
Divide-and-Conquer Algorithms

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

March 25, 2021

Outline

Merging (or set union)

Searching

Sorting

Multiplying

Computing themedian

Merging (Set Union)

Merging (Set Union)

Input: sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉

Output: a sequence X = 〈x1, x2, . . . , xℓ〉 such that

Merging (Set Union)

Input: sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉

Output: a sequence X = 〈x1, x2, . . . , xℓ〉 such that

◮ every element of A appears once in X

◮ every element of B appears once in X

◮ every element of X appears in A or in B or in both

Merging (Set Union)

Input: sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉

Output: a sequence X = 〈x1, x2, . . . , xℓ〉 such that

◮ every element of A appears once in X

◮ every element of B appears once in X

◮ every element of X appears in A or in B or in both

Example:

A = 〈34, 7, 11, 31, 14, 51, 8, 21, 10〉

B = 〈51, 21, 14, 15, 27, 31, 2〉

X =

Merging (Set Union)

Input: sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉

Output: a sequence X = 〈x1, x2, . . . , xℓ〉 such that

◮ every element of A appears once in X

◮ every element of B appears once in X

◮ every element of X appears in A or in B or in both

Example:

A = 〈34, 7, 11, 31, 14, 51, 8, 21, 10〉

B = 〈51, 21, 14, 15, 27, 31, 2〉

X = 〈34, 7, 11, 31, 14, 51, 8, 21, 10, 15, 27, 2〉

A Simple Merge Algorithm

Algorithm strategy

A Simple Merge Algorithm

Algorithm strategy

◮ iterate through every position i , first through A, and then B

◮ output ai if ai is not in 〈a1, a2, . . . , ai−1〉

◮ output bi if bi is not in 〈a1, a2, . . . , an, b1, b2, . . . bi−1〉

A Simple Merge Algorithm

Algorithm strategy

◮ iterate through every position i , first through A, and then B

◮ output ai if ai is not in 〈a1, a2, . . . , ai−1〉

◮ output bi if bi is not in 〈a1, a2, . . . , an, b1, b2, . . . bi−1〉

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

Complexity

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

Complexity

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

let n = length(A) + length(B)

T (n) =

length(A)∑

i=1

TFind(i) +

length(B)∑

i=1

(
TFind(i) + TFind(length(A))

)

Complexity

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

let n = length(A) + length(B)

T (n) =

length(A)∑

i=1

TFind(i) +

length(B)∑

i=1

(
TFind(i) + TFind(length(A))

)

T (n) =

n∑

i=1

TFind(i)

Searching

Input: a sequence A and a value key

Output: true if A contains key , or false otherwise

Searching

Input: a sequence A and a value key

Output: true if A contains key , or false otherwise

Find(A, key)

1 for i = 1 to length(A)
2 if A[i] == key

3 return true
4 return false

Find(A, begin, end, key)

1 for i = begin to end

2 if A[i] == key

3 return true
4 return false

Searching

Input: a sequence A and a value key

Output: true if A contains key , or false otherwise

Find(A, key)

1 for i = 1 to length(A)
2 if A[i] == key

3 return true
4 return false

Find(A, begin, end, key)

1 for i = begin to end

2 if A[i] == key

3 return true
4 return false

The complexity of Find is

Searching

Input: a sequence A and a value key

Output: true if A contains key , or false otherwise

Find(A, key)

1 for i = 1 to length(A)
2 if A[i] == key

3 return true
4 return false

Find(A, begin, end, key)

1 for i = begin to end

2 if A[i] == key

3 return true
4 return false

The complexity of Find is

T (n) = O(n)

Searching in a List

Input: a sequence A and a value key

Output: true if A contains key , or false otherwise

Searching in a List

Input: a sequence A and a value key

Output: true if A contains key , or false otherwise

FindInList(A, key)

1 item = first (A)
2 while item , last (A)
3 if value(item) == key

4 return true
5 item = next (item)
6 return false

Searching in a List

Input: a sequence A and a value key

Output: true if A contains key , or false otherwise

FindInList(A, key)

1 item = first (A)
2 while item , last (A)
3 if value(item) == key

4 return true
5 item = next (item)
6 return false

The complexity of FindInList is

Searching in a List

Input: a sequence A and a value key

Output: true if A contains key , or false otherwise

FindInList(A, key)

