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Output: a sequence X = 〈x1, x2, . . . , xℓ〉 such that

◮ every element of A appears once in X

◮ every element of B appears once in X

◮ every element of X appears in A or in B or in both

Example:

A = 〈34, 7, 11, 31, 14, 51, 8, 21, 10〉

B = 〈51, 21, 14, 15, 27, 31, 2〉
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◮ output ai if ai is not in 〈a1, a2, . . . , ai−1〉

◮ output bi if bi is not in 〈a1, a2, . . . , an, b1, b2, . . . bi−1〉
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Output: true if A contains key , or false otherwise

Find(A, key)

1 for i = 1 to length(A)
2 if A[i] == key

3 return true
4 return false

Find(A, begin, end, key)

1 for i = begin to end

2 if A[i] == key

3 return true
4 return false

The complexity of Find is

T (n) = O(n)
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MergeSimple(A,B)

1 for i = 1 to length(A)
2 if not Find(A[1 . . i − 1],A[i])
3 output A[i]
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BinarySearch(A, key)

1 first = 1

2 last = length(A)
3 while first ≤ last

4 middle = ⌈(first + last)/2⌉
5 if A[middle] == key

6 return true
7 elseif first = last
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T (n) = O(log n)



Merging Sorted Sequences

A slightly different problem:

Input: two sorted sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉,
where a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bm

Output: a sequence X = 〈x1, x2, . . . , xℓ〉 such that

◮ every element of A appears once in X

◮ every element of B appears once in X

◮ every element of X appears in A or in B or in both
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MergeSimple2(A,B)

1 for i = 1 to length(A)
2 if not BinarySearch(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not BinarySearch(A,B[i])
6 and not BinarySearch(B[1 . . i − 1],B[i])
7 output B[i]
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A Better Merge Algorithm

MergeSimple2(A,B)

1 for i = 1 to length(A)
2 if not BinarySearch(A[1 . . i − 1],A[i])
3 output A[i]
4 for i = 1 to length(B)
5 if not BinarySearch(A,B[i])
6 and not BinarySearch(B[1 . . i − 1],B[i])
7 output B[i]

T (n) =

n∑

i=1

O(log i) = O(n log n)

Better than O(n2), but can we do even better than O(n log n)?
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A = 〈3, 7, 12, 13, 34, 37, 70, 75, 80〉

B = 〈1, 5, 6, 7, 34, 35, 40, 41, 43〉
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element I see is y > x



An Even Better Merge Algorithm

Intuition: A and B are sorted
e.g.

A = 〈3, 7, 12, 13, 34, 37, 70, 75, 80〉

B = 〈1, 5, 6, 7, 34, 35, 40, 41, 43〉

so just like in BinarySearch I can avoid looking for an element x if the first
element I see is y > x

High-level algorithm strategy

◮ step through every position i of A and every position j of B

◮ output ai and advance i if ai ≤ bj or if j is beyond the end of B

◮ output bj and advance j if ai ≥ bj or if i is beyond the end of A
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B

3 7 12 13 34 37 70 75 80

1 5 6 7 34 35 40 41 43

i = 5

j = 5

Output: 1 3 5 6 7 12 13. . .



Merge Algorithm (2)

Merge(A, B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i > length(A)
5 X = X ◦ B [j] // appends B [j] to X

6 j = j + 1

7 elseif j > length(B)
8 X = X ◦ A[i]
9 i = i + 1

10 elseif A[i] < B [j]
11 X = X ◦ A[i]
12 i = i + 1

13 else X = X ◦ B [j]
14 j = j + 1

15 return X
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Merge(A, B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i > length(A)
5 X = X ◦ B [j] // appends B [j] to X

6 j = j + 1

7 elseif j > length(B)
8 X = X ◦ A[i]
9 i = i + 1

10 elseif A[i] < B [j]
11 X = X ◦ A[i]
12 i = i + 1

13 else X = X ◦ B [j]
14 j = j + 1

15 return X

This algorithm is incorrect! (Exercise: fix it)
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Merge(A,B)
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4 if i ≤ length(A) and (j > length(B) or A[i] < B[j])
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Merge(A,B)

1 i, j = 1

2 X = ∅

3 while i ≤ length(A) or j ≤ length(B)
4 if i ≤ length(A) and (j > length(B) or A[i] < B[j])
5 X = X ◦ A[i]
6 i = i + 1

7 else X = X ◦ B[j]
8 j = j + 1

9 return X

T (n) = Θ(n)

Can we do better? No!

◮ we have to output n = length(A) + length(B) elements
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UsingMerge

So now we have a linear-complexity merge procedure

◮ merges two sorted sequences

◮ produces a sorted sequence

Perhaps we could use it to implement a sort algorithm

Idea

◮ use a variant of Merge that outputs all elements of its input sequences
◮ i.e., without removing duplicates

◮ assume that two parts, AL ◦ AR = A, and that AL and AR are sorted

◮ useMerge to combine AL and AR into a sorted sequence

◮ this suggests a recursive algorithm
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2 return A
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6 return Merge(AL, AR)
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MergeSort(A)

1 if length(A) == 1

2 return A

3 m = ⌊length(A)/2⌋
4 AL = MergeSort(A[1 . .m])
5 AR = MergeSort(A[m + 1 . . length(A)])
6 return Merge(AL, AR)

The complexity of MergeSort is

T (n) = 2T (n/2) + O(n)

T (n) = O(n log n)
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Divide and Conquer

MergeSort exemplifies the divide and conquer strategy

General strategy: given a problem P on input data A
◮ divide the input A into parts A1, A2, . . . , Ak with |Ai | < |A| = n

◮ solve problem P for the individual k parts

◮ combine the partial solutions to obtain the solution for A

Complexity analysis

T (n) = Tdivide +

k∑

i=1

T (|Ai |) + Tcombine

we will analyze this formula another time. . .
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MergeR(A,B)
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A Divide-and-Conquer Merge

MergeR(A,B)

1 if length(A) == 0

2 return B

3 if length(B) == 0

4 return A

5 if A[1] < B[1]
6 return A[1] ◦MergeR(A[2 . . length(A)], B)
7 else return B[1] ◦MergeR(A, B[2 . . length(B)])

Again, this algorithm is a bit incorrect (Exercise: Fix it.)

