Greedy Algorithms

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

May 16, 2018

Outline

- Greedy strategy
- Examples
- Activity selection
- Huffman coding

- Find the MST of G = (V, E) with $w : E \to \mathbb{R}$
 - ▶ find a $T \subseteq E$ that is a minimum-weight spanning tree

- Find the MST of G = (V, E) with $w : E \to \mathbb{R}$
 - ▶ find a $T \subseteq E$ that is a *minimum-weight spanning tree*
- We naturally decompose the problem in a series of choices

- Find the MST of G = (V, E) with $w : E \to \mathbb{R}$
 - ▶ find a $T \subseteq E$ that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
 - ▶ at each point we have a partial solution $A \subseteq T$

- Find the MST of G = (V, E) with $w : E \to \mathbb{R}$
 - ▶ find a $T \subseteq E$ that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
 - ▶ at each point we have a partial solution $A \subseteq T$
 - we have a number of choices on how to extend A

- Find the MST of G = (V, E) with $w : E \to \mathbb{R}$
 - ▶ find a $T \subseteq E$ that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
 - ▶ at each point we have a partial solution $A \subseteq T$
 - we have a number of choices on how to extend A
 - we make a "greedy" choice by selecting the lightest edge that does not violate the constraints of the MST problem

- Find the MST of G = (V, E) with $w : E \to \mathbb{R}$
 - ▶ find a $T \subseteq E$ that is a minimum-weight spanning tree
- We naturally decompose the problem in a series of choices
 - ▶ at each point we have a partial solution $A \subseteq T$
 - we have a number of choices on how to extend A
 - we make a "greedy" choice by selecting the lightest edge that does not violate the constraints of the MST problem

```
GENERIC-MST(G, w)

1 A = \emptyset

2 while A is not a spanning tree

3 find a safe edge e = (u, v) // the lightest that...

4 A = A \cup \{e\}
```


Designing a Greedy Algorithm

- 1. Cast the problem as one where
 - we make a greedy choice, and
 - ▶ we are left with a *subproblem*

Designing a Greedy Algorithm

- 1. Cast the problem as one where
 - we make a greedy choice, and
 - we are left with a subproblem
- 2. Prove that there is always a solution to the original problem that contains the greedy choice we make
 - i.e., that the greedy choice always leads to an optimal solution
 - not necessarily always the same one

Designing a Greedy Algorithm

- 1. Cast the problem as one where
 - we make a greedy choice, and
 - we are left with a subproblem
- 2. Prove that there is always a solution to the original problem that contains the greedy choice we make
 - i.e., that the greedy choice always leads to an optimal solution
 - not necessarily always the same one
- 3. Prove that the remaining subproblem is such that
 - combining the greedy choice with the optimal solution of the subproblem gives an optimal solution to the original problem

The Greedy-Choice Property

■ The first key ingredient of a greedy strategy is the following

greedy-choice property: one can always arrive at a globally optimal solution by making a locally optimal choice

The Greedy-Choice Property

■ The first key ingredient of a greedy strategy is the following

greedy-choice property: one can always arrive at a globally optimal solution by making a locally optimal choice

- At every step, we consider only what is best in the current problem
 - not considering the results of the subproblems

Optimal Substructure

■ The second key ingredient of a greedy strategy is the following

optimal-substructure property: an optimal solution to the problem contains within it optimal solutions to subproblems

Optimal Substructure

■ The second key ingredient of a greedy strategy is the following

optimal-substructure property: an optimal solution to the problem contains within it optimal solutions to subproblems

- It is natural to prove this by induction
 - if the solution to the subproblem is optimal, then combining the greedy choice with that solution yields an optimal solution

■ The absolutely trivial *gift-selection problem*

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - ▶ you will be given, as a gift, *k* objects of your choice

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - ▶ you will be given, as a gift, *k* objects of your choice
 - how do you maximize the total value of your gifts?

