 return false

BinarySearch(A, key)

1
2
3
4
5
6
7
8

9
10
11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

1
2
3
4
5
6
7
8

9
10
11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

1
2
3
4
5
6
7
8

9
10
11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A middle] > key
last = middle — 1
else first = middle + 1
return false

key

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1|
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return false

key

_NWhUOONO0OO

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
| last = middle — 1]
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

—_—
cuwvwoo~NoOOuh,WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

Binary Search

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(first + last)/2]
if A[middle] == key
return true
elseif first = last
return false
elseif A[middle] > key
last = middle — 1
else first = middle + 1
return false

_NWhUOONO0OO

key

NS

Binary Search

IS

BinarySearch(A, key)

—_—
cwvwoo~NoouUuh, WN =

11
12

first = 1
last = length(A)
while first < last
middle = [(
if A[middle]
return

elseif first = last

return

elseif A[middle] > key
last = middle — 1

else first =
return false

first + last) /2]
== key
true

false

middle + 1

T(n) = O(log n)

_NWhUOONO0OO

key

NS

Binary Search

IS

Merging Sorted Sequences

m Aslightly different problem:

Input: two sorted sequences A = (ay, @, ..., an) and B = (by, bo, ..., by),
wherea; <a <...<apand by < b, <...< by

Output: a sequence X = (xy, Xo, . . ., Xg) such that
> every element of A appears once in X
> every element of B appears once in X

> every element of X appearsin Aorin Bor in both

A Better Merge Algorithm

MergeSimple2(A, B)
1 for i = 1 to length(A)

2 if not BinarySearch(A[1..i— 1], A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not BinarySearch(A, B[i])

6 and not BinarySearch(B[1..i— 1], B[i])
7 output Bl /]

A Better Merge Algorithm

MergeSimple2(A, B)
1 for i = 1 to length(A)

2 if not BinarySearch(A[1..i— 1], A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not BinarySearch(A, B[i])

6 and not BinarySearch(B[1..i— 1], B[i])
7 output Bl /]

T(n) = Z O(log i) =
i=1

A Better Merge Algorithm

MergeSimple2(A, B)
1 for i = 1 to length(A)

2 if not BinarySearch(A[1..i— 1], A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not BinarySearch(A, B[i])

6 and not BinarySearch(B[1..i— 1], B[i])
7 output Bl /]

T(n) = Z O(log i) = O(nlog n)
i=1

A Better Merge Algorithm

MergeSimple2(A, B)
1 for i = 1 to length(A)

2 if not BinarySearch(A[1..i— 1], A[i])

3 output A[/]

4 for i = 1 to length(B)

5 if not BinarySearch(A, B[i])

6 and not BinarySearch(B[1..i— 1], B[i])
7 output Bl /]

T(n) = Z O(log i) = O(nlog n)
i=1

Better than O(n?), but can we do even better than O(nlog n)?

An Even Better Merge Algorithm

m /ntuition: Aand B are sorted
e.g.
A=(8,7,12,13,34,37,70,75, 80)
B={1,5,6,7,34,35,40,41,43)

An Even Better Merge Algorithm

m /ntuition: Aand B are sorted
e.g.
A=(8,7,12,13,34,37,70,75, 80)
B={1,5,6,7,34,35,40,41,43)

so just like in BinarySearch | can avoid looking for an element x if the first
element|seeisy > x

An Even Better Merge Algorithm

m /ntuition: Aand B are sorted
e.g.
A=(8,7,12,13,34,37,70,75, 80)
B={1,5,6,7,34,35,40,41,43)

so just like in BinarySearch | can avoid looking for an element x if the first
element|seeisy > x
m High-level algorithm strategy

» step through every position i of A and every position j of B
> output g; and advance i if a; < b; or if j is beyond the end of B

> output b; and advance jif a; > b; or if i is beyond the end of A

Merge Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Merge Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output:

Merge Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output:

Merge Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 1

Merge Algorithm

I=1l
A@ 12 113134 37| 70 | 75 | 80
Bl 1 6 | 7 |34 | 35|40 | 41 | 43
j=2

Output: 1

Merge Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 1 3

Merge Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 1 3

Merge Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 135

Merge Algorithm

=2

Al 3 12 {13134 (37|70 | 75| 80
B15@73435404143
/=3 t

Output: 135

Merge Algorithm

12

13

34

37

70

75

80

34

35

40

41

43

Output: 1356

Merge Algorithm

=2 l

Al 3 @ 12 113|134 (37|70 | 75| 80
Bl 1 5 6 @34 35 (40 | 41 | 43
/=4 t

Output: 1356

Merge Algorithm

Al 3|7 |12]13]|34|37|70]75] 80
Bl 1 | 5| 6| 7 |34|35]|40]| 41|43

Output: 13567

Merge Algorithm

i=3 “
Al 3 7 @ 13 134|137 |70 | 75| 80
Bl 1 5 6 7 34 | 35 | 40 | 41 | 43

Output: 13567

Merge Algorithm

Al 3|7 |12]13]|34|37|70]75] 80
Bl 1 | 5| 6| 7 |34|35]|40]| 41|43

Output: 1356712

Merge Algorithm

Al 3 7 |12 34 |1 37|70 | 75 | 80
Bl 1 5 6 34 | 35| 40 | 41 | 43

Output: 1356712

Merge Algorithm

Al 3 7 1213|134 |37 |70 |75]| 80
Bl 1 5 6 7 | 34| 35|40 | 41 | 43

Output: 135671213

Merge Algorithm

Al 3 7 1213|134 |37 |70 |75]| 80
Bl 1 5 6 7 | 34| 35|40 | 41 | 43

Output: 135671213...

Merge Algorithm (2)

Merge(A, B)
1 ij=1
2 X=0
3 while i < length(A) or j < length(B)
4 if i > length(A)
5 X = X o BJ[j] / appends B[j] to X
6 j=j+1
7 elseif j > length(B)
8 X = XoA[il
9 i=1i+1
10 elseif A[i] < BJ[/]
11 X = X o A[l]
12 i=1i+1
13 else X = X o B[]
14 f=j+1
15 return X

Merge Algorithm (2)

Merge(A, B)
1 ij=1
2 X=0
3 while i < length(A) or j < length(B)
4 if i > length(A)
5 X = X o BJ[j] / appends B[j] to X
6 j=j+1
7 elseif j > length(B)
8 X = XoA[il
9 i=1i+1
10 elseif A[i] < BJ[/]
11 X = X o A[l]
12 i=1i+1
13 else X = X o B[]
14 f=j+1
15 return X

m This algorithm is incorrect! (Exercise: fix it)

Complexity of Merge

Merge(A, B)
ihj=1
X =0
while i < length(A) or j < length(B)
if i < length(A) and (j > length(B) or A[i] < Blj])

X = XoAli]
i=i+1
else X = X o BJj]
j=j+1

Ooo~dOoOuULhs, WN =

return X

Complexity of Merge

Merge(A, B)
ij =1
X=0
while i < length(A) or j < length(B)
if i < length(A) and (j > length(B) or A[i] < Blj])
X = XoAli]
i=i+1
else X = X o BJj]
j=j+1
return X

Ooo~dOoOuULhs, WN =

T(n) =8(n)

Merge(A, B)
ihj=1
X =0

Ooo~dOoOuULhs, WN =

return X

while i < length(A) or j < length(B)
if i < length(A) and (j > length(B) or A[i] < Blj])

X = XoAli]

i=1i+1

Jj=Jj+1

else X = X o BJj]

Complexity of Merge

m Can we do better?

T(n) =8(n)

Merge(A, B)
ihj=1
X =0

i=1i+1

j=j+1
return X

Ooo~dOoOuULhs, WN =

while i < length(A) or j < length(B)
if i < length(A) and (j > length(B) or A[i] < Blj])
X = X o A[i]

else X = X o BJj]

Complexity of Merge

m Can we do better? No!

T(n) =8(n)

Merge(A, B)

1 Q=1

2 X=0

3 while i < length(A) or j < length(B)

4 if i < length(A) and (j > length(B) or A[i] < Blj])
5 X = Xo Al

6

7 else X = X o BJj]

8 j=j+1

9 return

Complexity of Merge

m Can we do better? No!

