B-Trees

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana
May 5, 2020

■ Search in secondary storage
■ B-Trees

- properties
- search
- insertion

Complexity Model

Complexity Model

■ Basic assumption so far: data structures fit completely in main memory (RAM)

- all basic operations have the same cost
- even this is a rough approximation, since the main-memory system is not at all "flat"

■ Basic assumption so far: data structures fit completely in main memory (RAM)

- all basic operations have the same cost
- even this is a rough approximation, since the main-memory system is not at all "flat"

■ However, some applications require more storage than what fits in main memory

- we must use data structures that reside in secondary storage (i.e., disk)

■ Basic assumption so far: data structures fit completely in main memory (RAM)

- all basic operations have the same cost
- even this is a rough approximation, since the main-memory system is not at all "flat"

■ However, some applications require more storage than what fits in main memory

- we must use data structures that reside in secondary storage (i.e., disk)

> Disk is 10,000-100,000 times slower than RAM

Register	$\mathbf{1}$
L1 cache	4
L2 cache	10
Local L3 cache	$40-75$
Remote L3 cache	$100-300$
Local DRAM	60
Remote DRAM (main memory)	$\mathbf{1 0 0}$

Register	$\mathbf{1}$
L1 cache	4
L2 cache	10
Local L3 cache	$40-75$
Remote L3 cache	$100-300$
Local DRAM	60
Remote DRAM (main memory)	$\mathbf{1 0 0}$
SSD seek	$\mathbf{2 0 , 0 0 0}$

Memory access/transfer	CPU cycles (\approx 1 ns)
Register	$\mathbf{1}$
L1 cache	4
L2 cache	$10-75$
Local L3 cache	$100-300$
Remote L3 cache	60
Local DRAM	$\mathbf{1 0 0}$
Remote DRAM (main memory)	$\mathbf{2 0 , 0 0 0}$
SSD seek	20,000
Send 2K bytes over 1 Gbps network	$\mathbf{2 5 0 , 0 0 0}$
Read 1 MB sequentially from memory	500,000
Round trip within a datacenter	

Register	$\mathbf{1}$
L1 cache	4
L2 cache	10
Local L3 cache	$40-75$
Remote L3 cache	$100-300$
Local DRAM	$\mathbf{6 0}$
Remote DRAM (main memory)	$\mathbf{1 0 0 , 0 0 0}$
SSD seek	$\mathbf{2 0 , 0 0 0}$
Send 2K bytes over 1 Gbps network	$\mathbf{2 5 0 , 0 0 0}$
Read 1 MB sequentially from memory	500,000
Round trip within a datacenter	$\mathbf{1 0 , 0 0 0 , 0 0 0}$
RDD seek	$10,000,000$
Read 1 MB sequentially from network	$30,000,000$
Round-trip time USA-Europe	$150,000,000$

Modeling Disk Access

■ Let x be a pointer to some (possibly complex) object

■ Let x be a pointer to some (possibly complex) object

- When the object is in memory, x can be used directly as a reference to the object
- e.g., $\ell=x$.size or x. root $=y$

■ Let x be a pointer to some (possibly complex) object
■ When the object is in memory, x can be used directly as a reference to the object

- e.g., $\ell=x$. size or x. root $=y$

■ When the object is on disk, we must first perform a disk-read operation DISk-Read (x) reads the object into memory, allowing us to refer to it (and modify it) through x

Modeling Disk Access

■ Let x be a pointer to some (possibly complex) object
■ When the object is in memory, x can be used directly as a reference to the object

- e.g., $\ell=x$. size or x. root $=y$

■ When the object is on disk, we must first perform a disk-read operation Disk-Read (x) reads the object into memory, allowing us to refer to it (and modify it) through x

■ Any changes to the object in memory must be eventually saved onto the disk Disk-Write (x) writes the object onto the disk (if the object was modified)

■ Assume each node x is stored on disk

■ Assume each node x is stored on disk

Iterative-Tree-Search (T, k)	
1	$x=T . r o o t$
2	while $x \neq$ NIL
3	DISK-ReAD(x)
4	if $k==x$.key
5	return x
6	elseif $k<x$. key
7	$x=x . l e f t$
8	else $x=x$. right
	return x