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - ▶ you will be given, as a gift, *k* objects of your choice
 - how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - you will be given, as a gift, k objects of your choice
 - how do you maximize the total value of your gifts?
- Decomposition: choice plus subproblem
 - ▶ **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - ▶ **subproblem:** $X' = X \{x_i\}$, k' = k 1 (same value function v)

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - ▶ you will be given, as a gift, *k* objects of your choice
 - how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem
 - ▶ **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - ▶ **subproblem:** $X' = X \{x_i\}$, k' = k 1 (same value function v)
- Greedy-choice property

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - ▶ you will be given, as a gift, *k* objects of your choice
 - how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem
 - ▶ **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - ▶ **subproblem:** $X' = X \{x_i\}$, k' = k 1 (same value function v)
- *Greedy-choice* property
 - if $v(x_i) = \max_{x \in X} v(x)$, then there is a globally optimal solution A that contains x_i

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - you will be given, as a gift, k objects of your choice
 - how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem
 - ▶ **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - ▶ **subproblem:** $X' = X \{x_i\}$, k' = k 1 (same value function v)
- Greedy-choice property
 - if $v(x_i) = \max_{x \in X} v(x)$, then there is a globally optimal solution A that contains x_i
- Optimal-substructure property

- The absolutely trivial *gift-selection problem*
 - out of a set $X = \{x_1, x_2, ..., x_n\}$ of valuable objects, where $v(x_i)$ is the value of x_i
 - ▶ you will be given, as a gift, k objects of your choice
 - how do you maximize the total value of your gifts?
- *Decomposition:* choice plus subproblem
 - ▶ **greedy choice:** pick x_i such that $v(x_i) = \max_{x \in X} v(x)$
 - ▶ **subproblem:** $X' = X \{x_i\}, k' = k 1$ (same value function v)
- *Greedy-choice* property
 - if $v(x_i) = \max_{x \in X} v(x)$, then there is a globally optimal solution A that contains x_i
- Optimal-substructure property
 - ▶ if $v(x_i) = \max_{x \in X} v(x)$ and A' is an optimal solution for $X' = X \{x_i\}$, then $A' \subset A$

Observation

- *Inventing* a greedy algorithm is easy
 - it is easy to come up with greedy choices

Observation

- Inventing a greedy algorithm is easy
 - it is easy to come up with greedy choices
- Proving it optimal may be difficult
 - requires deep understanding of the structure of the problem

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

Is this a greedy problem?

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution:
$$2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$$
 (5 coins/bills)

- Is this a greedy problem?
- Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

- Is this a greedy problem?
- Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")

Greedy: $4 \times 1 + 3 \times 0.25 + 5 \times 0.01 = 4.8$ (12 coins/bills)

■ My favorite pasta lunch typically costs Fr. 15.20; I usually pay with a Fr. 20 bill, and get Fr. 4.80 of change

Question: how can I get the least amount of coins?

(Available denominations: 5, 2, 1, 0.5, 0.2, 0.1)

Solution: $2 \times 2 + 0.5 + 0.2 + 0.1 = 4.8$ (5 coins/bills)

- Is this a greedy problem?
- Suppose you are in the US and need to make \$4.80 of change; available denominations are \$5, \$1, \$0.25, \$0.1, and \$.01 (you are out of "nickels")

Greedy:
$$4 \times 1 + 3 \times 0.25 + 5 \times 0.01 = 4.8$$
 (12 coins/bills)

Optimal: $4 \times 1 + 2 \times 0.25 + 3 \times 0.1 = 4.8$ (9 coins/bills)

Knapsack Problem

- A thief robbing a store finds *n* items
 - v_i is the value of item i
 - \triangleright w_i is the weight of item i
 - ▶ *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

Knapsack Problem

- A thief robbing a store finds *n* items
 - v_i is the value of item i
 - \triangleright w_i is the weight of item i
 - ▶ *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

