
Algorithms and Data Structures Midterm Exam Trial
A. Carzaniga April 19, 2020

Instructions

• Write and submit source files with the exact names specified in each exercise.

• Do not submit any file, folder, or archive, other than what is required.

• Your code must work with Python 3.

• You may only use the following, limited subset of the Python language and libraries.

You may only use the following built-in types:

– numeric types, such as int

– sequence types, such as arrays, tuples, and strings

With arrays or other sequence types, you may only use the following operations:

– direct access to an element by index, as in print(A[7]) or A[i+1] = A[i]

– append an element, as in A.append(10)

– delete the last element, as in del A[−1] or del A[len(A)−1]

– read the length, as in n = len(A)

– shrink to a given length, as in del A[length:]

– sort in-place as in A.sort()

You may use for iterations as follows:

– iteration over the elements in a sequence, as in for a in A:

– range iteration, as in for i in range(10):

You may define classes but only with a single, constructor method __init__(self ,...)

You may not use any function or object or method or module except for the types
and methods and functions from the standard library or built-in types listed above,
namely append(), len(), print() , range(), sort(), __init__ () .

• If an exercise requires you to analyze the complexity of an algorithm, write your
analysis as a code comment either at the beginning of the source file or anyway near
the corresponding Python function.

• Document any known issue using comments in the code.

• Submit each file through the iCorsi system.

ñExercise 1. Consider a binary search tree implemented in Python with the following node
class:

class Node:
def __init__(self ,k):

self . left = None
self.right = None
self.key = k

In a source file ex1.py write a Python function bst_range_weight(T,a,b) that takes a well-
balanced binary search tree T (where T is the root node of the tree) and two keys a and b,
with a ≤ b, and returns the number of keys in T that are between a and b. Assuming there
are m such keys, then the algorithm should have a complexity of O(m) + o(n) for a tree
of size n. Analyze the complexity of bst_range_weight(T,a,b). (10’)

ñExercise 2. Let (a, b) represent an interval (or range) of values x such that a ≤ x ≤ b.
Consider an array X = [(a1, b1), (a2, b2), . . . , (an, bn)] of n pairs of numbers representing
n intervals (ai, bi).

Question 1: In a source file ex2.py, write a Python function intervals_union(X) that takes an (30’)

array X representing n intervals, and returns a minimal set of intervals representing the to
union of all the intervals in X. Notice that the union of two disjoint intervals can not be sim-
plified, but the union of two overlapping intervals can be simplified into a single interval.
For example, a correct solution for the simplification of X = [(3,7), (1,5), (10,12), (6,8)] is
X = [(10,12), (1,8)]. Analyze the complexity of your implementation of intervals_union(X).

Hint: recall that in Python a pair (1,3) is simply a sequence (or “tuple”) of two elements.
So, given an array X=[(3,70),(1,5),(10,12),(6,8)], you can access the i-th interval as X[i] as a
tuple, and then the beginning and end of that interval with X[i][0] and X[i][1] , respectively.

Question 2: In the same source file ex2.py write a Python function fast_intervals_union(X) (20’)

that simplifies the given array just like intervals_union(X) but with a O(n logn) complexity.
If your implementation of intervals_union(X) already has an O(n logn) complexity, then
you may use it directly to implement fast_intervals_union(X).

ñExercise 3. Consider the following algorithm Algo-X(A) that takes an arrayA of numbers: (20’)

Algo-X(A)
1 for i = 3 to A. length
2 for j = 2 to i− 1
3 for k = 1 to j − 1
4 if |A[i]−A[j]| == |A[j]−A[k]|

or |A[i]−A[k]| == |A[k]−A[j]|
or |A[k]−A[i]| == |A[i]−A[j]|

5 return true
6 return false

Analyze the complexity of Algo-X and write an algorithm called Better-Algo-X(A) that
is functionally equivalent to Algo-X(A) (for all A) but with a strictly better asymptotic
complexity than Algo-X(A). Write Better-Algo-X as a Python function better_algo_x(A,k)
in a source file called ex3.py. Analyze the complexity of better_algo_x(A,k).

ñExercise 4. Write an in-place partition algorithm called Modulo-Partition(A) that takes (30’)

an array A of n numbers and changes A in such a way that (1) the final content of A is a per-
mutation of the initial content of A, and (2) all the values that are equivalent to 0 mod 10
precede all the values equivalent to 1 mod 10, which precede all the values equivalent to 2
mod 10, etc. For example, with an input array A = [7,62,57,12,39,5,8,16,48], a correct
run might change A (in-place) to A = [12,62,5,16,7,57,8,48,39].

Write Modulo-Partition as a Python function modulo_partition(A) in a source file called
ex4.py. Analyze the complexity of modulo_partition(A).

ñExercise 5. In a source file ex5.py write a function is_pithagorean_triple(a,b,c) that, given (10’)

three integers representing the sides of a triangle, returns True if a, b, and c identify a
right triangle. Analyze the complexity of is_pithagorean_triple(a,b,c).

