Due date: Monday, April 12, 2021 at 22:00

Instructions

- This is an individual assignment. You must write your code and documentation on your own. Always acknowledge any and all sources you might use.
- Write and submit source files with the exact names specified in each exercise. Do not submit any file, folder, or archive, other than what is required.
- You may only use the following, limited subset of the Python 3 language and libraries.
- You may only use the built-in numeric types (e.g., int) and sequence types (e.g., arrays).
- With arrays or other sequence types, you may only use the following operations:
* direct access to an element by index, as in return $A[7]$ or $A[i+1]=A[i]$
* append an element, as in A. append (10)
* delete the last element, as in A. pop() or de1 A[1en(A)-1]
* read the length, as in $n=1 e n(A)$
- You may use the range function, typically in a for-loop, as in for in range(10)
- You may not use any library or external function other than the ones listed above.
- Exercise 1. In a source file ex1.py write a Python function first_unique (A) that takes an array A of values (numbers, strings, whatever) and returns the first unique value in the sequence, meaning the left-most value that does not appear anywhere else in the sequence. As a source-code comment, analyze the complexity of first_unique(A) by also describing a worst-case input.
- Exercise 2. Consider the following algorithm $\operatorname{AlGO}-X(A, x)$ that takes an array A of numbers and another number x.

```
\(\operatorname{Algo}-\mathrm{X}(A, x)\)
    \(B=[0] / /\) an array containing one value: 0
    for \(i=1\) to \(A\).length
        \(\ell=B\).length
        for \(j=1\) to \(\ell\)
            \(s=B[j]+A[i]\)
            if \(\operatorname{AlGO}-\mathrm{Y}(B, s)\)
                    \(B=B \circ s \quad / /\) append \(s\) to \(B\)
    for \(i=1\) to \(B\).length
        if \(x \geq B[i]\)
            return TRUE
    return FALSE
```

Answer the following questions in a PDF document called ex2.pdf:
Question 1: Explain what Algo-X does. Do not simply paraphrase the code. Instead, explain the high level semantics, independent of the code.

Question 2: Analyze the complexity of Algo-X in the best and worst case. Justify your answer by clearly describing a best- and worst-case input of size n, as well as the behavior of the algorithm in each case.

Question 3: Write an algorithm called Better-Algo-X that does exactly the same thing as Algo-X, but with a strictly better complexity (worst-case). Analyze the complexity of BETTER-ALGO-X.

- Exercise 3. Given a sequence $A=a_{1}, a_{2}, \ldots, a_{n}$ of positive numbers, you must tell whether A contains two distinct but possibly overlapping sub-sequences of contiguous elements, $a_{i}, a_{i+1}, \ldots, a_{j}$ and $a_{k}, a_{k+1}, \ldots, a_{l}$, such that $a_{i}+a_{i+1}+\cdots+a_{j}=a_{k}+a_{k+1}+\cdots+a_{l}$.

Question 1: In a source file ex3_1.py write a Python function equal_sum_seq(A) that solves this problem (returning True or False) with complexity $O\left(n^{3}\right)$. In a code comment in the same source file, analyze the complexity of equal_sum_seq(A).

Question 2: In a source file ex3_2.py write a Python function equa1_sum_seq2 (A) that solves this problem with complexity $O\left(n^{2} \log n\right)$. In a code comment in the same source file, analyze the complexity of equa1_sum_seq2 (A).