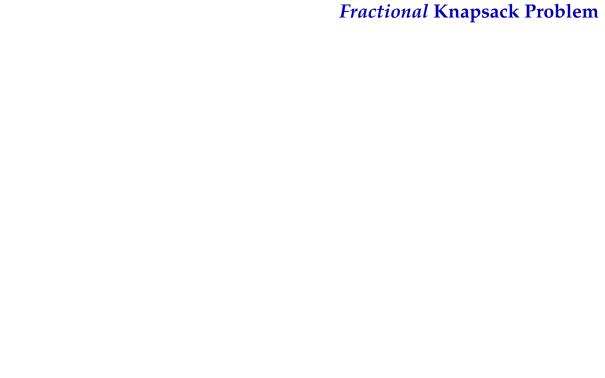
Is this a greedy problem?

Knapsack Problem

- A thief robbing a store finds *n* items
 - v_i is the value of item i
 - \triangleright w_i is the weight of item i
 - ▶ *W* is the maximum weight that the thief can carry

Problem: choose which items to take to maximize the total value of the robbery

- Is this a greedy problem?
- **Exercise:** 1. formulate a reasonable greedy choice
 - 2. prove that it doesn't work with a counter-example
 - 3. go back to (1) and repeat a couple of times



Fractional Knapsack Problem

- A thief robbing a store finds *n* items
 - \triangleright v_i is the value of item i
 - w_i is the weight of item i
 - W is the maximum weight that the thief can carry
 - the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

Fractional Knapsack Problem

- A thief robbing a store finds *n* items
 - \triangleright v_i is the value of item i
 - w_i is the weight of item i
 - W is the maximum weight that the thief can carry
 - the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

Is this a greedy problem?

Fractional Knapsack Problem

- A thief robbing a store finds *n* items
 - \triangleright v_i is the value of item i
 - w_i is the weight of item i
 - W is the maximum weight that the thief can carry
 - the thief may take any fraction of an item (with the corresponding proportional value)

Problem: choose which items, or fractions of items to take to maximize the total value of the robbery

- Is this a greedy problem?
- **Exercise:** prove that it is a greedy problem

Activity-Selection Problem

- A conference room is shared among different activities
 - ► $S = \{a_1, a_2, ..., a_n\}$ is the set of proposed activities
 - ▶ activity a_i has a start time s_i and a finish time f_i
 - ▶ activities a_i and a_j are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$

Activity-Selection Problem

- A conference room is shared among different activities
 - ► $S = \{a_1, a_2, ..., a_n\}$ is the set of proposed activities
 - ▶ activity a_i has a start time s_i and a finish time f_i
 - ▶ activities a_i and a_j are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$

Problem: find the largest set of compatible activities

Activity-Selection Problem

- A conference room is shared among different activities
 - ► $S = \{a_1, a_2, ..., a_n\}$ is the set of proposed activities
 - activity a_i has a start time s_i and a finish time f_i
 - ▶ activities a_i and a_j are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$

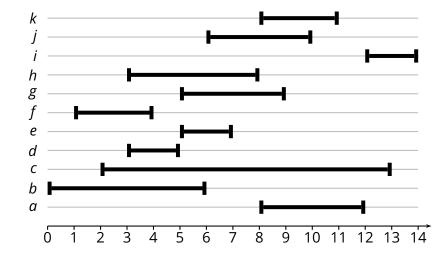
Problem: find the largest set of compatible activities

Example

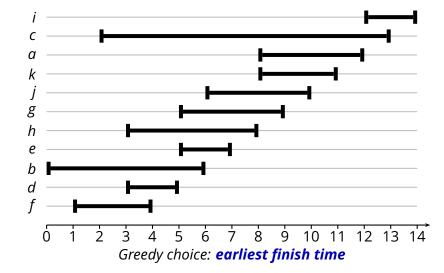
activity	а	b	С	d	е	f	g	h	i	j	k
start	8	0	2	3	5	1	5	3	12	6	8
finish	12	6	13	5	7	4	9	8	14	10	11

Is there a greedy solution for this problem?

