Basic Elements of Complexity Theory

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

June 1, 2021

Outline

- Basic complexity classes
- Polynomial reductions
- NP-completeness

■ A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time T(n)

T(n)	is A a polynomial-time algorithm?

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time T(n)

T(n)		is A a polynomial-time algorithm?
T ()	2	

 $T(n) = n^2$

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time T(n)

<i>T</i> (<i>n</i>)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time T(n)

T(n)	is <i>A</i> a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time T(n)

<i>I (n)</i>	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time T(n)

T(n)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time T(n)

T(n)	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No

■ A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

Examples: algorithm *A* has a running time T(n)

T(-)

<i>I (n)</i>	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm *A* has a running time T(n)

<i>I (n)</i>	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No

■ A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

is Δ a nolynomial-time algorithm?

Examples: algorithm *A* has a running time T(n)

1 (11)	is A a polynomial-time algorithm:
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2$	² – 5 Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-r}$	1

■ A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

is A a polynomial time algorithm?

Examples: algorithm A has a running time T(n)

1 (11)	is A a polynomial-time algorithm:
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes

■ A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

is A a malumamaial time a algorithma?

Examples: algorithm A has a running time T(n)

<i>I (n)</i>	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes
T(n) = 5	

■ A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

is 1 a polynomial time algorithm?

Examples: algorithm A has a running time T(n)

<i>T (II)</i>	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes
T(n) = 5	Yes

■ A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k

!- A - ... - b ... - ... ! - l +!... - . - l -- ... ! + l - ... ?

Examples: algorithm A has a running time T(n)

T(-)

<i>I (n)</i>	is A a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes
T(n) = 5	Yes
$T(n) = n^{-7} \cdot 2^{n/7}$	

- A *polynomial-time algorithm* is one whose worst-case running time T(n), on input size n, is $O(n^k)$ for some *constant* k
- **Examples:** algorithm A has a running time T(n)

<i>T</i> (<i>n</i>)	is <i>A</i> a polynomial-time algorithm?
$T(n) = n^2$	Yes
$T(n) = n^3 - 2n^2 - 5$	Yes
$T(n) = \sqrt{n!}$	No
$T(n) = n^7 + 7^n$	No
$T(n) = n^7 + 7^{-n}$	Yes
T(n) = 5	Yes
$T(n) = n^{-7} \cdot 2^{n/7}$	No

Examples:

Algorithm worst-case running time

Examples:

Algorithm worst-case running time

Add

Algorithm	worst-case running time
Add	O(n)

Examples:

Algorithm	worst-case running time

Add O(n)

Tree-Minimum

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	<i>O</i> (<i>n</i>)

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	

vorst-case running time
O(n)
O(n)
$O(\log n)$

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	$O(\log n)$
Inorder-Tree-Walk	

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	$O(\log n)$
Inorder-Tree-Walk	O(n)

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	$O(\log n)$
Inorder-Tree-Walk	O(n)
Insertion-Sort	

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	$O(\log n)$
Inorder-Tree-Walk	O(n)
Insertion-Sort	$O(n^2)$

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	$O(\log n)$
Inorder-Tree-Walk	O(n)
Insertion-Sort	$O(n^2)$
Heapsort	

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	$O(\log n)$
Inorder-Tree-Walk	O(n)
Insertion-Sort	$O(n^2)$
Heapsort	$O(n \log n)$

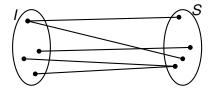
Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	$O(\log n)$
Inorder-Tree-Walk	O(n)
Insertion-Sort	$O(n^2)$
Heapsort	$O(n \log n)$
Boyer-Moore	

Algorithm	worst-case running time
Add	O(n)
Tree-Minimum	O(n)
RB-Insert	$O(\log n)$
Inorder-Tree-Walk	O(n)
Insertion-Sort	$O(n^2)$
Heapsort	$O(n \log n)$
Boyer-Moore	$O(n^2)$

worst-case running time
O(n)
O(n)
$O(\log n)$
O(n)
$O(n^2)$
$O(n \log n)$
$O(n^2)$
()

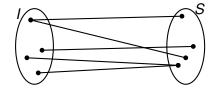
Abstract Problems

■ An *abstract problem Q* is a binary relation between a set *I* of problem *instances* and a set *S* of *solutions*



Abstract Problems

■ An *abstract problem Q* is a binary relation between a set *I* of problem *instances* and a set *S* of *solutions*



- A *concrete problem Q* is one where *I* and *S* are the set of binary strings $\{0,1\}^*$
 - for all practical purposes, instances and solutions can be encoded as binary strings (i.e., mapped into {0, 1}*)
 - we consider only sensible encodings...