T(n) =8(n)

> we have to output n = length(A) + length(B) elements

Using Merge

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

Using Merge

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

Using Merge

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

m ldea

» use a variant of Merge that outputs all elements of its input sequences
> i.e., without removing duplicates

» assume that two parts, A; o Ag = A, and that A, and Ag are sorted

Using Merge

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

m ldea

» use a variant of Merge that outputs all elements of its input sequences
> i.e., without removing duplicates

» assume that two parts, A; o Ag = A, and that A, and Ag are sorted

» use Merge to combine A; and Ag into a sorted sequence

Using Merge

m So now we have a linear-complexity merge procedure

> merges two sorted sequences
» produces a sorted sequence

m Perhaps we could use it to implement a sort algorithm

m ldea

» use a variant of Merge that outputs all elements of its input sequences
> i.e., without removing duplicates

» assume that two parts, A; o Ag = A, and that A, and Ag are sorted
» use Merge to combine A; and Ag into a sorted sequence

» this suggests a recursive algorithm

Merge Sort

Merge Sort

MergeSort(A)

1 if length(A) ==

2 return A

3 m = |length(A)/2]

4 A, = MergeSort(A[1..m])

5 Ag = MergeSort(A[m+1..length(A)])
6 return Merge(A., Agr)

Merge Sort

MergeSort(A)

1 if length(A) ==

2 return A

3 m = |length(A)/2]

4 A, = MergeSort(A[1..m])

5 Agr = MergeSort(A[m+ 1..length(A)])
6 return Merge(A., Agr)

m The complexity of MergeSort is

Merge Sort

MergeSort(A)

1 if length(A) ==

2 return A

3 m = |length(A)/2]

4 A, = MergeSort(A[1..m])

5 Agr = MergeSort(A[m+ 1..length(A)])
6 return Merge(A., Agr)

m The complexity of MergeSort is

T(n) =2T(n/2) + O(n)

MergeSort(A)

1 if length(A) ==

2 return A

3 m = |length(A)/2]

4 A, = MergeSort(A[1..m])
5

6

Ar = MergeSort(A[m+ 1..length(A)])

return Merge(A., Ar)

m The complexity of MergeSort is

T(n) =2T(n/2) + O(n)

T(n) = O(nlog n)

Merge Sort

Divide and Conquer

m MergeSort exemplifies the divide and conquer strategy

Divide and Conquer

m MergeSort exemplifies the divide and conquer strategy

m General strategy: given a problem P on input data A
» divide the input A into parts Ay, Aa, ..., Ac with |Aj| < |A| = n

» solve problem P for the individual k parts

» combine the partial solutions to obtain the solution for A

Divide and Conquer

m MergeSort exemplifies the divide and conquer strategy

m General strategy: given a problem P on input data A
» divide the input A into parts Ay, Aa, ..., Ac with |Aj| < |A| = n

» solve problem P for the individual k parts

» combine the partial solutions to obtain the solution for A

m Complexity analysis

K
T(n) = Tgivide + Z T(|Ai]) + Tcombine
i=1

we will analyze this formula another time...

A Divide-and-Conquer Merge

MergeR(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 if A[1] < B[1]
6 return A[1] o MergeR(A[2.. length(A)], B)
7 elsereturn B[1] o MergeR(A, B[2. . length(B)])

A Divide-and-Conquer Merge

MergeR(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 if A[1] < B[1]
6 return A[1] o MergeR(A[2.. length(A)], B)
7 elsereturn B[1] o MergeR(A, B[2. . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

A Divide-and-Conquer Merge

MergeR(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 if A[1] < B[1]
6 return A[1] o MergeR(A[2.. length(A)], B)
7 elsereturn B[1] o MergeR(A, B[2. . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MergeR is

A Divide-and-Conquer Merge

MergeR(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 if A[1] < B[1]
6 return A[1] o MergeR(A[2.. length(A)], B)
7 elsereturn B[1] o MergeR(A, B[2. . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MergeR is

T(n)=Cy+T(n-1)

A Divide-and-Conquer Merge

MergeR(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 if A[1] < B[1]
6 return A[1] o MergeR(A[2.. length(A)], B)
7 elsereturn B[1] o MergeR(A, B[2. . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MergeR is

T(n)=Cy+T(n—1)=Cyn

A Divide-and-Conquer Merge

MergeR(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 if A[1] < B[1]
6 return A[1] o MergeR(A[2.. length(A)], B)
7 elsereturn B[1] o MergeR(A, B[2. . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MergeR is

T(n)=Cy+T(n—=1) =Cyin=0(n)

m Can we do better?