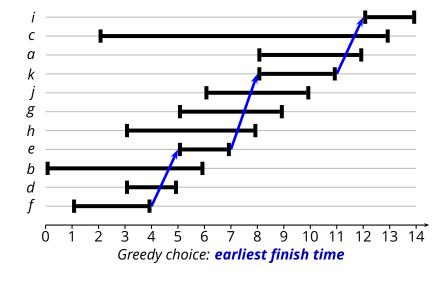
Activity-Selection Problem (2)



Activity-Selection Problem (3)



Activity-Selection Problem (3)



■ *Greedy choice:* take $a_x \in S$ s.t. $f_x \le f_i$ for all $a_i \in S$

■ **Greedy choice:** take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution OPT^* that contains a_x

■ **Greedy choice:** take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution OPT^* that contains a_x

Proof: (by contradiction)

▶ assume $a_x \notin OPT$

■ **Greedy choice:** take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution OPT^* that contains a_x

- ▶ assume $a_x \notin OPT$
- ▶ let $a_m \in OPT$ be the earliest-finish activity in OPT

■ **Greedy choice:** take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution OPT^* that contains a_x

- ▶ assume $a_x \notin OPT$
- ▶ let $a_m \in OPT$ be the earliest-finish activity in OPT
- ► construct $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$

■ **Greedy choice:** take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

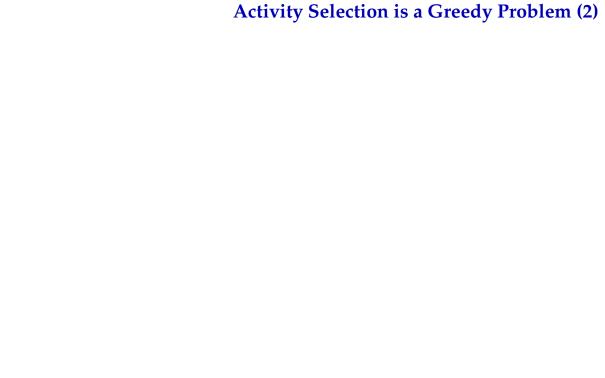
Prove: there is an optimal solution OPT^* that contains a_x

- assume a_x ∉ OPT
- ▶ let $a_m \in OPT$ be the earliest-finish activity in OPT
- ▶ construct $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$
- ► OPT* is valid
 - Proof:
 - every activity $a_i \in OPT \setminus \{a_m\}$ has a starting time $s_i \ge f_m$, because a_m is compatible with a_i (so either $f_i < s_m$ or $s_i > f_m$) and $f_i > f_m$, because a_m is the earliest-finish activity in OPT
 - ▶ therefore, every activity a_i is compatible with a_x , because $s_i \ge f_m \ge f_x$

■ **Greedy choice:** take $a_x \in S$ s.t. $f_x \leq f_i$ for all $a_i \in S$

Prove: there is an optimal solution OPT^* that contains a_x

- ▶ assume $a_x \notin OPT$
- ▶ let $a_m \in OPT$ be the earliest-finish activity in OPT
- ▶ construct $OPT^* = OPT \setminus \{a_m\} \cup \{a_x\}$
- ► OPT* is valid
 - Proof:
 - every activity $a_i \in OPT \setminus \{a_m\}$ has a starting time $s_i \ge f_m$, because a_m is compatible with a_i (so either $f_i < s_m$ or $s_i > f_m$) and $f_i > f_m$, because a_m is the earliest-finish activity in OPT
 - ▶ therefore, every activity a_i is compatible with a_x , because $s_i \ge f_m \ge f_x$
- ▶ thus OPT^* is an optimal solution, because $|OPT^*| = |OPT|$



■ Optimal-substructure property: having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

■ Optimal-substructure property: having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT' \text{ is optimal for } S \text{ if } OPT' \text{ is optimal for } S'$