Decision Problems

■ A *decision problem* Q is one where the set of solutions is $S = \{0, 1\}$

Decision Problems

■ A **decision problem** Q is one where the set of solutions is $S = \{0, 1\}$

Example:

Decision Problems

■ A **decision problem** Q is one where the set of solutions is $S = \{0, 1\}$

Example:

■ Many "optimization" problems have a corresponding decision problem

■ Many "optimization" problems have a corresponding decision problem

Example: shortest path in a graph

$$G = (V = \{a, b, c, ...\}, E = \{(a, c), ...\}), a, z \longrightarrow a, c, ..., z$$

- input: a graph G, a start vertex (a), and an end vertex (z)
- ightharpoonup output: a sequence of vertexes a, c, \ldots, z

■ Many "optimization" problems have a corresponding decision problem

Example: shortest path in a graph

$$G = (V = \{a, b, c, ...\}, E = \{(a, c), ...\}), a, z \longrightarrow a, c, ..., z$$

- input: a graph G, a start vertex (a), and an end vertex (z)
- ightharpoonup output: a sequence of vertexes a, c, \ldots, z

Shortest path as a decision problem

$$G = (V = \{a, b, c, ...\}, E = \{(a, c), ...\}), a, z, 10 \longrightarrow 1$$

- input: a graph G, a start vertex (a), an end vertex (z), and a path length (10)
- output: 1 if there is a path of (at most) the given length

■ We focus on decision problems only

- We focus on decision problems only
- An optimization problem is at least as hard as its corresponding decision problem
 - having a solution to the optimization gives an immediate solution to the decision problem

- We focus on decision problems only
- An optimization problem is at least as hard as its corresponding decision problem
 - having a solution to the optimization gives an immediate solution to the decision problem
- An optimization problem is *not much harder* than the corresponding decision problem

- We focus on decision problems only
- An optimization problem is at least as hard as its corresponding decision problem
 - having a solution to the optimization gives an immediate solution to the decision problem
- An optimization problem is *not much harder* than the corresponding decision problem
 - having a solution to the decision problem does not give an immediate solution to the optimization problem
 - but we can typically use the decision problem as a subroutine in some kind of (binary) search to solve the corresponding optimization problem

■ A concrete decision problem *Q* is *polynomial-time solvable* if there is a polynomial-time algorithm *A* that solves it

■ A concrete decision problem *Q* is *polynomial-time solvable* if there is a polynomial-time algorithm *A* that solves it

The *complexity class P* is the set of all concrete decision problems that are *polynomial-time solvable*

Examples

■ A concrete decision problem *Q* is *polynomial-time solvable* if there is a polynomial-time algorithm *A* that solves it

- Examples
 - shortest path (decision variant)

■ A concrete decision problem *Q* is *polynomial-time solvable* if there is a polynomial-time algorithm *A* that solves it

- Examples
 - shortest path (decision variant)—Dijkstra's algorithm

■ A concrete decision problem *Q* is *polynomial-time solvable* if there is a polynomial-time algorithm *A* that solves it

- Examples
 - shortest path (decision variant)—Dijkstra's algorithm
 - primality

■ A concrete decision problem *Q* is *polynomial-time solvable* if there is a polynomial-time algorithm *A* that solves it

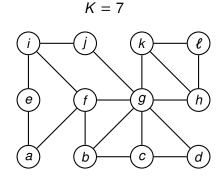
- Examples
 - shortest path (decision variant)—Dijkstra's algorithm
 - primality—a relatively recent theoretical result...
 - in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
 - Neeraj Kayal and Nitin Saxena were Bachelor students!