A Divide-and-Conquer Merge

MergeR(A, B)
1 if length(A) ==
2 return B
3 if length(B) ==
4 return A
5 if A[1] < B[1]
6 return A[1] o MergeR(A[2.. length(A)], B)
7 elsereturn B[1] o MergeR(A, B[2. . length(B)])

m Again, this algorithm is a bit incorrect (Exercise: Fix it.)

m The complexity of MergeR is

T(n)=Cy+T(n—1)=Cyn=0(n)

m Can we do better? No! (We knew that already)

Divide-and-Conquer Multiplication

Divide-and-Conquer Multiplication

m Going back to multiplication...

Divide-and-Conquer Multiplication

m Going back to multiplication...

= X[K] end y=[%] Ve]

Divide-and-Conquer Multiplication

m Going back to multiplication...

= X[K] end y=[%] Ve]

which means x = 25/2XL + xgand y = 2‘7/2yL + YR, SO...

xy = (2¢2x, + xg) (2¢2y, + yp)
= 2€XL}/L + 25/2(XL}/R + XRyL) + XRYR

we reduced the problem of multiplying two numbers of £ bits into the problem
of multiplying four numbers of £/2 bits...

Divide-and-Conquer Multiplication

m Going back to multiplication...

= X[K] end y=[%] Ve]

which means x = 25/2XL + xgand y = 2‘7/2yL + YR, SO...

xy = (2¢2x, + xg) (2¢2y, + yp)
= 2€XL}/L + 25/2(XL}/R + XRyL) + XRYR

we reduced the problem of multiplying two numbers of £ bits into the problem
of multiplying four numbers of £/2 bits...

T(€) =4T(£/2) + O(¢)

Divide-and-Conquer Multiplication

m Going back to multiplication...

= X[K] end y=[%] Ve]

which means x = 25/2XL + xgand y = 2‘7/2yL + YR, SO...

xy = (2¢2x, + xg) (2¢2y, + yp)
= 2€XL}/L + 25/2(XL}/R + XRyL) + XRYR

we reduced the problem of multiplying two numbers of £ bits into the problem
of multiplying four numbers of £/2 bits...

T(€) =4T(£/2) + O(¢)

T(6) = O(¢%)

Divide-and-Conquer Multiplication (2)

Divide-and-Conquer Multiplication (2)

m Again, we have

xy = (2¢2x, + xg) (2°"%y, + yR)

= 2€XL}/L + 25/2(XL}/R + XRyL) + XRYR

Divide-and-Conquer Multiplication (2)

m Again, we have

xy = (2¢2x, + xg) (2°"%y, + yR)

= 2€XL}/L + 25/2(XL}/R + XRyL) + XRYR

but notice that x, g + xgyL = (x. + Xg) (VYR + ¥L) — XLYL — XRYR, SO

Divide-and-Conquer Multiplication (2)

m Again, we have

xy = (2¢2x, + xg) (2°"%y, + yR)

= 2€XL}/L + 25/2(XL}/R + XRyL) + XRYR
but notice that x, yr + xgy. = (X, + Xg) (Vg + y1) — XLYL — XRYR, SO

Xy = 2€XL}’L + 28/2((XL + Xg) (YR + Y1) — XLYL — XRYR) + XRYR

Divide-and-Conquer Multiplication (2)

m Again, we have
xy = (2°2x, + xr) 22y, + yR)
= 28y + 2°/2(x1ym + XRYL) + XRYR
but notice that x, g + xgyL = (x. + Xg) (VYR + ¥L) — XLYL — XRYR, SO
xy = 28xy + 282((x. + xg) (YA + Y1) — XLV — XRYR) + XAYR

