
Algorithms and Data Structures Graded Assignment n. 2
A. Carzaniga May 4, 2021

Due date: Thursday, May 13, 2021 at 22:00

Instructions

• This is an individual assignment. You must write your code and documentation on your own.
Always acknowledge any and all sources you might use.

• Write and submit source files with the exact names specified in each exercise. Do not submit
any file, folder, or archive, other than what is required.

• You may only use the following, limited subset of the Python 3 language and libraries.

– You may only use the built-in numeric types (e.g., int) and sequence types (e.g., arrays).

– With arrays or other sequence types, you may only use the following operations:

* direct access to an element by index, as in return A[7] or A[i+1] = A[i]

* append an element, as in A.append(10)

* delete the last element, as in A.pop() or del A[len(A)-1]

* read the length, as in n = len(A)

– You may use the range function, typically in a for-loop, as in for i in range(10)

– You may not use any library or external function other than the ones listed above.

ñExercise 1. In a source file ex1.py write a Python function bst_balance(t) that takes the root of (40)
a binary search tree t and, using only rotations, balances t, returning the new root node. Balancing
means returning a tree of minimal height. Again, you may not use any auxiliary data structure, and
you must operate on the tree only by means of rotation operations. As a source-code comment,
analyze the complexity of bst_balance(t).

Your implementation must use the following definition of a binary search tree node, and of the left
and right rotation algorithms:

class node:
def __init__(self ,k):

self .key = k
self. left = None
self.right = None

def right_rotate (t ):
assert t != None and t.left != None
r = t. left
t . left = r.right
r.right = t
return r

def left_rotate (t ):
assert t != None and t.right != None
r = t.right
t.right = r. left
r. left = t
return r

Hint: start by turning the input tree into a long single branch (left-to-right or right-to-left) and then
turn that into a balanced BST.



ñExercise 2. In a source file ex2.py write a Python function print_bst_by_level(t) that takes (30)
the root of a binary search tree t and prints keys of the tree in a series of lines such that line `
contains the keys at depth `, ordered from left (minimum) to right (maximum).

Hint: use an auxiliary queue or list to explore the nodes of the tree level-by-level. It would in fact
be easy to implement a queue using a linked list.

ñExercise 3. Consider the following algorithm Algo-X(A, B) that takes two arrays, A and B, of
numbers.

Algo-X(A, B)
1 if Algo-Y(A, B) and Algo-Y(B,A)
2 return true
3 else return false

Algo-Y(A, B)
1 X = array of A. length values all equal to 0
2 for i = 1 to B. length
3 j = 1
4 f = 0
5 while j ≤ A. length and f == 0
6 if X[j] == 0 and A[j] == −B[i]:
7 X[j] = 1
8 f = 1
9 else j = j + 1

10 if f == 0
11 return false
12 return true

Answer the following questions in a PDF document called ex3.pdf:

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (10)
high level semantics, independent of the code.

Question 2: Analyze the complexity of Algo-X in the best and worst case. Justify your answer by (10)
clearly describing a best- and worst-case input of size n, as well as the behavior of the algorithm
in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X, (10)
but with a strictly better complexity (worst-case). Analyze the complexity of Better-Algo-X.

Hint: you may use a sorting algorithm without detailing its implementation.


