
The Dijkstra Algorithm

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

May 16, 2019

Example

Executing locally at node *u*

- Executing locally at node *u*
- Variables storing values known at each iteration

- Executing locally at node *u*
- Variables storing values known at each iteration
 - ▶ D[v], cost of the least-cost path from u to v

- Executing locally at node *u*
- Variables storing values known at each iteration
 - ▶ D[v], cost of the least-cost path from u to v
 - ▶ p[v], node preceding v (neighbor of v) on the least-cost path from u to v

- Executing locally at node *u*
- Variables storing values known at each iteration
 - ▶ D[v], cost of the least-cost path from u to v
 - ▶ p[v], node preceding v (neighbor of v) on the least-cost path from u to v
 - ▶ *N*, nodes of *G* whose least-cost path from *u* is definitely known

DIJKSTRA
$$(G = (V, E), u)$$

1 $N = \{u\}$

2 **for** all $v \in V$

3 **if** $v \in neighbors(u)$

4 $D[v] = c(u, v)$

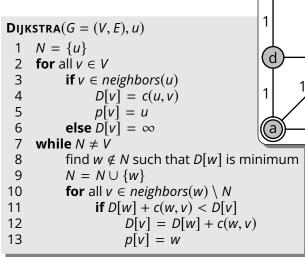
5 $p[v] = u$

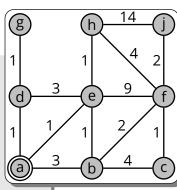
6 **else** $D[v] = \infty$

7 **while** $N \neq V$

8 find $w \notin N$ such that $D[w]$ is minimum

9 $N = N \cup \{w\}$


10 **for** all $v \in neighbors(w) \setminus N$


11 **if** $D[w] + c(w, v) < D[v]$

12 $D[v] = D[w] + c(w, v)$

13 $p[v] = w$

Example