■ A concrete decision problem *Q* is *polynomial-time solvable* if there is a polynomial-time algorithm *A* that solves it

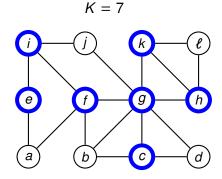
- Examples
 - shortest path (decision variant)—Dijkstra's algorithm
 - primality—a relatively recent theoretical result...
 - in 2002: Agrawal, Kayal, and Saxena from IIT Kanpur
 - Neeraj Kayal and Nitin Saxena were Bachelor students!
 - parsing a Java program
 - **.**..

- **Example:** *Vertex cover* (decision variant)
 - ▶ *Input*: A graph G = (V, E) and a number K
 - ▶ *Output:* 1, if there is set S of at most k vertices such that for every edge $e = (u, v) \in E$, $u \in S$ or $v \in S$ (or both); 0 otherwise

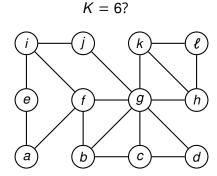
- **Example:** *Vertex cover* (decision variant)
 - ▶ *Input*: A graph G = (V, E) and a number K
 - **Proof** Output: 1, if there is set S of at most k vertices such that for every edge $e = (u, v) \in E$, $u \in S$ or $v \in S$ (or both); 0 otherwise



- **Example:** *Vertex cover* (decision variant)
 - ▶ *Input*: A graph G = (V, E) and a number K
 - **Proof** Output: 1, if there is set S of at most k vertices such that for every edge $e = (u, v) \in E$, $u \in S$ or $v \in S$ (or both); 0 otherwise



- **Example:** *Vertex cover* (decision variant)
 - ▶ *Input*: A graph G = (V, E) and a number K
 - **Proof** Output: 1, if there is set S of at most k vertices such that for every edge $e = (u, v) \in E$, $u \in S$ or $v \in S$ (or both); 0 otherwise



Polynomial-Time Verification

■ We might not know how to *solve* a problem in polynomial-time

problem instance → ? ··· > solution

Polynomial-Time Verification

■ We might not know how to *solve* a problem in polynomial-time

■ But we might know how to *verify a given solution* in polynomial-time

```
problem instance poly-time algorithm "certificate" valid/invalid (for "yes" solution)
```

Polynomial-Time Verification

■ We might not know how to *solve* a problem in polynomial-time

■ But we might know how to *verify a given solution* in polynomial-time

```
problem instance poly-time algorithm poly-time algorithm
```

- Examples
 - longest path (decision variant)
 - knapsack (decision variant)

■ A concrete decision problem Q is **polynomial-time verifiable** if there is a polynomial-time algorithm A and a constant c such that, for each instance $x \in I$, there is a **certificate** y of polynomial-size $|y| = O(|x|^c)$ such that A(x, y) = 1

■ A concrete decision problem Q is **polynomial-time verifiable** if there is a polynomial-time algorithm A and a constant c such that, for each instance $x \in I$, there is a **certificate** y of polynomial-size $|y| = O(|x|^c)$ such that A(x, y) = 1

The *complexity class NP* is the set of all concrete decision problems that are *polynomial-time verifiable*

■ NP does <u>not</u> mean non-polynomial!

■ A concrete decision problem Q is **polynomial-time verifiable** if there is a polynomial-time algorithm A and a constant c such that, for each instance $x \in I$, there is a **certificate** y of polynomial-size $|y| = O(|x|^c)$ such that A(x, y) = 1

- NP does <u>not</u> mean non-polynomial!
 - it means "non-deterministic polynomial"

■ A concrete decision problem Q is **polynomial-time verifiable** if there is a polynomial-time algorithm A and a constant c such that, for each instance $x \in I$, there is a **certificate** y of polynomial-size $|y| = O(|x|^c)$ such that A(x, y) = 1

- NP does <u>not</u> mean non-polynomial!
 - it means "non-deterministic polynomial"
- polynomial-time solvable ⇒ polynomial-time verifiable

$$P \subseteq NP$$

 \blacksquare polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable

- \blacksquare polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable
- Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

- \blacksquare polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable
- Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$P = NP$$
?

- \blacksquare polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable
- Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$P = NP$$
?

■ Most theoretical computing scientists *believe* that $P \neq NP$

- \blacksquare polynomial-time verifiable $\stackrel{?}{\Longrightarrow}$ polynomial-time solvable
- Or are there problems for which there is a polynomial-time verification algorithm but there are no polynomial-time algorithms to find solutions?

$$P = NP$$
?