1 item = first (A)
2 while item , last (A)
3 if value(item) == key

4 return true
5 item = next (item)
6 return false

The complexity of FindInList is

T (n) = O(n)

Complexity ofMergeSimple

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

Complexity ofMergeSimple

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

T (n) =

n∑

i=1

TFind(i)

Complexity ofMergeSimple

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

T (n) =

n∑

i=1

TFind(i)

T (n) =

n∑

i=1

O(i) =

Complexity ofMergeSimple

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

T (n) =

n∑

i=1

TFind(i)

T (n) =

n∑

i=1

O(i) = O

(
n(n + 1)

2

)
=

Complexity ofMergeSimple

MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not Find(A,B[i]) and not Find(B[1 . . i − 1],B[i])
6 output B[i]

T (n) =

n∑

i=1

TFind(i)

T (n) =

n∑

i=1

O(i) = O

(
n(n + 1)

2

)
= O(n2)

Searching (2)

Input: a sorted sequence A and a value key

Output: true if A contains key , or false otherwise

Searching (2)

Input: a sorted sequence A and a value key

Output: true if A contains key , or false otherwise

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key
10 last = middle − 1

11 else first = middle + 1

12 return false

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

n n
2

n
4
· · ·

Binary Search

BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last

8 return false
9 elseif A[middle] > key

10 last = middle − 1

11 else first = middle + 1

12 return false 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

key

n n
2

n
4
· · ·

T (n) = O(log n)

Merging Sorted Sequences

A slightly different problem:

Input: two sorted sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉,
where a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bm

Output: a sequence X = 〈x1, x2, . . . , xℓ〉 such that

◮ every element of A appears once in X

◮ every element of B appears once in X

◮ every element of X appears in A or in B or in both

A Better Merge Algorithm

MergeSimple2(A,B)

1 for i = 1 to length(A)
2 if not BinarySearch(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not BinarySearch(A,B[i])
6 and not BinarySearch(B[1 . . i − 1],B[i])
7 output B[i]

A Better Merge Algorithm

MergeSimple2(A,B)

1 for i = 1 to length(A)
2 if not BinarySearch(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not BinarySearch(A,B[i])
6 and not BinarySearch(B[1 . . i − 1],B[i])
7 output B[i]

T (n) =

n∑

i=1

O(log i) =

A Better Merge Algorithm

MergeSimple2(A,B)

1 for i = 1 to length(A)
2 if not BinarySearch(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not BinarySearch(A,B[i])
6 and not BinarySearch(B[1 . . i − 1],B[i])
7 output B[i]

T (n) =

n∑

i=1

O(log i) = O(n log n)

A Better Merge Algorithm

MergeSimple2(A,B)

1 for i = 1 to length(A)
2 if not BinarySearch(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not BinarySearch(A,B[i])
6 and not BinarySearch(B[1 . . i − 1],B[i])
7 output B[i]

T (n) =

n∑

i=1

O(log i) = O(n log n)

Better than O(n2), but can we do even better than O(n log n)?

An Even Better Merge Algorithm

Intuition: A and B are sorted
e.g.

A = 〈3, 7, 12, 13, 34, 37, 70, 75, 80〉

B = 〈1, 5, 6, 7, 34, 35, 40, 41, 43〉

An Even Better Merge Algorithm

Intuition: A and B are sorted
e.g.

A = 〈3, 7, 12, 13, 34, 37, 70, 75, 80〉

B = 〈1, 5, 6, 7, 34, 35, 40, 41, 43〉

so just like in BinarySearch I can avoid looking for an element x if the first
element I see is y > x

An Even Better Merge Algorithm

Intuition: A and B are sorted
e.g.

