Analysis of Insertion Sort

Antonio Carzaniga

Faculty of Informatics Università della Svizzera italiana

March 1, 2018

Outline

Sorting

- Insertion Sort
- Analysis

Input: a sequence $A = \langle a_1, a_2, \dots, a_n \rangle$

Input: a sequence $A = \langle a_1, a_2, \ldots, a_n \rangle$

Output: a sequence $\langle b_1, b_2, \ldots, b_n \rangle$ such that

•
$$\langle b_1, b_2, \ldots, b_n \rangle$$
 is a *permutation* of $\langle a_1, a_2, \ldots, a_n \rangle$

Input: a sequence $A = \langle a_1, a_2, \ldots, a_n \rangle$

Output: a sequence $\langle b_1, b_2, \ldots, b_n \rangle$ such that

- $\langle b_1, b_2, \ldots, b_n \rangle$ is a *permutation* of $\langle a_1, a_2, \ldots, a_n \rangle$
- $\langle b_1, b_2, \ldots, b_n \rangle$ is sorted

$$b_1 \leq b_2 \leq \cdots \leq b_n$$

Input: a sequence $A = \langle a_1, a_2, \ldots, a_n \rangle$

Output: a sequence $\langle b_1, b_2, \ldots, b_n \rangle$ such that

- $\langle b_1, b_2, \ldots, b_n \rangle$ is a *permutation* of $\langle a_1, a_2, \ldots, a_n \rangle$
- $\langle b_1, b_2, \ldots, b_n \rangle$ is sorted

$$b_1 \leq b_2 \leq \cdots \leq b_n$$

Typically, *A* is implemented as an array

Input: a sequence $A = \langle a_1, a_2, \ldots, a_n \rangle$

Output: a sequence $\langle b_1, b_2, \ldots, b_n \rangle$ such that

- $\langle b_1, b_2, \ldots, b_n \rangle$ is a *permutation* of $\langle a_1, a_2, \ldots, a_n \rangle$
- $\langle b_1, b_2, \ldots, b_n \rangle$ is sorted

$$b_1 \leq b_2 \leq \cdots \leq b_n$$

Typically, *A* is implemented as an array

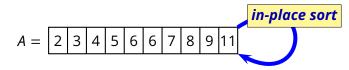
Input: a sequence $A = \langle a_1, a_2, \ldots, a_n \rangle$

Output: a sequence $\langle b_1, b_2, \ldots, b_n \rangle$ such that

- $\langle b_1, b_2, \ldots, b_n \rangle$ is a *permutation* of $\langle a_1, a_2, \ldots, a_n \rangle$
- $\langle b_1, b_2, \ldots, b_n \rangle$ is sorted

$$b_1 \leq b_2 \leq \cdots \leq b_n$$

Typically, *A* is implemented as an array



■ **Idea:** it is like sorting a hand of cards

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_j*
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

$$A = \boxed{6 \ 8 \ 3 \ 2 \ 7 \ 6 \ 7 \ 3 \ 3 \ 2}$$

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

$$A = \boxed{6 \ 8 \ 3 } \boxed{2 \ 7 \ 6 \ 7 \ 2 \ 2} \boxed{2}$$

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_j*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

$$A = \boxed{3 \ 6 \ 2 \ 8}$$

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

$$A = \boxed{3 \ 2 \ 6 \ 8}$$

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

$$A = \begin{bmatrix} 2 & 3 & 6 & 8 & 7 \\ \hline 2 & 3 & 6 & 8 & 7 \\ \hline 3 & 7 & 8 \\ \hline 3 & 7 & 7 \\ \hline 3 & 7 \\ \hline 3 & 7 & 7 \\ \hline 3 & 7 \\$$

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_j*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

$$A = \begin{bmatrix} 2 & 3 & 6 & 7 & 8 \\ \hline 2 & 3 & 6 & 7 & 8 \\ \hline 3 & 7 & 7 \\ \hline 3 & 7 \\ \hline 3 & 7 & 7 \\ \hline 3 &$$

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_j*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ... a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ... a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - pick the value at the current position a_i
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

- Idea: it is like sorting a hand of cards
 - scan the sequence left to right
 - ▶ pick the value at the current position *a_i*
 - ► insert it in its correct position in the sequence (a₁, a₂, ..., a_{j-1}) so as to maintain a sorted subsequence (a₁, a₂, ..., a_j)

Insertion Sort (2)

INSERTION-SORT (A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Insertion Sort (2)

INSERTION-SORT(A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Is INSERTION-SORT correct?

- What is the time complexity of **INSERTION-SORT**?
- Can we do better?

INSERTION-SORT(A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

INSERTION-SORT (A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

■ Outer loop (lines 1–5) runs exactly n - 1 times (with n = length(A))

■ What about the inner loop (lines 3–5)?

best, worst, and average case?