- Most theoretical computing scientists *believe* that $P \neq NP$
- Finding a solution to a problem is believed to be inherently more difficult than verifying a given solution (or a proof of a solution)

- Satisfiability problem (SAT)
 - ▶ *Input*: a Boolean formula of n (Boolean) variables $x_1, x_2, ..., x_n$
 - Output: 1 iff there is an assignment of variables that satisfies the formula

- Satisfiability problem (SAT)
 - ▶ *Input*: a Boolean formula of n (Boolean) variables $x_1, x_2, ..., x_n$
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

- Satisfiability problem (SAT)
 - ▶ *Input*: a Boolean formula of n (Boolean) variables $x_1, x_2, ..., x_n$
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

- Satisfiability problem (SAT)
 - Input: a Boolean formula of n (Boolean) variables x_1, x_2, \ldots, x_n
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

- Satisfiability problem (SAT)
 - ▶ Input: a Boolean formula of n (Boolean) variables x_1, x_2, \ldots, x_n
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

 - $(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z)$

- Satisfiability problem (SAT)
 - ▶ *Input*: a Boolean formula of n (Boolean) variables x_1, x_2, \ldots, x_n
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

 - $(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$

- Satisfiability problem (SAT)
 - ▶ Input: a Boolean formula of n (Boolean) variables x_1, x_2, \ldots, x_n
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

 - $(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$
- SAT \in NP?

- Satisfiability problem (SAT)
 - Input: a Boolean formula of n (Boolean) variables x_1, x_2, \ldots, x_n
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples
 - $ightharpoonup \neg x \wedge (\neg y \vee \neg z) \wedge \neg z \wedge (x \vee y) \longrightarrow 1 \quad (x = 0, y = 1, z = 0)$
 - $(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$
- SAT \in NP?
 - yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable

- Satisfiability problem (SAT)
 - ▶ *Input*: a Boolean formula of n (Boolean) variables $x_1, x_2, ..., x_n$
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

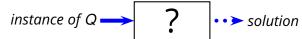
 - $(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$
- SAT \in NP?
 - yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable
- SAT \in P?

- Satisfiability problem (SAT)
 - ▶ *Input*: a Boolean formula of n (Boolean) variables $x_1, x_2, ..., x_n$
 - Output: 1 iff there is an assignment of variables that satisfies the formula
- Examples

 - $(x \lor y \lor z) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x) \land (\neg x \lor \neg y \lor \neg z) \longrightarrow 0$
- SAT \in NP?
 - yes: given an assignment that satisfies the formula, it is easy (poly-time) to verify that the formula is satisfiable
- SAT \in P?
 - we don't know

■ In our theory of complexity we want to show that a problem is *just as hard as another problem*

- In our theory of complexity we want to show that a problem is *just as hard as another problem*
- We do that with *polynomial-time reductions*

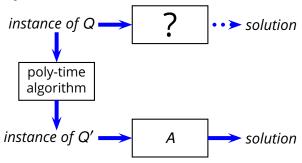


- In our theory of complexity we want to show that a problem is *just as hard as another problem*
- We do that with *polynomial-time reductions*

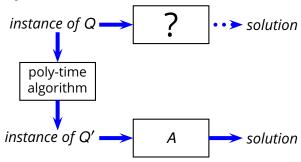
instance of
$$Q \longrightarrow$$
 ? ••• solution

instance of $Q' \longrightarrow A \longrightarrow$ solution

- In our theory of complexity we want to show that a problem is *just as hard as another problem*
- We do that with *polynomial-time reductions*

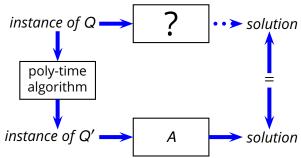


- In our theory of complexity we want to show that a problem is just as hard as another problem
- We do that with *polynomial-time reductions*



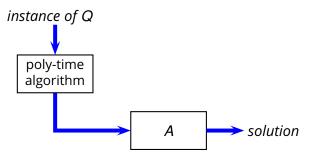
▶ an instance q of Q is transformed into an instance q' of Q' through a polynomial-time algorithm

- In our theory of complexity we want to show that a problem is just as hard as another problem
- We do that with *polynomial-time reductions*