A = 〈3, 7, 12, 13, 34, 37, 70, 75, 80〉

B = 〈1, 5, 6, 7, 34, 35, 40, 41, 43〉

so just like in BinarySearch I can avoid looking for an element x if the first
element I see is y > x

High-level algorithm strategy

◮ step through every position i of A and every position j of B

◮ output ai and advance i if ai ≤ bj or if j is beyond the end of B

◮ output bj and advance j if ai ≥ bj or if i is beyond the end of A

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 1

j = 1

Output:

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 1

j = 1

Output:

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 1

j = 2

Output: 1

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 1

j = 2

Output: 1

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 2

j = 2

Output: 1 3

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 2

j = 2

Output: 1 3

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 2

j = 3

Output: 1 3 5

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 2

j = 3

Output: 1 3 5

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 2

j = 4

Output: 1 3 5 6

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 2

j = 4

Output: 1 3 5 6

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 3

j = 5

Output: 1 3 5 6 7

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 3

j = 5

Output: 1 3 5 6 7

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 4

j = 5

Output: 1 3 5 6 7 12

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 4

j = 5

Output: 1 3 5 6 7 12

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 5

j = 5

Output: 1 3 5 6 7 12 13

Merge Algorithm

A

B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 5

j = 5

Output: 1 3 5 6 7 12 13. . .

Merge Algorithm (2)

Merge(A, B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i > length(A)
5 X = X ◦ B [j] // appends B [j] to X

6 j = j + 1

7 elseif j > length(B)
8 X = X ◦ A[i]
9 i = i + 1

10 elseif A[i] < B [j]
11 X = X ◦ A[i]
12 i = i + 1

13 else X = X ◦ B [j]
14 j = j + 1

15 return X

Merge Algorithm (2)

Merge(A, B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i > length(A)
5 X = X ◦ B [j] // appends B [j] to X

6 j = j + 1

7 elseif j > length(B)
8 X = X ◦ A[i]
9 i = i + 1

10 elseif A[i] < B [j]
11 X = X ◦ A[i]
12 i = i + 1

13 else X = X ◦ B [j]
14 j = j + 1

15 return X

This algorithm is incorrect! (Exercise: fix it)

Complexity ofMerge

Merge(A,B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i ≤ length(A) and (j > length(B) or A[i] < B[j])
5 X = X ◦ A[i]
6 i = i + 1

7 else X = X ◦ B[j]
8 j = j + 1

9 return X

Complexity ofMerge

Merge(A,B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i ≤ length(A) and (j > length(B) or A[i] < B[j])
5 X = X ◦ A[i]
6 i = i + 1

7 else X = X ◦ B[j]
8 j = j + 1

9 return X

T (n) = Θ(n)

Complexity ofMerge

Merge(A,B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i ≤ length(A) and (j > length(B) or A[i] < B[j])
5 X = X ◦ A[i]
6 i = i + 1

7 else X = X ◦ B[j]
8 j = j + 1

9 return X

T (n) = Θ(n)

Can we do better?

Complexity ofMerge

Merge(A,B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i ≤ length(A) and (j > length(B) or A[i] < B[j])
5 X = X ◦ A[i]
6 i = i + 1

7 else X = X ◦ B[j]
8 j = j + 1

9 return X

T (n) = Θ(n)

Can we do better? No!

Complexity ofMerge

Merge(A,B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i ≤ length(A) and (j > length(B) or A[i] < B[j])
5 X = X ◦ A[i]
6 i = i + 1

7 else X = X ◦ B[j]
8 j = j + 1

9 return X

T (n) = Θ(n)

Can we do better? No!

◮ we have to output n = length(A) + length(B) elements

UsingMerge

So now we have a linear-complexity merge procedure

◮ merges two sorted sequences

◮ produces a sorted sequence

UsingMerge

So now we have a linear-complexity merge procedure

◮ merges two sorted sequences

◮ produces a sorted sequence

Perhaps we could use it to implement a sort algorithm

UsingMerge

So now we have a linear-complexity merge procedure

◮ merges two sorted sequences

◮ produces a sorted sequence

Perhaps we could use it to implement a sort algorithm

Idea

◮ use a variant of Merge that outputs all elements of its input sequences
◮ i.e., without removing duplicates

◮ assume that two parts, AL ◦ AR = A, and that AL and AR are sorted

UsingMerge

So now we have a linear-complexity merge procedure

◮ merges two sorted sequences

◮ produces a sorted sequence

Perhaps we could use it to implement a sort algorithm

Idea

◮ use a variant of Merge that outputs all elements of its input sequences
◮ i.e., without removing duplicates

