Instructions

- Write and submit source files with the exact names specified in each exercise.
- Do not submit any file, folder, or archive, other than what is required.
- Your code must work with Python 3.
- You may only use the following, limited subset of the Python language and libraries.

You may only use the following built-in types:

- numeric types, such as int
- sequence types, such as arrays, tuples, and strings

With arrays or other sequence types, you may only use the following operations:

- direct access to an element by index, as in print(A[7]) or $A[i+1]=A[i]$
- append an element, as in A.append(10)
- delete the last element, as in del $A[-1]$ or del $A[\operatorname{len}(A)-1]$
- read the length, as in $n=\operatorname{len}(A)$
- shrink to a given length, as in del A[length:]
- sort in-place as in A.sort()

You may use for iterations as follows:

- iteration over the elements in a sequence, as in for a in A :
- range iteration, as in for i in range(10):

You may define classes but only with a single, constructor method __init__(self ,...)
You may not use any function or object or method or module except for the types and methods and functions from the standard library or built-in types listed above, namely append(), len(), print(), range(), sort(), __init__().

- If an exercise requires you to analyze the complexity of an algorithm, write your analysis as a code comment either at the beginning of the source file or anyway near the corresponding Python function.
- Document any known issue using comments in the code.
- Submit each file through the iCorsi system.
-Exercise 1. Consider a binary search tree implemented in Python with the following node class:

```
class Node:
        def __init__(self,k):
            self.left = None
            self.right = None
            self.key = k
```

In a source file ex1.py write a Python function bst_range_weight(T,a,b) that takes a wellbalanced binary search tree T (where T is the root node of the tree) and two keys a and b, with $a \leq b$, and returns the number of keys in T that are between a and b. Assuming there are m such keys, then the algorithm should have a complexity of $O(m)+o(n)$ for a tree of size n. Analyze the complexity of bst_range_weight(T,a,b).
-Exercise 2. Let (a, b) represent an interval (or range) of values x such that $a \leq x \leq b$. Consider an array $X=\left[\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right]$ of n pairs of numbers representing n intervals (a_{i}, b_{i}).

Question 1: In a source file ex2.py, write a Python function intervals_union (X) that takes an array X representing n intervals, and returns a minimal set of intervals representing the to union of all the intervals in X. Notice that the union of two disjoint intervals can not be simplified, but the union of two overlapping intervals can be simplified into a single interval. For example, a correct solution for the simplification of $X=[(3,7),(1,5),(10,12),(6,8)]$ is $X=[(10,12),(1,8)]$. Analyze the complexity of your implementation of intervals_union(X).
Hint: recall that in Python a pair (1,3) is simply a sequence (or "tuple") of two elements. So, given an array $\mathrm{X}=[(3,70),(1,5),(10,12),(6,8)]$, you can access the i-th interval as $\mathrm{X}[i]$ as a tuple, and then the beginning and end of that interval with $X[i][0]$ and $X[i][1]$, respectively.

Question 2: In the same source file ex2.py write a Python function fast_intervals_union(X) that simplifies the given array just like intervals_union(X) but with a $O(n \log n)$ complexity. If your implementation of intervals_union(X$)$ already has an $O(n \log n)$ complexity, then you may use it directly to implement fast_intervals_union(X).
-Exercise 3. Consider the following algorithm Algo-X (A) that takes an array A of numbers:
Algo-X(A)

```
    for \(i=3\) to A.length
        for \(j=2\) to \(i-1\)
            for \(k=1\) to \(j-1\)
            if \(|A[i]-A[j]|==|A[j]-A[k]|\)
            or \(|A[i]-A[k]|==|A[k]-A[j]|\)
            or \(|A[k]-A[i]|==|A[i]-A[j]|\)
        return TRUE
6 return false
```

5

Analyze the complexity of Algo-X and write an algorithm called Better-Algo-X (A) that is functionally equivalent to $\operatorname{Algo}-\mathrm{X}(A)$ (for all A) but with a strictly better asymptotic complexity than Algo-X(A). Write Better-Algo-X as a Python function better_algo_x(A,k) in a source file called ex3.py. Analyze the complexity of better_algo_x(A,k).
-Exercise 4. Write an in-place partition algorithm called Modulo-Partition (A) that takes an array A of n numbers and changes A in such a way that (1) the final content of A is a permutation of the initial content of A, and (2) all the values that are equivalent to $0 \bmod 10$ precede all the values equivalent to $1 \bmod 10$, which precede all the values equivalent to 2 $\bmod 10$, etc. For example, with an input array $A=[7,62,57,12,39,5,8,16,48]$, a correct run might change A (in-place) to $A=[12,62,5,16,7,57,8,48,39]$.

Write MODULO-PARTITION as a Python function modulo_partition(A) in a source file called ex4.py. Analyze the complexity of modulo_partition(A).

- Exercise 5. In a source file ex5. py write a function is_pithagorean_triple(a,b,c) that, given three integers representing the sides of a triangle, returns True if a, b, and c identify a right triangle. Analyze the complexity of is_pithagorean_triple(a,b,c).