The complexity of MergeR is

T (n) = C1 + T (n − 1) = C1n = O(n)

Can we do better? No! (We knew that already)
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x = XL XR and y = YL YR

which means x = 2
ℓ/2xL + xR and y = 2

ℓ/2yL + yR , so. . .

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

we reduced the problem of multiplying two numbers of ℓ bits into the problem
of multiplying four numbers of ℓ/2 bits. . .

T (ℓ) = 4T (ℓ/2) + O(ℓ)

T (ℓ) = Θ(ℓ2)



Divide-and-Conquer Multiplication (2)



Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR



Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so



Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

xy = 2
ℓxLyL + 2

ℓ/2((xL + xR)(yR + yL) − xLyL − xRyR) + xRyR



Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

xy = 2
ℓxLyL + 2

ℓ/2((xL + xR)(yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR)(yR + yL), and xRyR



Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

xy = 2
ℓxLyL + 2

ℓ/2((xL + xR)(yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR)(yR + yL), and xRyR

T (ℓ) = 3T (ℓ/2) + O(ℓ)



Divide-and-Conquer Multiplication (2)

Again, we have

xy = (2ℓ/2xL + xR)(2
ℓ/2yL + yR)

= 2
ℓ
xLyL + 2

ℓ/2(xLyR + xRyL) + xRyR

but notice that xLyR + xRyL = (xL + xR)(yR + yL) − xLyL − xRyR , so

xy = 2
ℓxLyL + 2

ℓ/2((xL + xR)(yR + yL) − xLyL − xRyR) + xRyR

Only 3 multiplications: xLyL, (xL + xR)(yR + yL), and xRyR

T (ℓ) = 3T (ℓ/2) + O(ℓ)

which, as we will see, leads to a much better complexity

T (ℓ) = O(ℓ log2 3) = O(ℓ1.59)
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Computing the Median

The median of a sequence A is a value m ∈ A such that half the values in A are
smaller than m and half are bigger than m

◮ e.g., what is the median of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

Idea: first sort, then pick the element in the middle

SimpleMedian(A)

1 X = MergeSort(A)
2 return X [⌊length(A)/2⌋]

Is it correct? Yes

How long does it take? T (n) = TMergeSort(n) = O(n log n)

Can we do better? Let’s try divide-and-conquer. . .



Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m



Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v



Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

E.g.,

◮ for k = 1, the minimum of A



Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

E.g.,

◮ for k = 1, the minimum of A

◮ for k = ⌊|A|/2⌋, the median of A



Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

E.g.,

◮ for k = 1, the minimum of A

◮ for k = ⌊|A|/2⌋, the median of A

◮ what is the 6th smallest element of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?



Computing the Median (2)

The median of a sequence A is a value m ∈ A such that half the values in A are
less than or equal to m

Generalizating, the k-smallest element of a sequence A is a value v ∈ A such
that exactly k elements of A are less than or equal to v

E.g.,

◮ for k = 1, the minimum of A

◮ for k = ⌊|A|/2⌋, the median of A

◮ what is the 6th smallest element of A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉?

the 6th smallest element of A—a.k.a. select (A, 6)—is 8
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k-Smallest Element

Idea: we split the sequence A in three parts based on a chosen value v ∈ A

◮ AL contains the set of elements that are less than v

◮ Av contains the set of elements that are equal to v

◮ AR contains the set of elements that are greater then v

E.g., A = 〈2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1〉
and we must compute the 7th smallest value in A

we pick a splitting value, say v = 5

AL = 〈2, 4, 1〉 Av = 〈5, 5〉 AR = 〈36, 21, 8, 13, 11, 20〉

Now, where is the 7th smallest value of A?

It is the 2nd smallest value of AR
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k-Smallest Element (2)

We use select (A, k) to denote the k-smallest element of A

select (A, k) =




select (AL, k) if k ≤ |AL |

v if |AL | < k ≤ |AL | + |Av |

select (AR, k − |AL | − |Av |) if k > |AL | + |Av |

Computing AL, Av , and AR takes O(n) steps

How do we pick v?

Ideally, we should pick v so as to obtain |AL | ≈ |AR | ≈ |A|/2

◮ so, ideally we should pick v = median(A), but. . .

We pick a random element of A



Selection Algorithm

Selection(A, k)

1 v = A[random(1 . . . |A|)]
2 AL,Av , AR = ∅

3 for i = 1 to |A|
4 if A[i] < v

5 AL = AL ∪ A[i]
6 elseif A[i] == v

7 Av = Av ∪ A[i]
8 else AR = AR ∪ A[i]
9 if k ≤ |AL |
10 return Selection(AL, k)
11 elseif k > |AL | + |Av |
12 return Selection(AR, k − |AL | − |Av |)
13 else return v