■ Assume each node x is stored on disk

| ITERATIVE-TREE-SEARCH (T, k) | |
| :--- | :--- | :--- |
| 1 | $x=T . r o o t$ |
| 2 | while $x \neq$ NIL |
| 3 | DISK-READ (x) |
| 4 | if $k==x . k e y$ |
| 5 | return x |
| 6 | elseif $k<x$. key |
| 7 | $x=x . l e f t$ |
| 8 | else $x=x . r i g h t$ |
| 9 | return x |

■ Assume each node x is stored on disk

Iterative-Tree-Search (T, k)	cost
$1 x=$ T.root	c
2 while $x \neq$ NIL	C
3 DISK-READ(X)	100000c
4 if $k==x$. key	c
5 return x	C
6 elseif $k<x$.key	C
$7 \quad x=x . l e f t$	c
8 else $x=x$.right	C
9 return x	c

Basic Intuition

■ Assume we store the nodes of a search tree on disk

1. node accesses should be reduced to a minimum
2. spending more than a few basic operations for each node is not a problem

- Assume we store the nodes of a search tree on disk

1. node accesses should be reduced to a minimum
2. spending more than a few basic operations for each node is not a problem

■ Rationale

- basic in-memory operations are much cheaper
- the bottleneck is with node accesses, which involve Disk-Read and Disk-Write operations

Idea

■ In a balanced binary tree, n keys require a tree of height $h=\left\lfloor\log _{2} n\right\rfloor$

- all the important operations require access to $O(h)$ nodes
- each one accounting for one or very few basic operations

■ In a balanced binary tree, n keys require a tree of height $h=\left\lfloor\log _{2} n\right\rfloor$

- all the important operations require access to $O(h)$ nodes
- each one accounting for one or very few basic operations

■ Idea: store several keys and pointers to children nodes in a single node

■ In a balanced binary tree, n keys require a tree of height $h=\left\lfloor\log _{2} n\right\rfloor$

- all the important operations require access to $O(h)$ nodes
- each one accounting for one or very few basic operations

■ Idea: store several keys and pointers to children nodes in a single node

- in practice we increase the degree (or branching factor) of each node up to $d>2$, so $h=\left\lfloor\log _{d} n\right\rfloor$
- in practice d can be as high as a few thousands

■ In a balanced binary tree, n keys require a tree of height $h=\left\lfloor\log _{2} n\right\rfloor$

- all the important operations require access to $O(h)$ nodes
- each one accounting for one or very few basic operations

■ Idea: store several keys and pointers to children nodes in a single node

- in practice we increase the degree (or branching factor) of each node up to $d>2$, so $h=\left\lfloor\log _{d} n\right\rfloor$
- in practice d can be as high as a few thousands

$$
\begin{aligned}
& \text { E.g., if } d=1000 \text {, then } \\
& \text { only three accesses }(h=2) \\
& \text { cover up to one billion keys }
\end{aligned}
$$

Definition of a B-Tree

- Every node x has the following fields
- $x . n$ is the number of keys stored at each node

- Every node x has the following fields
- $x . n$ is the number of keys stored at each node
- x.key[1] $\leq x . \operatorname{key}[2] \leq \ldots x . \operatorname{key}[x . n]$ are the $x . n$ keys stored in nondecreasing order

- Every node x has the following fields
- $x . n$ is the number of keys stored at each node
- x.key[1] $\leq x . \operatorname{key}[2] \leq \ldots x . \operatorname{key}[x . n]$ are the $x . n$ keys stored in nondecreasing order
- x.leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node

- Every node x has the following fields
- $x . n$ is the number of keys stored at each node
- x.key[1] $\leq x . \operatorname{key}[2] \leq \ldots x . \operatorname{key}[x . n]$ are the $x . n$ keys stored in nondecreasing order
- x. leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node
- $x . c[1], x . c[2], \ldots, x . c[x . n+1]$ are the $x . n+1$ pointers to its children, if x is an internal node