◮ assume that two parts, AL ◦ AR = A, and that AL and AR are sorted

◮ useMerge to combine AL and AR into a sorted sequence

UsingMerge

So now we have a linear-complexity merge procedure

◮ merges two sorted sequences

◮ produces a sorted sequence

Perhaps we could use it to implement a sort algorithm

Idea

◮ use a variant of Merge that outputs all elements of its input sequences
◮ i.e., without removing duplicates

◮ assume that two parts, AL ◦ AR = A, and that AL and AR are sorted

◮ useMerge to combine AL and AR into a sorted sequence

◮ this suggests a recursive algorithm

Merge Sort

Merge Sort

MergeSort(A)

1 if length(A) == 1

2 return A

3 m = ⌊length(A)/2⌋
4 AL = MergeSort(A[1 . .m])
5 AR = MergeSort(A[m + 1 . . length(A)])
6 return Merge(AL, AR)

Merge Sort

MergeSort(A)

1 if length(A) == 1

2 return A

3 m = ⌊length(A)/2⌋
4 AL = MergeSort(A[1 . .m])
5 AR = MergeSort(A[m + 1 . . length(A)])
6 return Merge(AL, AR)

The complexity of MergeSort is

Merge Sort

MergeSort(A)

1 if length(A) == 1

2 return A

3 m = ⌊length(A)/2⌋
4 AL = MergeSort(A[1 . .m])
5 AR = MergeSort(A[m + 1 . . length(A)])
6 return Merge(AL, AR)

The complexity of MergeSort is

T (n) = 2T (n/2) + O(n)

Merge Sort

MergeSort(A)

1 if length(A) == 1

2 return A

3 m = ⌊length(A)/2⌋
4 AL = MergeSort(A[1 . .m])
5 AR = MergeSort(A[m + 1 . . length(A)])
6 return Merge(AL, AR)

The complexity of MergeSort is

T (n) = 2T (n/2) + O(n)

T (n) = O(n log n)

Divide and Conquer

MergeSort exemplifies the divide and conquer strategy

Divide and Conquer

MergeSort exemplifies the divide and conquer strategy

General strategy: given a problem P on input data A
◮ divide the input A into parts A1, A2, . . . , Ak with |Ai | < |A| = n

◮ solve problem P for the individual k parts

◮ combine the partial solutions to obtain the solution for A

Divide and Conquer

MergeSort exemplifies the divide and conquer strategy

General strategy: given a problem P on input data A
◮ divide the input A into parts A1, A2, . . . , Ak with |Ai | < |A| = n

◮ solve problem P for the individual k parts

◮ combine the partial solutions to obtain the solution for A

Complexity analysis

T (n) = Tdivide +

k∑

i=1

T (|Ai |) + Tcombine

we will analyze this formula another time. . .

A Divide-and-Conquer Merge

MergeR(A,B)

1 if length(A) == 0

2 return B

3 if length(B) == 0

4 return A

5 if A[1] < B[1]
6 return A[1] ◦MergeR(A[2 . . length(A)], B)
7 else return B[1] ◦MergeR(A, B[2 . . length(B)])

A Divide-and-Conquer Merge

MergeR(A,B)

1 if length(A) == 0

2 return B

3 if length(B) == 0

4 return A

5 if A[1] < B[1]
6 return A[1] ◦MergeR(A[2 . . length(A)], B)
7 else return B[1] ◦MergeR(A, B[2 . . length(B)])

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

A Divide-and-Conquer Merge

MergeR(A,B)

1 if length(A) == 0

2 return B

3 if length(B) == 0

4 return A

5 if A[1] < B[1]
6 return A[1] ◦MergeR(A[2 . . length(A)], B)
7 else return B[1] ◦MergeR(A, B[2 . . length(B)])

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

The complexity of MergeR is

A Divide-and-Conquer Merge

MergeR(A,B)

1 if length(A) == 0

2 return B

3 if length(B) == 0

4 return A

5 if A[1] < B[1]
6 return A[1] ◦MergeR(A[2 . . length(A)], B)
7 else return B[1] ◦MergeR(A, B[2 . . length(B)])

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

The complexity of MergeR is

T (n) = C1 + T (n − 1)

A Divide-and-Conquer Merge

MergeR(A,B)