■ Optimal-substructure property: having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT' \text{ is optimal for } S \text{ if } OPT' \text{ is optimal for } S'$

Proof: (by contradiction)

▶ assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| - 1

■ Optimal-substructure property: having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT' \text{ is optimal for } S \text{ if } OPT' \text{ is optimal for } S'$

- ▶ assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| 1
- ▶ let a_m be the earliest-finish activity in *OPT*, and let $\overline{S} = \{a_i \mid s_i \ge f_m\}$

■ Optimal-substructure property: having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT' \text{ is optimal for } S \text{ if } OPT' \text{ is optimal for } S'$

- ▶ assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| 1
- ▶ let a_m be the earliest-finish activity in *OPT*, and let $\overline{S} = \{a_i \mid s_i \ge f_m\}$
- ▶ by construction, $OPT \setminus \{a_m\}$ is a solution for \overline{S}

■ Optimal-substructure property: having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT' \text{ is optimal for } S \text{ if } OPT' \text{ is optimal for } S'$

- lacktriangle assume to the contrary that $|\mathit{OPT}^*| < |\mathit{OPT}|$, and therefore $|\mathit{OPT}'| < |\mathit{OPT}| 1$
- ▶ let a_m be the earliest-finish activity in *OPT*, and let $\overline{S} = \{a_i \mid s_i \ge f_m\}$
- by construction, $OPT \setminus \{a_m\}$ is a solution for \overline{S}
- ▶ by construction, $\overline{S} \subseteq S'$, so $OPT \setminus \{a_m\}$ is a solution also for S'

■ Optimal-substructure property: having chosen a_x , let $S' \subset S$ be the set of activities compatible with a_x , that is, $S' = \{a_i \mid s_i \geq f_x\}$

Prove: $OPT^* = \{a_x\} \cup OPT' \text{ is optimal for } S \text{ if } OPT' \text{ is optimal for } S'$

- ▶ assume to the contrary that $|OPT^*| < |OPT|$, and therefore |OPT'| < |OPT| 1
- ▶ let a_m be the earliest-finish activity in *OPT*, and let $\overline{S} = \{a_i \mid s_i \ge f_m\}$
- ▶ by construction, $OPT \setminus \{a_m\}$ is a solution for \overline{S}
- ▶ by construction, $\overline{S} \subseteq S'$, so $OPT \setminus \{a_m\}$ is a solution also for S'
- ▶ which means that there is a solution S' of size |OPT| 1, which contradicts the main assumption that |OPT'| < |OPT| 1

■ Suppose you have a large sequence *S* of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'

• e.g.,
$$n = |S| = 10^9$$

■ What is the most efficient way to store that sequence?

- Suppose you have a large sequence S of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'
 - e.g., $n = |S| = 10^9$
- What is the most efficient way to store that sequence?
- First approach: compact fixed-width encoding

- Suppose you have a large sequence *S* of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'
 - e.g., $n = |S| = 10^9$
- What is the most efficient way to store that sequence?
- First approach: compact fixed-width encoding
 - 6 symbols require 3 bits per symbol

- Suppose you have a large sequence *S* of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'
 - e.g., $n = |S| = 10^9$
- What is the most efficient way to store that sequence?
- First approach: compact fixed-width encoding
 - 6 symbols require 3 bits per symbol
 - \rightarrow 3 × 10⁹/8 = 3.75 × 10⁸ (a bit less than 400Mb)

- Suppose you have a large sequence *S* of the six characters: 'a', 'b', 'c', 'd', 'e', and 'f'
 - e.g., $n = |S| = 10^9$
- What is the most efficient way to store that sequence?
- First approach: compact fixed-width encoding
 - 6 symbols require 3 bits per symbol
 - \rightarrow 3 × 10⁹/8 = 3.75 × 10⁸ (a bit less than 400Mb)
- Can we do better?