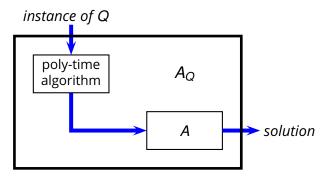


- ▶ an instance q of Q is transformed into an instance q' of Q' through a polynomial-time algorithm
- ightharpoonup the solution to q is 1 if and only if the solution to q' is 1

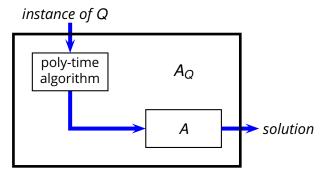
■ Solution by polynomial-time reductions to a solvable problem



■ Solution by polynomial-time reductions to a solvable problem

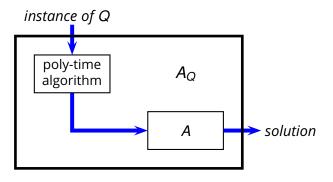


■ Solution by polynomial-time reductions to a solvable problem



ightharpoonup if A is polynomial-time, then of A_Q is also polynomial time

■ Solution by polynomial-time reductions to a solvable problem



- ightharpoonup if A is polynomial-time, then of A_Q is also polynomial time
- ▶ therefore if $Q' \in P$, then $Q \in P$

Example: 2-CNF-SAT

■ 2-CNF-SAT problem

Input:

- ightharpoonup f is a Boolean formula of n (Boolean) variables x_1, x_2, \ldots, x_n
- f is in conjunctive normal form (CNF), so $f = C_1 \wedge C_2 \wedge \cdots \wedge C_k$
- every *clause C_i* of f contains exactly *two* literals (a variable or its negation)

Output: 1 iff *f* is satisfiable

ightharpoonup there is an assignment of variables that satisfies f

Example:

$$(x_1 \vee \neg x_3) \wedge (\neg x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge (x_1 \vee x_2)$$

2-CNF-SAT to Implicative Form

 \blacksquare Consider each clause C_i

$$(a \lor b) \equiv (\neg a \Rightarrow b) \equiv (\neg b \Rightarrow a)$$

so we can rewrite a 2-CNF-SAT formula *f* into another formula in *implicative* normal form

Example:

$$(x_1 \vee \neg x_3) \wedge (\neg x_2 \vee x_3)$$

2-CNF-SAT to Implicative Form

 \blacksquare Consider each clause C_i

$$(a \lor b) \equiv (\neg a \Rightarrow b) \equiv (\neg b \Rightarrow a)$$

so we can rewrite a 2-CNF-SAT formula *f* into another formula in *implicative* normal form

Example:

$$(x_1 \vee \neg x_3) \wedge (\neg x_2 \vee x_3)$$

is equivalent to

$$(\neg x_1 \Rightarrow \neg x_3) \land (x_3 \Rightarrow x_1) \land (x_2 \Rightarrow x_3) \land (\neg x_3 \Rightarrow \neg x_2)$$

2-CNF-SAT to Graph Reachability

$$(x_1 \vee \neg x_3) \wedge (\neg x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge (x_1 \vee x_2)$$

2-CNF-SAT to Graph Reachability

$$(x_{1} \vee \neg x_{3}) \wedge (\neg x_{2} \vee x_{3}) \wedge (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{2})$$

$$\downarrow \uparrow \uparrow$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow x_{1}) \wedge (x_{2} \Rightarrow x_{3}) \wedge (\neg x_{3} \Rightarrow \neg x_{2}) \wedge$$

$$(x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow \neg x_{1}) \wedge (\neg x_{1} \Rightarrow x_{2}) \wedge (\neg x_{2} \Rightarrow x_{1})$$

$$(x_{1} \vee \neg x_{3}) \wedge (\neg x_{2} \vee x_{3}) \wedge (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{2})$$

$$\downarrow \uparrow \uparrow$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow x_{1}) \wedge (x_{2} \Rightarrow x_{3}) \wedge (\neg x_{3} \Rightarrow \neg x_{2}) \wedge$$

$$(x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow \neg x_{1}) \wedge (\neg x_{1} \Rightarrow x_{2}) \wedge (\neg x_{2} \Rightarrow x_{1})$$