 INSERTION-SORT(A)

 1
 for i = 2 to length(A)

 2
 j = i

 3
 while j > 1 and A[j - 1] > A[j]

 4
 swap A[j] and A[j - 1]

 5
 j = j - 1

Best case:

INSERTION-SORT (A) 1 for i = 2 to length(A)2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Best case: the inner loop is *never* executed

what case is this?

INSERTION-SORT (A) 1 for i = 2 to length(A)2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Best case: the inner loop is *never* executed

what case is this?

Worst case:

INSERTION-SORT (A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Best case: the inner loop is *never* executed

what case is this?

- Worst case: the inner loop is executed exactly *j* − 1 times for every iteration of the outer loop
 - what case is this?

The worst-case complexity is when the inner loop is executed exactly j - 1 times, so

$$T(n) = \sum_{j=2}^{n} (j-1)$$

The worst-case complexity is when the inner loop is executed exactly j - 1 times, so

$$T(n) = \sum_{j=2}^{n} (j-1)$$

T(n) is the *arithmetic series* $\sum_{k=1}^{n-1} k$, so

$$T(n) = \frac{n(n-1)}{2}$$
$$T(n) = \Theta(n^2)$$

The worst-case complexity is when the inner loop is executed exactly j - 1 times, so

$$T(n) = \sum_{j=2}^{n} (j-1)$$

T(n) is the *arithmetic series* $\sum_{k=1}^{n-1} k$, so

$$T(n) = \frac{n(n-1)}{2}$$
$$T(n) = \Theta(n^2)$$

Best-case is $T(n) = \Theta(n)$

The worst-case complexity is when the inner loop is executed exactly j - 1 times, so

$$T(n) = \sum_{j=2}^{n} (j-1)$$

T(n) is the *arithmetic series* $\sum_{k=1}^{n-1} k$, so

$$T(n) = \frac{n(n-1)}{2}$$
$$T(n) = \Theta(n^2)$$

Best-case is $T(n) = \Theta(n)$

• Average-case is $T(n) = \Theta(n^2)$

Does Insertion-Sort terminate for all valid inputs?

- Does **INSERTION-SORT** terminate for all valid inputs?
- If so, does it satisfy the conditions of the sorting problem?
 - A contains a *permutation* of the initial value of A
 - A is sorted: $A[1] \le A[2] \le \cdots \le A[length(A)]$

- Does Insertion-Sort terminate for all valid inputs?
- If so, does it satisfy the conditions of the sorting problem?
 - A contains a *permutation* of the initial value of A
 - A is sorted: $A[1] \le A[2] \le \cdots \le A[length(A)]$

We want a formal proof of correctness

does not seem straightforward...

The Logic of Algorithmic Steps

The Logic of Algorithmic Steps

Example 1: (straight-line program)

BIGGER(n)

- 1 *I* must return a value greater than n
- 2 m = n * n + 1
- 3 return m

The Logic of Algorithmic Steps

Example 1: (straight-line program)

BIGGER(n)

- // must return a value greater than n 1
- 2 m = n * n + 1
- 3 return m

Example 2: (branching)

SORTTWO(A)

- // must sort (in-place) an array of 2 elements 1
- 2 if A[1] > A[2]
- 3 t = A[1]

4
$$A[1] = A[2]$$

5 $A[2] = t$

$$A[2] = t$$

■ We formulate a *loop-invariant* condition *C*

• C must remain true through a loop

■ We formulate a *loop-invariant* condition C

- *C* must remain true *through* a loop
- C is relevant to the problem definition: we use C at the end of a loop to prove the correctness of the result

■ We formulate a *loop-invariant* condition C

- *C* must remain true *through* a loop
- C is relevant to the problem definition: we use C at the end of a loop to prove the correctness of the result

■ Then, we only need to prove that the algorithm terminates

Loop Invariants (2)

Loop Invariants (2)

- Formulation: this is where we try to be smart
 - the invariant must reflect the structure of the algorithm
 - it must be the basis to prove the correctness of the solution

Loop Invariants (2)

- Formulation: this is where we try to be smart
 - the invariant must reflect the structure of the algorithm
 - it must be the basis to prove the correctness of the solution

Proof of validity (i.e., that *C* is indeed a loop invariant): typical *proof by induction*

- initialization: we must prove that the invariant C is true before entering the loop
- *maintenance:* we must prove that

if C is true at the beginning of a cycle *then* it remains true after one cycle

Loop Invariant for INSERTION-SORT

INSERTION-SORT(A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Loop Invariant for INSERTION-SORT

INSERTION-SORT (A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

■ The main idea is to insert *A*[*i*] in *A*[1..*i* − 1] so as to maintain a *sorted subsequence A*[1..*i*]

Loop Invariant for INSERTION-SORT

INSERTION-SORT (A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

- The main idea is to insert *A*[*i*] in *A*[1..*i* − 1] so as to maintain a *sorted subsequence A*[1..*i*]
- *Invariant:* (outer loop) the subarray A[1..i-1] consists of the elements originally in A[1..i-1] in sorted order