Huffman Coding (2)

■ Consider the following encoding table:

symbol	code			
а	000			
b	001			
С	010			
d	011			
e	100			
f	101			

Huffman Coding (2)

■ Consider the following encoding table:

symbol	code			
а	000			
b	001			
С	010			
d	011			
е	100			
f	101			

- Observation: the encoding of 'e' and 'f' is a bit redundant
 - the second bit does not help us in distinguishing 'e' from 'f'
 - in other words, if the first (most significant) bit is 1, then the second bit gives us no information, so it can be removed

symbol	code
а	000
b	001
С	010
d	011
е	10
f	11

■ Encoding and decoding are well-defined and unambiguous

symbol	code
а	000
b	001
С	010
d	011
е	10
f	11

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?

symbol	code
а	000
b	001
С	010
d	011
е	10
f	11

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?
 - not knowing the frequency of 'e' and 'f', we can't tell exactly

symbol	code
а	000
b	001
С	010
d	011
e	10
f	11

- Encoding and decoding are well-defined and unambiguous
- How much space do we save?
 - not knowing the frequency of 'e' and 'f', we can't tell exactly
- Given the frequencies f_a, f_b, f_c, \ldots of all the symbols in S

$$M = 3n(f_a + f_b + f_c + f_d) + 2n(f_e + f_f)$$

Problem Definition

- Given a set of symbols C and a frequency function $f: C \rightarrow [0,1]$
- Find a code $E: C \rightarrow \{0,1\}^*$ such that

Problem Definition

- Given a set of symbols C and a frequency function $f: C \rightarrow [0,1]$
- Find a code $E: C \rightarrow \{0,1\}^*$ such that
- *E* is a *prefix* code
 - ▶ no codeword $E(c_1)$ is the prefix of another codeword $E(c_2)$

Problem Definition

- Given a set of symbols C and a frequency function $f: C \rightarrow [0,1]$
- Find a code $E: C \rightarrow \{0,1\}^*$ such that
- *E* is a *prefix code*
 - ▶ no codeword $E(c_1)$ is the prefix of another codeword $E(c_2)$
- The average codeword size

$$B(S) = \sum_{c \in C} f(c)|E(c)|$$

is minimal

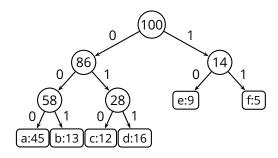
 \blacksquare E : C \rightarrow {0, 1}* defines binary strings, so we can represent E as a binary tree T

■ $E: C \to \{0,1\}^*$ defines binary strings, so we can represent E as a binary tree T

sym.	freq.	code
а	45%	000
b	13%	001
C	12%	010
d	16%	011
е	9%	10
f	5%	11

 \blacksquare E : C \to {0, 1}* defines binary strings, so we can represent E as a binary tree T

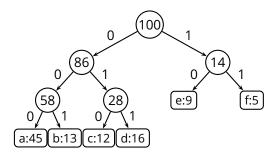
sym.	freq.	code
а	45%	000
b	13%	001
C	12%	010
d	16%	011
е	9%	10
f	5%	11



- leaves represent symbols; internal nodes are prefixes
- the code of a symbol c is the path from the root to c
- the weight f(v) of a node v is the frequency of its code/prefix

 \blacksquare E : C \to {0, 1}* defines binary strings, so we can represent E as a binary tree T

sym.	freq.	code
а	45%	000
b	13%	001
C	12%	010
d	16%	011
е	9%	10
f	5%	11



- leaves represent symbols; internal nodes are prefixes
- the code of a symbol c is the path from the root to c
- the weight f(v) of a node v is the frequency of its code/prefix

$$B(S) = n \sum_{c \in leaves(T)} f(c) depth(c) = n \sum_{v \in T} f(v)$$

Huffman Algorithm

```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 create a new node z

5 z.left = Extract-Min(Q)

6 z.right = Extract-Min(Q)

7 f(z) = f(z.left) + f(z.right)

8 INSERT(Q, z)

9 return Extract-Min(Q)
```

