
Algorithms and Data Structures Graded Assignment n. 1
A. Carzaniga April 1, 2021

Due date: Monday, April 12, 2021 at 22:00

Instructions

• This is an individual assignment. You must write your code and documentation on your own.
Always acknowledge any and all sources you might use.

• Write and submit source files with the exact names specified in each exercise. Do not submit
any file, folder, or archive, other than what is required.

• You may only use the following, limited subset of the Python 3 language and libraries.

– You may only use the built-in numeric types (e.g., int) and sequence types (e.g., arrays).

– With arrays or other sequence types, you may only use the following operations:

* direct access to an element by index, as in return A[7] or A[i+1] = A[i]

* append an element, as in A.append(10)

* delete the last element, as in A.pop() or del A[len(A)-1]

* read the length, as in n = len(A)

– You may use the range function, typically in a for-loop, as in for i in range(10)

– You may not use any library or external function other than the ones listed above.

ñExercise 1. In a source file ex1.py write a Python function first_unique(A) that takes an ar- (20)
ray A of values (numbers, strings, whatever) and returns the first unique value in the sequence,
meaning the left-most value that does not appear anywhere else in the sequence. As a source-code
comment, analyze the complexity of first_unique(A) by also describing a worst-case input.

ñExercise 2. Consider the following algorithm Algo-X(A,x) that takes an array A of numbers and
another number x.

Algo-X(A,x)
1 B = [0] // an array containing one value: 0
2 for i = 1 to A. length
3 ` = B. length
4 for j = 1 to `
5 s = B[j]+A[i]
6 if Algo-Y(B, s)
7 B = B ◦ s // append s to B
8 for i = 1 to B. length
9 if x ≥ B[i]

10 return true
11 return false

Algo-Y(A,x)
1 for i = 1 to A. length
2 if x == A[i]
3 return false
4 return true

Answer the following questions in a PDF document called ex2.pdf:

Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the (10)
high level semantics, independent of the code.

Question 2: Analyze the complexity of Algo-X in the best and worst case. Justify your answer by (10)
clearly describing a best- and worst-case input of size n, as well as the behavior of the algorithm
in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X, (10)
but with a strictly better complexity (worst-case). Analyze the complexity of Better-Algo-X.



ñExercise 3. Given a sequence A = a1, a2, . . . , an of positive numbers, you must tell whether A con-
tains two distinct but possibly overlapping sub-sequences of contiguous elements, ai, ai+1, . . . , aj
and ak, ak+1, . . . , al, such that ai + ai+1 + · · · + aj = ak + ak+1 + · · · + al.

Question 1: In a source file ex3_1.py write a Python function equal_sum_seq(A) that solves this (20)
problem (returning True or False) with complexity O(n3). In a code comment in the same source
file, analyze the complexity of equal_sum_seq(A).

Question 2: In a source file ex3_2.py write a Python function equal_sum_seq2(A) that solves (30)
this problem with complexity O(n2 logn). In a code comment in the same source file, analyze the
complexity of equal_sum_seq2(A).