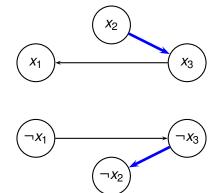
$$x_{2}$$

$$x_{3}$$

$$(x_{1} \vee \neg x_{3}) \wedge (\neg x_{2} \vee x_{3}) \wedge (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{2})$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow x_{1}) \wedge (x_{2} \Rightarrow x_{3}) \wedge (\neg x_{3} \Rightarrow \neg x_{2}) \wedge (x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow \neg x_{1}) \wedge (\neg x_{1} \Rightarrow x_{2}) \wedge (\neg x_{2} \Rightarrow x_{1})$$

$$(x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow \neg x_{1}) \wedge (\neg x_{1} \Rightarrow x_{2}) \wedge (\neg x_{2} \Rightarrow x_{1})$$

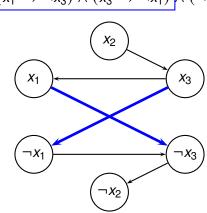


$$(x_{1} \vee \neg x_{3}) \wedge (\neg x_{2} \vee x_{3}) \wedge (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{2})$$

$$\downarrow \uparrow \uparrow$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow x_{1}) \wedge (x_{2} \Rightarrow x_{3}) \wedge (\neg x_{3} \Rightarrow \neg x_{2}) \wedge$$

$$(x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow \neg x_{1}) \wedge (\neg x_{1} \Rightarrow x_{2}) \wedge (\neg x_{2} \Rightarrow x_{1})$$

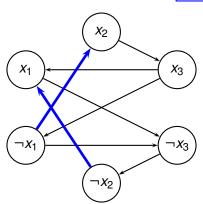


$$(x_{1} \vee \neg x_{3}) \wedge (\neg x_{2} \vee x_{3}) \wedge (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{2})$$

$$\downarrow \uparrow \uparrow$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow x_{1}) \wedge (x_{2} \Rightarrow x_{3}) \wedge (\neg x_{3} \Rightarrow \neg x_{2}) \wedge$$

$$(x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow \neg x_{1}) \wedge (\neg x_{1} \Rightarrow x_{2}) \wedge (\neg x_{2} \Rightarrow x_{1})$$

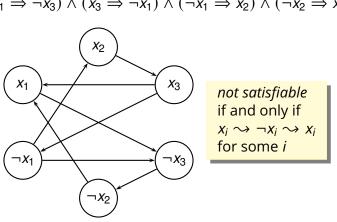


$$(x_{1} \vee \neg x_{3}) \wedge (\neg x_{2} \vee x_{3}) \wedge (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{2})$$

$$\downarrow \uparrow \uparrow$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow x_{1}) \wedge (x_{2} \Rightarrow x_{3}) \wedge (\neg x_{3} \Rightarrow \neg x_{2}) \wedge$$

$$(x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow \neg x_{1}) \wedge (\neg x_{1} \Rightarrow x_{2}) \wedge (\neg x_{2} \Rightarrow x_{1})$$

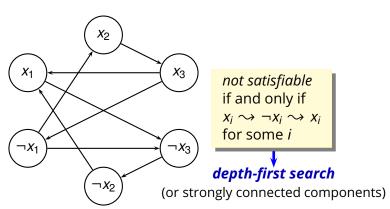


$$(x_{1} \vee \neg x_{3}) \wedge (\neg x_{2} \vee x_{3}) \wedge (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{2})$$

$$\downarrow \uparrow \uparrow$$

$$(\neg x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow x_{1}) \wedge (x_{2} \Rightarrow x_{3}) \wedge (\neg x_{3} \Rightarrow \neg x_{2}) \wedge$$

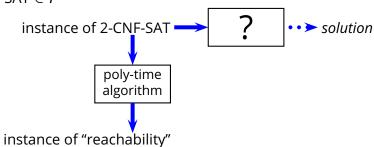
$$(x_{1} \Rightarrow \neg x_{3}) \wedge (x_{3} \Rightarrow \neg x_{1}) \wedge (\neg x_{1} \Rightarrow x_{2}) \wedge (\neg x_{2} \Rightarrow x_{1})$$