Loop Invariant for INSERTION-SORT (2)

INSERTION-SORT(A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Loop Invariant for INSERTION-SORT (2)

INSERTION-SORT (A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

■ Initialization: j = 2, so A[1 . . j - 1] is the single element A[1]

- ► *A*[1] contains the original element in *A*[1]
- A[1] is trivially sorted

Loop Invariant for INSERTION-SORT (3)

INSERTION-SORT(A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Loop Invariant for INSERTION-SORT (3)

INSERTION-SORT (A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

■ **Maintenance:** informally, if A[1 . . i - 1] is a permutation of the original A[1 . . i - 1] and A[1 . . i - 1] is sorted (invariant), then *if* we enter the inner loop:

- shifts the subarray A[k . . i 1] by one position to the right
- ► inserts *key*, which was originally in A[i] at its proper position $1 \le k \le i 1$, in sorted order

Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT(A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Loop Invariant for INSERTION-SORT (4)

```
INSERTION-SORT(A)

1 for i = 2 to length(A)

2 j = i

3 while j > 1 and A[j - 1] > A[j]

4 swap A[j] and A[j - 1]

5 j = j - 1
```

Termination: INSERTION-SORT terminates with i = length(A) + 1; the invariant states that

Loop Invariant for INSERTION-SORT (4)

INSERTION-SORT (A) 1 for i = 2 to length(A) 2 j = i3 while j > 1 and A[j - 1] > A[j]4 swap A[j] and A[j - 1]5 j = j - 1

Termination: INSERTION-SORT terminates with *i* = *length*(*A*) + 1; the invariant states that

•
$$A[1 \dots i - 1]$$
 is a permutation of the original $A[1 \dots i - 1]$

► A[1..i – 1] is sorted

Given the termination condition, A[1 . . i - 1] is the whole A So **INSERTION-SORT** is *correct!*

- You are given a problem *P* and an algorithm *A*
 - P formally defines a correctness condition
 - assume, for simplicity, that A consists of one loop

- You are given a problem *P* and an algorithm *A*
 - P formally defines a correctness condition
 - ► assume, for simplicity, that A consists of one loop
- 1. Formulate an invariant C

- You are given a problem *P* and an algorithm *A*
 - P formally defines a correctness condition
 - assume, for simplicity, that A consists of one loop
- 1. Formulate an invariant C
- 2. Initialization

(for all valid inputs)

prove that C holds right before the first execution of the first instruction of the loop

■ You are given a problem *P* and an algorithm *A*

- P formally defines a correctness condition
- assume, for simplicity, that A consists of one loop
- 1. Formulate an invariant C

2. Initialization

(for all valid inputs)

▶ prove that C holds right before the first execution of the first instruction of the loop

3. Management

(for all valid inputs)

 prove that if C holds right before the first instruction of the loop, then it holds also at the end of the loop

■ You are given a problem *P* and an algorithm *A*

- P formally defines a correctness condition
- assume, for simplicity, that A consists of one loop
- 1. Formulate an invariant C

2. Initialization

(for all valid inputs)

prove that C holds right before the first execution of the first instruction of the loop

3. Management

(for all valid inputs)

prove that if C holds right before the first instruction of the loop, then it holds also at the end of the loop

4. Termination

(for all valid inputs)

prove that the loop terminates, with some exit condition X

■ You are given a problem *P* and an algorithm *A*

- P formally defines a correctness condition
- assume, for simplicity, that A consists of one loop
- 1. Formulate an invariant C

2. Initialization

(for all valid inputs)

▶ prove that C holds right before the first execution of the first instruction of the loop

3. Management

(for all valid inputs)

prove that if C holds right before the first instruction of the loop, then it holds also at the end of the loop

4. Termination

(for all valid inputs)

- prove that the loop terminates, with some exit condition X
- 5. Prove that $X \land C \Rightarrow P$, which means that A is correct

Exercise: Analyze Selection-Sort

SELECTION-SORT(A)1n = length(A)2for i = 1 to n - 13smallest = i4for j = i + 1 to n5if A[j] < A[smallest]6smallest = j7swap A[i] and A[smallest]

Exercise: Analyze Selection-Sort

SELECTION-SORT(A)1n = length(A)2for i = 1 to n - 13smallest = i4for j = i + 1 to n5if A[j] < A[smallest]6smallest = j7swap A[i] and A[smallest]

Correctness?

loop invariant?

Complexity?

worst, best, and average case?

Exercise: Analyze Bubblesort

```
BUBBLESORT(A)

1 for i = 1 to length(A)

2 for j = length(A) downto i + 1

3 if A[j] < A[j - 1]

4 swap A[j] and A[j - 1]
```

Exercise: Analyze Bubblesort

```
BUBBLESORT(A)1for i = 1 to length(A)2for j = length(A) downto i + 13if A[j] < A[j - 1]4swap A[j] and A[j - 1]
```

Correctness?

- loop invariant?
- Complexity?
 - worst, best, and average case?