Only 3 multiplications: x. y;, (x. + xg)(¥g + y.), and Xgyr

Divide-and-Conquer Multiplication (2)

m Again, we have
xy = (2¢2x, + xg) (2°"%y, + yR)
= 2€XLYL + 25/2(XLYR + XRYL) + XRYR
but notice that x, g + xgyL = (x. + Xg) (VYR + ¥L) — XLYL — XRYR, SO
xy =25y + 28/2((XL + Xg) (YR + Y1) — XLYL — XRYR) + XRYR
Only 3 multiplications: x. y;, (x. + xg)(¥g + y.), and Xgyr

T(€) =3T(£/2) + O(¢)

Divide-and-Conquer Multiplication (2)

m Again, we have
xy = (2¢2x, + xg) (2°"%y, + yR)
= 2€XLYL + 25/2(XLYR + XRYL) + XRYR
but notice that x, g + xgyL = (x. + Xg) (VYR + ¥L) — XLYL — XRYR, SO
xy =25y + 28/2((XL + Xg) (YR + Y1) — XLYL — XRYR) + XRYR
Only 3 multiplications: x. y;, (x. + xg)(¥g + y.), and Xgyr

T(€) =3T(£/2) + O(¢)

which, as we will see, leads to a much better complexity

T(Z) — O(elogz 3) — 0(81'59)

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36,5, 21,8,13,11,20,5,4,1)?

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36,5, 21,8,13,11,20,5,4,1)?

m Idea: first sort, then pick the element in the middle

SimpleMedian(A)
1 X = MergeSort(A)
2 return X|[|/ength(A)/2]]

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36,5, 21,8,13,11,20,5,4,1)?

m Idea: first sort, then pick the element in the middle

SimpleMedian(A)
1 X = MergeSort(A)
2 return X|[|/ength(A)/2]]

m Is it correct?

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36,5, 21,8,13,11,20,5,4,1)?

m Idea: first sort, then pick the element in the middle

SimpleMedian(A)
1 X = MergeSort(A)
2 return X|[|/ength(A)/2]]

m Is it correct? Yes

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36,5, 21,8,13,11,20,5,4,1)?

m Idea: first sort, then pick the element in the middle

SimpleMedian(A)
1 X = MergeSort(A)
2 return X|[|/ength(A)/2]]

m Is it correct? Yes

m How long does it take?

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36,5, 21,8,13,11,20,5,4,1)?

m Idea: first sort, then pick the element in the middle

SimpleMedian(A)
1 X = MergeSort(A)
2 return X|[|/ength(A)/2]]

m Is it correct? Yes

m How long does it take? T(n) = Tmergesort(n) = O(nlog n)

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36,5, 21,8,13,11,20,5,4,1)?

m Idea: first sort, then pick the element in the middle

SimpleMedian(A)
1 X = MergeSort(A)
2 return X[|/ength(A)/2]]

m Is it correct? Yes
m How long does it take? T(n) = Tmergesort(n) = O(nlog n)

m Can we do better?

Computing the Median

m The median of a sequence Ais a value m € A such that half the values in A are
smaller than m and half are bigger than m

» e.g., whatis the median of A = (2, 36,5, 21,8,13,11,20,5,4,1)?

m Idea: first sort, then pick the element in the middle

SimpleMedian(A)
1 X = MergeSort(A)
2 return X[|/ength(A)/2]]

m Is it correct? Yes
m How long does it take? T(n) = Tmergesort(n) = O(nlog n)

m Can we do better? Let's try divide-and-conquer...

Computing the Median (2)

m The median of a sequence Ais a value m € A such that half the values in A are
less than or equal to m

Computing the Median (2)

m The median of a sequence Ais a value m € A such that half the values in A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence Ais a value v € Asuch
that exactly k elements of A are less than or equal to v

Computing the Median (2)

m The median of a sequence Ais a value m € A such that half the values in A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence Ais a value v € Asuch
that exactly k elements of A are less than or equal to v

E.g.

