Due date: Monday, April 12, 2021 at 22:00

Instructions

- This is an individual assignment. You must write your code and documentation on your own. *Always acknowledge any and all sources you might use.*
- Write and submit source files with the exact names specified in each exercise. Do not submit any file, folder, or archive, other than what is required.
- You may only use the following, limited subset of the Python 3 language and libraries.
 - You may only use the built-in numeric types (e.g., int) and sequence types (e.g., arrays).
 - With arrays or other sequence types, you may only use the following operations:
 - * direct access to an element by index, as in return A[7] or A[i+1] = A[i]
 - * append an element, as in A.append(10)
 - * delete the last element, as in A.pop() or del A[len(A)-1]
 - * read the length, as in n = len(A)
 - You may use the range function, typically in a for-loop, as in for i in range(10)
 - You may not use any library or external function other than the ones listed above.
- **Exercise 1.** In a source file ex1.py write a Python function first_unique(A) that takes an array A of values (numbers, strings, whatever) and returns the first unique value in the sequence, meaning the left-most value that does not appear anywhere else in the sequence. As a source-code comment, analyze the complexity of first_unique(A) by also describing a worst-case input.
- **Exercise 2.** Consider the following algorithm ALGO-X(A, x) that takes an array A of numbers and another number x.

ALGO-X(A, x)		Algo- $Y(A, x)$	
1	B = [0] <i>//</i> an array containing one value: 0	1	for $i = 1$ to A . length
2	for $i = 1$ to A. length	2	if $x == A[i]$
3	$\ell = B.length$	3	return FALSE
4	for $j = 1$ to ℓ	4	return TRUE
5	s = B[j] + A[i]		
6	if ALGO-Y (B, s)		
7	$B = B \circ s$ <i>//</i> append s to B		
8	for $i = 1$ to B. length		
9	if $x \ge B[i]$		
10	return TRUE		
11	return FALSE		

Answer the following questions in a PDF document called ex2.pdf:

Question 1: Explain what ALGO-X does. Do not simply paraphrase the code. Instead, explain the *(10)* high level semantics, independent of the code.

Question 2: Analyze the complexity of ALGO-X in the best and worst case. Justify your answer by (10) clearly describing a best- and worst-case input of size n, as well as the behavior of the algorithm in each case.

Question 3: Write an algorithm called BETTER-ALGO-X that does exactly the same thing as ALGO-X, (10) but with a strictly better complexity (worst-case). Analyze the complexity of BETTER-ALGO-X.

► Exercise 3. Given a sequence $A = a_1, a_2, ..., a_n$ of positive numbers, you must tell whether A contains two distinct but possibly overlapping sub-sequences of contiguous elements, $a_i, a_{i+1}, ..., a_j$ and $a_k, a_{k+1}, ..., a_l$, such that $a_i + a_{i+1} + \cdots + a_j = a_k + a_{k+1} + \cdots + a_l$.

Question 1: In a source file ex3_1.py write a Python function equal_sum_seq(A) that solves this (20) problem (returning True or False) with complexity $O(n^3)$. In a code comment in the same source file, analyze the complexity of equal_sum_seq(A).

Question 2: In a source file ex3_2.py write a Python function equal_sum_seq2(A) that solves (30) this problem with complexity $O(n^2 \log n)$. In a code comment in the same source file, analyze the complexity of equal_sum_seq2(A).