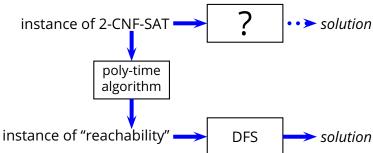
■ 2-CNF-SAT ∈ *P*

instance of 2-CNF-SAT — ? ··> solution

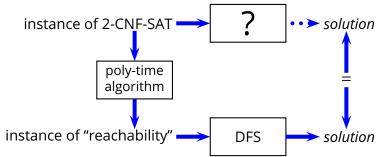
■ 2-CNF-SAT ∈ *P*



■ 2-CNF-SAT ∈ *P*



■ 2-CNF-SAT ∈ *P*



 \blacksquare A problem Q is **polynomial-time reducible** to another problem Q' if there is a polynomial-time reduction

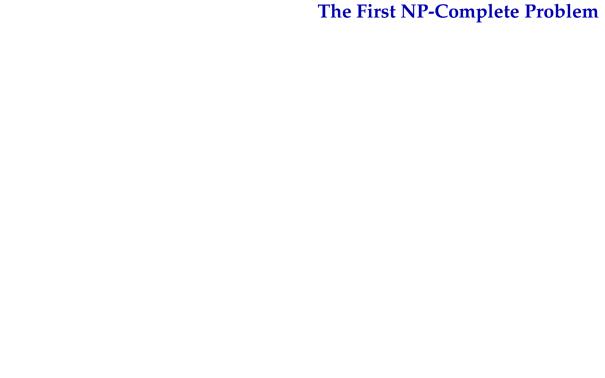
- \blacksquare A problem Q is **polynomial-time reducible** to another problem Q' if there is a polynomial-time reduction
 - ightharpoonup a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ightharpoonup the solution to q is 1 if and only if the solution to q' is 1

- A problem Q is **polynomial-time reducible** to another problem Q' if there is a polynomial-time reduction
 - a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ightharpoonup the solution to q is 1 if and only if the solution to q' is 1
- A problem Q' is **NP-hard** if all problems $Q \in NP$ are polynomial-time reducible to Q'

- A problem Q is **polynomial-time reducible** to another problem Q' if there is a polynomial-time reduction
 - ightharpoonup a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ightharpoonup the solution to q is 1 if and only if the solution to q' is 1
- A problem Q' is *NP-hard* if all problems $Q \in NP$ are polynomial-time reducible to Q'
- A problem Q' is **NP-complete** if $Q' \in NP$ and Q' is NP-hard

- \blacksquare A problem Q is **polynomial-time reducible** to another problem Q' if there is a polynomial-time reduction
 - ightharpoonup a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ightharpoonup the solution to q is 1 if and only if the solution to q' is 1
- A problem Q' is *NP-hard* if all problems $Q \in NP$ are polynomial-time reducible to Q'
- A problem Q' is **NP-complete** if $Q' \in NP$ and Q' is NP-hard
- If Q' is NP-hard and polynomial-time reducible to Q'', then Q'' is NP-hard

- A problem Q is **polynomial-time reducible** to another problem Q' if there is a polynomial-time reduction
 - ightharpoonup a polynomial-time algorithm transforms every instance q of Q into an instance q' of Q'
 - ightharpoonup the solution to q is 1 if and only if the solution to q' is 1
- A problem Q' is **NP-hard** if all problems $Q \in NP$ are polynomial-time reducible to Q'
- A problem Q' is **NP-complete** if $Q' \in NP$ and Q' is NP-hard
- If Q' is NP-hard and polynomial-time reducible to Q'', then Q'' is NP-hard
- If Q' is NP-hard and polynomial-time solvable, then P = NP
 - ightharpoonup i.e., most researchers believe that there is no such Q'



The First NP-Complete Problem

■ Is there any NP-complete problem?

```
any problem Q \in NP \longrightarrow polynomial-time reduction
```

The First NP-Complete Problem

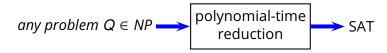
■ Is there any NP-complete problem?

any problem
$$Q \in NP \longrightarrow P$$
 polynomial-time reduction

■ Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since SAT ∈ NP, also NP-complete

The First NP-Complete Problem

Is there any NP-complete problem?



- Circuit satisfiability (SAT) was the first problem that was proved NP-hard and, since SAT ∈ NP, also NP-complete
- Many other problems were then proved NP-complete through polynomial reductions
 - e.g., SAT is polynomial-time reducible to the longest path problem
 - therefore, the *longest path* problem is also NP-complete