» for k = 1, the minimum of A

Computing the Median (2)

m The median of a sequence Ais a value m € A such that half the values in A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence Ais a value v € Asuch
that exactly k elements of A are less than or equal to v

E.g.
» for k = 1, the minimum of A
» for k = | |A|]/2], the median of A

Computing the Median (2)

m The median of a sequence Ais a value m € A such that half the values in A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence Ais a value v € Asuch
that exactly k elements of A are less than or equal to v

E.g.
» for k = 1, the minimum of A
» for k = | |A|]/2], the median of A
> what is the 6th smallest element of A = (2,36, 5, 21,8,13,11,20,5,4,1)?

Computing the Median (2)

m The median of a sequence Ais a value m € A such that half the values in A are
less than or equal to m

m Generalizating, the k-smallest element of a sequence Ais a value v € Asuch
that exactly k elements of A are less than or equal to v

E.g.
» for k = 1, the minimum of A
» for k = | |A|]/2], the median of A
> what is the 6th smallest element of A = (2,36, 5, 21,8,13,11,20,5,4,1)?

the 6th smallest element of A—a.k.a. select(A, 6)—is 8

k-Smallest Element

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen value v € A
» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen value v € A
» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

Eg,A=(236,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen value v € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

Eg,A=(236,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

Eg,A=(236,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1)

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen value v € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

Eg,A=(236,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1) A, =(55)

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen value v € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

Eg,A=(236,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1) A, =(55) Ar=(36,21,8,13,11,20)

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen value v € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

Eg,A=(236,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1) A, =(55) Ar=(36,21,8,13,11,20)

Now, where is the 7th smallest value of A?

k-Smallest Element

m Idea: we split the sequence A in three parts based on a chosen value v € A

» A, contains the set of elements that are less than v
» A, contains the set of elements that are equal to v
» Ag contains the set of elements that are greater then v

Eg,A=(236,5,21,8,13,11,20,5,4,1)
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

A =(2,4,1) A, =(55) Ar=(36,21,8,13,11,20)

Now, where is the 7th smallest value of A?
It is the 2nd smallest value of Ag

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A

select(AL, k) if Kk < |AL
select(A k) = v if ALl < k < |ALl + AV
select(Ag, k — |ALl — |Av]) ifk > |AL| + A/

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A

select(AL, k) if Kk < |AL
select(A k) = v if ALl < k < |ALl + AV
select(Ag, k — |ALl — |Av]) ifk > |AL| + A/

m Computing A;, Ay, and Ag takes O(n) steps

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A
select(AL, k) if kK < |AL
select(A, k) = v if |ALl < k < ALl + |A/]
select(Ar, k — |AL| — |AV]) if k> |ALl + |A/]

m Computing A;, Ay, and Ag takes O(n) steps

m How do we pick v?

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A
select(AL, k) if kK < |AL
select(A k) = v if ALl < k < |ALl + AV
select(Ar, k — |AL| — |AV]) if k> |ALl + |A/]
m Computing A;, Ay, and Ag takes O(n) steps

m How do we pick v?

m |deally, we should pick v so as to obtain |A.| =~ |Ag| =~ |A|/2
» so, ideally we should pick v = median(A), but...

k-Smallest Element (2)

We use select(A, k) to denote the k-smallest element of A
select(AL, k) if kK < |AL
select(A k) = v if ALl < k < |ALl + AV
select(Ar, k — |AL| — |AV]) if k> |ALl + |A/]
m Computing A;, Ay, and Ag takes O(n) steps

m How do we pick v?

m |deally, we should pick v so as to obtain |A.| =~ |Ag| =~ |A|/2
» so, ideally we should pick v = median(A), but...

m We pick a random element of A

Selection Algorithm

Selection(A, k)

1 v = Alrandom(1...|A|)]

2 AL, AV, A,q =0

3 fori=1to|A

4 if A[i] < v

5 AL = A UA[I]

6 elseif A[/] ==

7 A, = A, UA[f]

8 else Ag = AR U A[J]

9 ifk <|A
10 return Selection(A,, k)

11 elseif k > |AL| + |A/]
12 return Selection(Ag, k — |AL| — |A/])
13 elsereturnv