■ The keys x.key [i] delimit the ranges of keys stored in each subtree

■ The keys x.key [i] delimit the ranges of keys stored in each subtree $x . c[1] \longrightarrow$ subtree containing keys $k \leq x$.key[1]
$x . c[2] \longrightarrow$ subtree containing keys $k, x . \operatorname{key}[1] \leq k \leq x . \operatorname{key}[2]$ $x . c[3] \longrightarrow$ subtree containing keys $k, x . k e y[2] \leq k \leq x$.key [3]
$x . c[x . n+1] \longrightarrow$ subtree containing keys $k, k \geq x . \operatorname{key}[x . n]$

Definition of a B-Tree (3)

- All leaves have the same depth

■ All leaves have the same depth
■ Let $t \geq 2$ be the minimum degree of the B-tree

- every node other than the root must have at least $t-1$ keys
- every node must contain at most $2 t-1$ keys
- a node is full when it contains exactly $2 t-1$ keys
- a full node has $2 t$ children

Example

Search in B-Trees

Search in B-Trees

```
B-Tree-Search \((x, k)\)
\(1 \quad i=1\)
while \(i \leq x . n\) and \(k>x . k e y[i]\)
    \(i=i+1\)
    if \(i \leq x . n\) and \(k==x . k e y[i]\)
        return ( \(x, i\) )
    if \(x\). leaf
        return NIL
    else Disk-Read (x.c[i])
        return B-Tree-SeArch \((x . c[i], k)\)
```

Height of a B-Tree

Height of a B-Tree

- Theorem: the height of a B-tree containing $n \geq 1$ keys and with a minimum degree $t \geq 2$ is

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Height of a B-Tree

■ Theorem: the height of a B-tree containing $n \geq 1$ keys and with a minimum degree $t \geq 2$ is

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Proof:

- $n \geq 1$, so the root has at least one key (and therefore two children)

Height of a B-Tree

■ Theorem: the height of a B-tree containing $n \geq 1$ keys and with a minimum degree $t \geq 2$ is

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Proof:

- $n \geq 1$, so the root has at least one key (and therefore two children)
- every other node has at least t children

Height of a B-Tree

■ Theorem: the height of a B-tree containing $n \geq 1$ keys and with a minimum degree $t \geq 2$ is

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Proof:

- $n \geq 1$, so the root has at least one key (and therefore two children)
- every other node has at least t children
- in the worst case, there are two subtrees (of the root) each one containing a total of $(n-1) / 2$ keys, and each one consisting of t-degree nodes, with each node containing $t-1$ keys

Height of a B-Tree

■ Theorem: the height of a B-tree containing $n \geq 1$ keys and with a minimum degree $t \geq 2$ is

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Proof:

- $n \geq 1$, so the root has at least one key (and therefore two children)
- every other node has at least t children
- in the worst case, there are two subtrees (of the root) each one containing a total of $(n-1) / 2$ keys, and each one consisting of t-degree nodes, with each node containing $t-1$ keys
- each subtree contains $1+t+t^{2} \cdots+t^{h-1}$ nodes, each one containing $t-1$ keys

Height of a B-Tree

■ Theorem: the height of a B-tree containing $n \geq 1$ keys and with a minimum degree $t \geq 2$ is

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Proof:

- $n \geq 1$, so the root has at least one key (and therefore two children)
- every other node has at least t children
- in the worst case, there are two subtrees (of the root) each one containing a total of $(n-1) / 2$ keys, and each one consisting of t-degree nodes, with each node containing $t-1$ keys
- each subtree contains $1+t+t^{2} \cdots+t^{h-1}$ nodes, each one containing $t-1$ keys, so

$$
n \geq 1+2\left(t^{h}-1\right)
$$

Splitting

Splitting


```
B-Tree-Split-Child \((x, i, y)\)
\(z=\) Allocate-Node()
    z.leaf \(=y . l e a f\)
    z. \(n=t-1\)
for \(j=1\) to \(t-1\)
    z. \(\operatorname{key}[j]=y . \operatorname{key}[j+t]\)
    if not \(y\).leaf
        for \(j=1\) to \(t\)
        \(z . c[j]=y . c[j+t]\)
\(y . n=t-1\)
for \(j=x . n+1\) downto \(i+1\)
    \(x \cdot c[j+1]=x \cdot c[j]\)
    for \(j=x . n\) downto \(i\)
    \(x \cdot k e y[j+1]=x \cdot k e y[j]\)
    \(x . \operatorname{key}[i]=y . \operatorname{key}[t]\)
    \(x . n=x . n+1\)
    Disk-Write \((y)\)
17 Disk-Write(z)
18 DISK-WRITE \((x)\)
```

- What is the complexity of B-Tree-Split-Child?