1 if length(A) == 0

2 return B

3 if length(B) == 0

4 return A

5 if A[1] < B[1]
6 return A[1] ◦MergeR(A[2 . . length(A)], B)
7 else return B[1] ◦MergeR(A, B[2 . . length(B)])

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

The complexity of MergeR is

T (n) = C1 + T (n − 1) = C1n

A Divide-and-Conquer Merge

MergeR(A,B)

1 if length(A) == 0

2 return B

3 if length(B) == 0

4 return A

5 if A[1] < B[1]
6 return A[1] ◦MergeR(A[2 . . length(A)], B)
7 else return B[1] ◦MergeR(A, B[2 . . length(B)])

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

The complexity of MergeR is

T (n) = C1 + T (n − 1) = C1n = O(n)

Can we do better?

A Divide-and-Conquer Merge

MergeR(A,B)

1 if length(A) == 0

2 return B

3 if length(B) == 0

4 return A

5 if A[1] < B[1]
6 return A[1] ◦MergeR(A[2 . . length(A)], B)
7 else return B[1] ◦MergeR(A, B[2 . . length(B)])

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

The complexity of MergeR is

T (n) = C1 + T (n − 1) = C1n = O(n)

Can we do better? No! (We knew that already)

Divide-and-Conquer Multiplication

Divide-and-Conquer Multiplication

Going back to multiplication. . .

Divide-and-Conquer Multiplication

Going back to multiplication. . .

x = XL XR and y = YL YR

Divide-and-Conquer Multiplication

Going back to multiplication. . .

x = XL XR and y = YL YR

which means x = 2
ℓ/2xL + xR and y = 2

ℓ/2yL + yR , so. . .

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

we reduced the problem of multiplying two numbers of ℓ bits into the problem
of multiplying four numbers of ℓ/2 bits. . .

Divide-and-Conquer Multiplication

Going back to multiplication. . .

x = XL XR and y = YL YR

which means x = 2
ℓ/2xL + xR and y = 2

ℓ/2yL + yR , so. . .

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

we reduced the problem of multiplying two numbers of ℓ bits into the problem
of multiplying four numbers of ℓ/2 bits. . .

T (ℓ) = 4T (ℓ/2) + O(ℓ)

Divide-and-Conquer Multiplication

Going back to multiplication. . .

x = XL XR and y = YL YR

which means x = 2
ℓ/2xL + xR and y = 2

ℓ/2yL + yR , so. . .

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

we reduced the problem of multiplying two numbers of ℓ bits into the problem
of multiplying four numbers of ℓ/2 bits. . .

T (ℓ) = 4T (ℓ/2) + O(ℓ)

T (ℓ) = Θ(ℓ2)

Divide-and-Conquer Multiplication (2)

Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

xy = 2
ℓxLyL + 2

ℓ/2((xL + xR)(yR + yL) − xLyL − xRyR) + xRyR

Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

xy = 2
ℓxLyL + 2

ℓ/2((xL + xR)(yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR)(yR + yL), and xRyR

Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

xy = 2
ℓxLyL + 2

ℓ/2((xL + xR)(yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR)(yR + yL), and xRyR

T (ℓ) = 3T (ℓ/2) + O(ℓ)

Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

xy = 2
ℓxLyL + 2

ℓ/2((xL + xR)(yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR)(yR + yL), and xRyR

T (ℓ) = 3T (ℓ/2) + O(ℓ)

which, as we will see, leads to a much better complexity

T (ℓ) = O(ℓ log2 3) = O(ℓ1.59)

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Idea: first sort, then pick the element in the middle

SimpleMedian(A)

1 X = MergeSort(A)
2 return X [⌊length(A)/2⌋]

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Idea: first sort, then pick the element in the middle

SimpleMedian(A)

1 X = MergeSort(A)
2 return X [⌊length(A)/2⌋]

Is it correct?

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Idea: first sort, then pick the element in the middle

SimpleMedian(A)

1 X = MergeSort(A)
2 return X [⌊length(A)/2⌋]

Is it correct? Yes

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Idea: first sort, then pick the element in the middle

SimpleMedian(A)

1 X = MergeSort(A)
2 return X [⌊length(A)/2⌋]

Is it correct? Yes

How long does it take?