Huffman Algorithm

```
Huffman(C)
  n = |C|
Q = C
3 for i = 1 to n - 1
       create a new node z
       z.left = Extract-Min(Q)
       z.right = Extract-Min(Q)
       f(z) = f(z.left) + f(z.right)
       INSERT(Q, z)
   return Extract-Min(Q)
```

■ We build the code bottom-up

Huffman Algorithm

```
Huffman(C)
  n = |C|
Q = C
3 for i = 1 to n - 1
       create a new node z
5
       z.left = Extract-Min(Q)
       z.right = Extract-Min(Q)
       f(z) = f(z.left) + f(z.right)
       INSERT(Q, z)
   return Extract-Min(Q)
```

- We build the code bottom-up
- Each time we make the "greedy" choice of merging the two least frequent nodes (symbols or prefixes)

```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 create a new node z

5 z.left = Extract-Min(Q)

6 z.right = Extract-Min(Q)

7 f(z) = f(z.left) + f(z.right)

8 INSERT(Q, z)

9 return Extract-Min(Q)
```

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	

```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 create a new node z

5 z.left = Extract-Min(Q)

6 z.right = Extract-Min(Q)

7 f(z) = f(z.left) + f(z.right)

8 INSERT(Q, z)

9 return Extract-Min(Q)
```

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	

```
HUFFMAN(\mathcal{C})

1 n = |\mathcal{C}|

2 Q = \mathcal{C}

3 for i = 1 to n - 1

4 create a new node z

5 z.left = \text{Extract-Min}(\mathbf{Q})

6 z.right = \text{Extract-Min}(\mathbf{Q})

7 f(z) = f(z.left) + f(z.right)

8 INSERT(Q, z)

9 return Extract-Min(Q)
```

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	

a:45

(b:13)

c:12

(d:16)


```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 create a new node z

5 z.left = Extract-Min(Q)

6 z.right = Extract-Min(Q)

7 f(z) = f(z.left) + f(z.right)

8 INSERT(Q, z)

9 return Extract-Min(Q)
```

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	


```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 create a new node z

5 z.left = Extract-Min(Q)

6 z.right = Extract-Min(Q)

7 f(z) = f(z.left) + f(z.right)

8 INSERT(Q, z)

9 return Extract-Min(Q)
```

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	


```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 create a new node z

5 z.left = Extract-Min(Q)

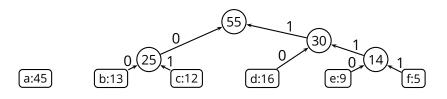
6 z.right = Extract-Min(Q)

7 f(z) = f(z.left) + f(z.right)

8 INSERT(Q, z)

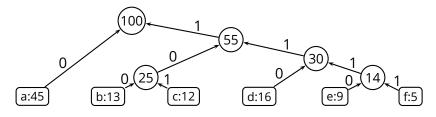
9 return Extract-Min(Q)
```

	_	
sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	



Huffman(C)				
1	n = C			
2	Q = C			
3	for $i = 1$ to $n - 1$			
4	create a new node z			
5	z.left = Extract-Min(Q)			
6	z.right = Extract-Min(Q)			
7	f(z) = f(z.left) + f(z.right)			
8	INSERT(Q, z)			
9	return Extract-Min(Q)			

sym.	freq.	code
а	45%	
b	13%	
С	12%	
d	16%	
е	9%	
f	5%	



Huffman(C)				
1	n = C			
2	Q = C			
3	for $i = 1$ to $n - 1$			
4	create a new node z			
5	z.left = Extract-Min(Q)			
6	z.right = Extract-Min(Q)			
7	f(z) = f(z.left) + f(z.right)			
8	INSERT(Q, z)			
9	return Extract-Min(Q)			

sym.	freq.	code
а	45%	0
b	13%	100
С	12%	101
d	16%	110
е	9%	1110
f	5%	1111