Complexity of B-Tree-Split-CHILD

- What is the complexity of B-Tree-Split-Child?

■ $\Theta(t)$ basic CPU operations

Complexity of B-Tree-Split-CHILD

■ What is the complexity of B-Tree-Split-Child?

■ $\Theta(t)$ basic CPU operations

■ 3 DIsk-Write operations

```
B-Tree-Split-CHILD \((x, i, y)\)
    \(z=\) Allocate-Node()
    z.leaf \(=y\). leaf
    z. \(n=t-1\)
    for \(j=1\) to \(t-1\)
        \(x \cdot \operatorname{key}[j]=x \cdot \operatorname{key}[j+t]\)
    if not \(x\).leaf
        for \(j=1\) to \(t\)
        \(z . c[j]=y . c[j+t]\)
\(y . n=t-1\)
for \(j=x . n+1\) downto \(i+1\)
        \(x . c[j+1]=x . c[j]\)
    for \(j=x . n\) downto \(i\)
        \(x \cdot \operatorname{key}[j+1]=x \cdot \operatorname{key}[j]\)
    \(x . k e y[i]=y . k e y[t]\)
    \(x . n=x . n+1\)
    Disk-Write \((y)\)
    Disk-Write(z)
    Disk-Write ( \(x\) )
```

Insertion Under Non-Full Node

Insertion Under Non-Full Node

```
B-Tree-Insert-Nonfull \((x, k)\)
\(i=x . n\)
                    // assume \(x\) is not full
if \(x\).leaf
            while \(i \geq 1\) and \(k<x . \operatorname{key}[i]\)
                \(x . \operatorname{key}[i+1]=x . k e y[i]\)
                    \(i=i-1\)
            \(x . k e y[i+1]=k\)
            \(x . n=x . n+1\)
            Disk-Write ( \(x\) )
else while \(i \geq 1\) and \(k<x\).key [i]
            \(i=i-1\)
            \(i=i+1\)
            Disk-Read (x.c[i])
            if \(x\).c \([i] . n=2 t-1 \quad / /\) child \(x . c[i]\) is full
                        B-Tree-Split-Child( \(x, i, x . c[i])\)
                        if \(k>x\). \(k e y[i]\)
                \(i=i+1\)
            B-Tree-Insert-Nonfull( \(x . c[i], k)\)
```

Insertion Procedure

B-Tree-Insert (T, k)

```
r=T.root
if r.n == 2t-1
    s = Allocate-Node()
    T.root = s
    s.leaf = FALSE
    s.n = 0
    s.c[1] =r
    B-Tree-Split-CHILD(s,1,r)
    B-TrEE-INSERT-NONFULL ( }s,k
    else B-Tree-InSERT-NONFULL ( }r,k
```


Insertion Procedure

B-Tree-Insert (T, k)

```
r = T.root
2 if r.n== 2t-1
    3 s = Allocate-Node()
    T.root = s
    s.leaf = FALSE
    s s.n = 0
     s.c[1] = r
    B-Tree-Split-Child(s,1,r)
    B-Tree-Insert-NonfulL ( }s,k
10 else B-TreE-Insert-NonfulL (r,k)
```


Complexity of Insertion

■ What is the complexity of B-Tree-Insert?

Complexity of Insertion

■ What is the complexity of B-Tree-Insert?
$■ O(t h)=O\left(t \log _{t} n\right)$ basic CPU steps operations

- What is the complexity of B-TREE-INSERT?
$\square O(t h)=O\left(t \log _{t} n\right)$ basic CPU steps operations
■ $O(h)=O\left(\log _{t} n\right)$ disk-access operations

Complexity of Insertion

■ What is the complexity of B-Tree-Insert?
■ $O(t h)=O\left(t \log _{t} n\right)$ basic CPU steps operations
$■ O(h)=O\left(\log _{t} n\right)$ disk-access operations
■ The best value for t can be determined according to

- the ratio between CPU (RAM) speed and disk-access time
- the block-size of the disk, which determines the maximum size of an object that can be accessed (read/write) in one shot