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Idea: first sort, then pick the element in the middle

SimpleMedian(A)

1 X = MergeSort(A)
2 return X [⌊length(A)/2⌋]

Is it correct? Yes

How long does it take? T (n) = TMergeSort(n) = O(n log n)

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Idea: first sort, then pick the element in the middle

SimpleMedian(A)

1 X = MergeSort(A)
2 return X [⌊length(A)/2⌋]

Is it correct? Yes

How long does it take? T (n) = TMergeSort(n) = O(n log n)

Can we do better?

Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Idea: first sort, then pick the element in the middle

SimpleMedian(A)

1 X = MergeSort(A)
2 return X [⌊length(A)/2⌋]

Is it correct? Yes

How long does it take? T (n) = TMergeSort(n) = O(n log n)

Can we do better? Let’s try divide-and-conquer. . .

Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

E.g.,

◮ for k = 1, the minimum of A

Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

E.g.,

◮ for k = 1, the minimum of A

◮ for k = ⌊|A|/2⌋, the median of A

Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

E.g.,

◮ for k = 1, the minimum of A

◮ for k = ⌊|A|/2⌋, the median of A

◮ what is the 6th smallest element of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

E.g.,

◮ for k = 1, the minimum of A

◮ for k = ⌊|A|/2⌋, the median of A

◮ what is the 6th smallest element of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

the 6th smallest element of A—a.k.a. select (A, 6)—is 8

k-Smallest Element

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉
and we must compute the 7th smallest value in A

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉 AR = 〈36, 21, 8, 13, 11, 20〉

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉 AR = 〈36, 21, 8, 13, 11, 20〉

Now, where is the 7th smallest value of A?

k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉 AR = 〈36, 21, 8, 13, 11, 20〉

Now, where is the 7th smallest value of A?

It is the 2nd smallest value of AR

k-Smallest Element (2)

We use select (A, k) to denote the k-smallest element of A

select (A, k) =

select (AL, k) if k ≤ |AL |

v if |AL | < k ≤ |AL | + |Av |

select (AR, k − |AL | − |Av |) if k > |AL | + |Av |

k-Smallest Element (2)

We use select (A, k) to denote the k-smallest element of A

select (A, k) =

select (AL, k) if k ≤ |AL |

v if |AL | < k ≤ |AL | + |Av |

select (AR, k − |AL | − |Av |) if k > |AL | + |Av |

Computing AL, Av , and AR takes O(n) steps

k-Smallest Element (2)

We use select (A, k) to denote the k-smallest element of A

select (A, k) =

select (AL, k) if k ≤ |AL |

v if |AL | < k ≤ |AL | + |Av |

select (AR, k − |AL | − |Av |) if k > |AL | + |Av |

Computing AL, Av , and AR takes O(n) steps

How do we pick v?

k-Smallest Element (2)

We use select (A, k) to denote the k-smallest element of A

select (A, k) =

select (AL, k) if k ≤ |AL |

v if |AL | < k ≤ |AL | + |Av |

select (AR, k − |AL | − |Av |) if k > |AL | + |Av |

Computing AL, Av , and AR takes O(n) steps

How do we pick v?

Ideally, we should pick v so as to obtain |AL | ≈ |AR | ≈ |A|/2

◮ so, ideally we should pick v = median(A), but. . .

k-Smallest Element (2)

We use select (A, k) to denote the k-smallest element of A

select (A, k) =

select (AL, k) if k ≤ |AL |

v if |AL | < k ≤ |AL | + |Av |

select (AR, k − |AL | − |Av |) if k > |AL | + |Av |

Computing AL, Av , and AR takes O(n) steps

How do we pick v?

Ideally, we should pick v so as to obtain |AL | ≈ |AR | ≈ |A|/2

◮ so, ideally we should pick v = median(A), but. . .

We pick a random element of A

Selection Algorithm

Selection(A, k)

1 v = A[random(1 . . . |A|)]
2 AL,Av , AR = ∅

3 for i = 1 to |A|
4 if A[i] < v

5 AL = AL ∪ A[i]
6 elseif A[i] == v

7 Av = Av ∪ A[i]
8 else AR = AR ∪ A[i]
9 if k ≤ |AL |
10 return Selection(AL, k)
11 elseif k > |AL | + |Av |
12 return Selection(AR, k − |AL | − |Av |)
13 else return v

